Traktor/myenv/Lib/site-packages/pandas/_testing/asserters.py

1436 lines
46 KiB
Python
Raw Normal View History

2024-05-23 01:57:24 +02:00
from __future__ import annotations
import operator
from typing import (
TYPE_CHECKING,
Literal,
NoReturn,
cast,
)
import numpy as np
from pandas._libs import lib
from pandas._libs.missing import is_matching_na
from pandas._libs.sparse import SparseIndex
import pandas._libs.testing as _testing
from pandas._libs.tslibs.np_datetime import compare_mismatched_resolutions
from pandas.core.dtypes.common import (
is_bool,
is_float_dtype,
is_integer_dtype,
is_number,
is_numeric_dtype,
needs_i8_conversion,
)
from pandas.core.dtypes.dtypes import (
CategoricalDtype,
DatetimeTZDtype,
ExtensionDtype,
NumpyEADtype,
)
from pandas.core.dtypes.missing import array_equivalent
import pandas as pd
from pandas import (
Categorical,
DataFrame,
DatetimeIndex,
Index,
IntervalDtype,
IntervalIndex,
MultiIndex,
PeriodIndex,
RangeIndex,
Series,
TimedeltaIndex,
)
from pandas.core.arrays import (
DatetimeArray,
ExtensionArray,
IntervalArray,
PeriodArray,
TimedeltaArray,
)
from pandas.core.arrays.datetimelike import DatetimeLikeArrayMixin
from pandas.core.arrays.string_ import StringDtype
from pandas.core.indexes.api import safe_sort_index
from pandas.io.formats.printing import pprint_thing
if TYPE_CHECKING:
from pandas._typing import DtypeObj
def assert_almost_equal(
left,
right,
check_dtype: bool | Literal["equiv"] = "equiv",
rtol: float = 1.0e-5,
atol: float = 1.0e-8,
**kwargs,
) -> None:
"""
Check that the left and right objects are approximately equal.
By approximately equal, we refer to objects that are numbers or that
contain numbers which may be equivalent to specific levels of precision.
Parameters
----------
left : object
right : object
check_dtype : bool or {'equiv'}, default 'equiv'
Check dtype if both a and b are the same type. If 'equiv' is passed in,
then `RangeIndex` and `Index` with int64 dtype are also considered
equivalent when doing type checking.
rtol : float, default 1e-5
Relative tolerance.
atol : float, default 1e-8
Absolute tolerance.
"""
if isinstance(left, Index):
assert_index_equal(
left,
right,
check_exact=False,
exact=check_dtype,
rtol=rtol,
atol=atol,
**kwargs,
)
elif isinstance(left, Series):
assert_series_equal(
left,
right,
check_exact=False,
check_dtype=check_dtype,
rtol=rtol,
atol=atol,
**kwargs,
)
elif isinstance(left, DataFrame):
assert_frame_equal(
left,
right,
check_exact=False,
check_dtype=check_dtype,
rtol=rtol,
atol=atol,
**kwargs,
)
else:
# Other sequences.
if check_dtype:
if is_number(left) and is_number(right):
# Do not compare numeric classes, like np.float64 and float.
pass
elif is_bool(left) and is_bool(right):
# Do not compare bool classes, like np.bool_ and bool.
pass
else:
if isinstance(left, np.ndarray) or isinstance(right, np.ndarray):
obj = "numpy array"
else:
obj = "Input"
assert_class_equal(left, right, obj=obj)
# if we have "equiv", this becomes True
_testing.assert_almost_equal(
left, right, check_dtype=bool(check_dtype), rtol=rtol, atol=atol, **kwargs
)
def _check_isinstance(left, right, cls) -> None:
"""
Helper method for our assert_* methods that ensures that
the two objects being compared have the right type before
proceeding with the comparison.
Parameters
----------
left : The first object being compared.
right : The second object being compared.
cls : The class type to check against.
Raises
------
AssertionError : Either `left` or `right` is not an instance of `cls`.
"""
cls_name = cls.__name__
if not isinstance(left, cls):
raise AssertionError(
f"{cls_name} Expected type {cls}, found {type(left)} instead"
)
if not isinstance(right, cls):
raise AssertionError(
f"{cls_name} Expected type {cls}, found {type(right)} instead"
)
def assert_dict_equal(left, right, compare_keys: bool = True) -> None:
_check_isinstance(left, right, dict)
_testing.assert_dict_equal(left, right, compare_keys=compare_keys)
def assert_index_equal(
left: Index,
right: Index,
exact: bool | str = "equiv",
check_names: bool = True,
check_exact: bool = True,
check_categorical: bool = True,
check_order: bool = True,
rtol: float = 1.0e-5,
atol: float = 1.0e-8,
obj: str = "Index",
) -> None:
"""
Check that left and right Index are equal.
Parameters
----------
left : Index
right : Index
exact : bool or {'equiv'}, default 'equiv'
Whether to check the Index class, dtype and inferred_type
are identical. If 'equiv', then RangeIndex can be substituted for
Index with an int64 dtype as well.
check_names : bool, default True
Whether to check the names attribute.
check_exact : bool, default True
Whether to compare number exactly.
check_categorical : bool, default True
Whether to compare internal Categorical exactly.
check_order : bool, default True
Whether to compare the order of index entries as well as their values.
If True, both indexes must contain the same elements, in the same order.
If False, both indexes must contain the same elements, but in any order.
rtol : float, default 1e-5
Relative tolerance. Only used when check_exact is False.
atol : float, default 1e-8
Absolute tolerance. Only used when check_exact is False.
obj : str, default 'Index'
Specify object name being compared, internally used to show appropriate
assertion message.
Examples
--------
>>> from pandas import testing as tm
>>> a = pd.Index([1, 2, 3])
>>> b = pd.Index([1, 2, 3])
>>> tm.assert_index_equal(a, b)
"""
__tracebackhide__ = True
def _check_types(left, right, obj: str = "Index") -> None:
if not exact:
return
assert_class_equal(left, right, exact=exact, obj=obj)
assert_attr_equal("inferred_type", left, right, obj=obj)
# Skip exact dtype checking when `check_categorical` is False
if isinstance(left.dtype, CategoricalDtype) and isinstance(
right.dtype, CategoricalDtype
):
if check_categorical:
assert_attr_equal("dtype", left, right, obj=obj)
assert_index_equal(left.categories, right.categories, exact=exact)
return
assert_attr_equal("dtype", left, right, obj=obj)
# instance validation
_check_isinstance(left, right, Index)
# class / dtype comparison
_check_types(left, right, obj=obj)
# level comparison
if left.nlevels != right.nlevels:
msg1 = f"{obj} levels are different"
msg2 = f"{left.nlevels}, {left}"
msg3 = f"{right.nlevels}, {right}"
raise_assert_detail(obj, msg1, msg2, msg3)
# length comparison
if len(left) != len(right):
msg1 = f"{obj} length are different"
msg2 = f"{len(left)}, {left}"
msg3 = f"{len(right)}, {right}"
raise_assert_detail(obj, msg1, msg2, msg3)
# If order doesn't matter then sort the index entries
if not check_order:
left = safe_sort_index(left)
right = safe_sort_index(right)
# MultiIndex special comparison for little-friendly error messages
if isinstance(left, MultiIndex):
right = cast(MultiIndex, right)
for level in range(left.nlevels):
lobj = f"MultiIndex level [{level}]"
try:
# try comparison on levels/codes to avoid densifying MultiIndex
assert_index_equal(
left.levels[level],
right.levels[level],
exact=exact,
check_names=check_names,
check_exact=check_exact,
check_categorical=check_categorical,
rtol=rtol,
atol=atol,
obj=lobj,
)
assert_numpy_array_equal(left.codes[level], right.codes[level])
except AssertionError:
llevel = left.get_level_values(level)
rlevel = right.get_level_values(level)
assert_index_equal(
llevel,
rlevel,
exact=exact,
check_names=check_names,
check_exact=check_exact,
check_categorical=check_categorical,
rtol=rtol,
atol=atol,
obj=lobj,
)
# get_level_values may change dtype
_check_types(left.levels[level], right.levels[level], obj=obj)
# skip exact index checking when `check_categorical` is False
elif check_exact and check_categorical:
if not left.equals(right):
mismatch = left._values != right._values
if not isinstance(mismatch, np.ndarray):
mismatch = cast("ExtensionArray", mismatch).fillna(True)
diff = np.sum(mismatch.astype(int)) * 100.0 / len(left)
msg = f"{obj} values are different ({np.round(diff, 5)} %)"
raise_assert_detail(obj, msg, left, right)
else:
# if we have "equiv", this becomes True
exact_bool = bool(exact)
_testing.assert_almost_equal(
left.values,
right.values,
rtol=rtol,
atol=atol,
check_dtype=exact_bool,
obj=obj,
lobj=left,
robj=right,
)
# metadata comparison
if check_names:
assert_attr_equal("names", left, right, obj=obj)
if isinstance(left, PeriodIndex) or isinstance(right, PeriodIndex):
assert_attr_equal("dtype", left, right, obj=obj)
if isinstance(left, IntervalIndex) or isinstance(right, IntervalIndex):
assert_interval_array_equal(left._values, right._values)
if check_categorical:
if isinstance(left.dtype, CategoricalDtype) or isinstance(
right.dtype, CategoricalDtype
):
assert_categorical_equal(left._values, right._values, obj=f"{obj} category")
def assert_class_equal(
left, right, exact: bool | str = True, obj: str = "Input"
) -> None:
"""
Checks classes are equal.
"""
__tracebackhide__ = True
def repr_class(x):
if isinstance(x, Index):
# return Index as it is to include values in the error message
return x
return type(x).__name__
def is_class_equiv(idx: Index) -> bool:
"""Classes that are a RangeIndex (sub-)instance or exactly an `Index` .
This only checks class equivalence. There is a separate check that the
dtype is int64.
"""
return type(idx) is Index or isinstance(idx, RangeIndex)
if type(left) == type(right):
return
if exact == "equiv":
if is_class_equiv(left) and is_class_equiv(right):
return
msg = f"{obj} classes are different"
raise_assert_detail(obj, msg, repr_class(left), repr_class(right))
def assert_attr_equal(attr: str, left, right, obj: str = "Attributes") -> None:
"""
Check attributes are equal. Both objects must have attribute.
Parameters
----------
attr : str
Attribute name being compared.
left : object
right : object
obj : str, default 'Attributes'
Specify object name being compared, internally used to show appropriate
assertion message
"""
__tracebackhide__ = True
left_attr = getattr(left, attr)
right_attr = getattr(right, attr)
if left_attr is right_attr or is_matching_na(left_attr, right_attr):
# e.g. both np.nan, both NaT, both pd.NA, ...
return None
try:
result = left_attr == right_attr
except TypeError:
# datetimetz on rhs may raise TypeError
result = False
if (left_attr is pd.NA) ^ (right_attr is pd.NA):
result = False
elif not isinstance(result, bool):
result = result.all()
if not result:
msg = f'Attribute "{attr}" are different'
raise_assert_detail(obj, msg, left_attr, right_attr)
return None
def assert_is_valid_plot_return_object(objs) -> None:
from matplotlib.artist import Artist
from matplotlib.axes import Axes
if isinstance(objs, (Series, np.ndarray)):
if isinstance(objs, Series):
objs = objs._values
for el in objs.ravel():
msg = (
"one of 'objs' is not a matplotlib Axes instance, "
f"type encountered {repr(type(el).__name__)}"
)
assert isinstance(el, (Axes, dict)), msg
else:
msg = (
"objs is neither an ndarray of Artist instances nor a single "
"ArtistArtist instance, tuple, or dict, 'objs' is a "
f"{repr(type(objs).__name__)}"
)
assert isinstance(objs, (Artist, tuple, dict)), msg
def assert_is_sorted(seq) -> None:
"""Assert that the sequence is sorted."""
if isinstance(seq, (Index, Series)):
seq = seq.values
# sorting does not change precisions
if isinstance(seq, np.ndarray):
assert_numpy_array_equal(seq, np.sort(np.array(seq)))
else:
assert_extension_array_equal(seq, seq[seq.argsort()])
def assert_categorical_equal(
left,
right,
check_dtype: bool = True,
check_category_order: bool = True,
obj: str = "Categorical",
) -> None:
"""
Test that Categoricals are equivalent.
Parameters
----------
left : Categorical
right : Categorical
check_dtype : bool, default True
Check that integer dtype of the codes are the same.
check_category_order : bool, default True
Whether the order of the categories should be compared, which
implies identical integer codes. If False, only the resulting
values are compared. The ordered attribute is
checked regardless.
obj : str, default 'Categorical'
Specify object name being compared, internally used to show appropriate
assertion message.
"""
_check_isinstance(left, right, Categorical)
exact: bool | str
if isinstance(left.categories, RangeIndex) or isinstance(
right.categories, RangeIndex
):
exact = "equiv"
else:
# We still want to require exact matches for Index
exact = True
if check_category_order:
assert_index_equal(
left.categories, right.categories, obj=f"{obj}.categories", exact=exact
)
assert_numpy_array_equal(
left.codes, right.codes, check_dtype=check_dtype, obj=f"{obj}.codes"
)
else:
try:
lc = left.categories.sort_values()
rc = right.categories.sort_values()
except TypeError:
# e.g. '<' not supported between instances of 'int' and 'str'
lc, rc = left.categories, right.categories
assert_index_equal(lc, rc, obj=f"{obj}.categories", exact=exact)
assert_index_equal(
left.categories.take(left.codes),
right.categories.take(right.codes),
obj=f"{obj}.values",
exact=exact,
)
assert_attr_equal("ordered", left, right, obj=obj)
def assert_interval_array_equal(
left, right, exact: bool | Literal["equiv"] = "equiv", obj: str = "IntervalArray"
) -> None:
"""
Test that two IntervalArrays are equivalent.
Parameters
----------
left, right : IntervalArray
The IntervalArrays to compare.
exact : bool or {'equiv'}, default 'equiv'
Whether to check the Index class, dtype and inferred_type
are identical. If 'equiv', then RangeIndex can be substituted for
Index with an int64 dtype as well.
obj : str, default 'IntervalArray'
Specify object name being compared, internally used to show appropriate
assertion message
"""
_check_isinstance(left, right, IntervalArray)
kwargs = {}
if left._left.dtype.kind in "mM":
# We have a DatetimeArray or TimedeltaArray
kwargs["check_freq"] = False
assert_equal(left._left, right._left, obj=f"{obj}.left", **kwargs)
assert_equal(left._right, right._right, obj=f"{obj}.left", **kwargs)
assert_attr_equal("closed", left, right, obj=obj)
def assert_period_array_equal(left, right, obj: str = "PeriodArray") -> None:
_check_isinstance(left, right, PeriodArray)
assert_numpy_array_equal(left._ndarray, right._ndarray, obj=f"{obj}._ndarray")
assert_attr_equal("dtype", left, right, obj=obj)
def assert_datetime_array_equal(
left, right, obj: str = "DatetimeArray", check_freq: bool = True
) -> None:
__tracebackhide__ = True
_check_isinstance(left, right, DatetimeArray)
assert_numpy_array_equal(left._ndarray, right._ndarray, obj=f"{obj}._ndarray")
if check_freq:
assert_attr_equal("freq", left, right, obj=obj)
assert_attr_equal("tz", left, right, obj=obj)
def assert_timedelta_array_equal(
left, right, obj: str = "TimedeltaArray", check_freq: bool = True
) -> None:
__tracebackhide__ = True
_check_isinstance(left, right, TimedeltaArray)
assert_numpy_array_equal(left._ndarray, right._ndarray, obj=f"{obj}._ndarray")
if check_freq:
assert_attr_equal("freq", left, right, obj=obj)
def raise_assert_detail(
obj, message, left, right, diff=None, first_diff=None, index_values=None
) -> NoReturn:
__tracebackhide__ = True
msg = f"""{obj} are different
{message}"""
if isinstance(index_values, Index):
index_values = np.asarray(index_values)
if isinstance(index_values, np.ndarray):
msg += f"\n[index]: {pprint_thing(index_values)}"
if isinstance(left, np.ndarray):
left = pprint_thing(left)
elif isinstance(left, (CategoricalDtype, NumpyEADtype, StringDtype)):
left = repr(left)
if isinstance(right, np.ndarray):
right = pprint_thing(right)
elif isinstance(right, (CategoricalDtype, NumpyEADtype, StringDtype)):
right = repr(right)
msg += f"""
[left]: {left}
[right]: {right}"""
if diff is not None:
msg += f"\n[diff]: {diff}"
if first_diff is not None:
msg += f"\n{first_diff}"
raise AssertionError(msg)
def assert_numpy_array_equal(
left,
right,
strict_nan: bool = False,
check_dtype: bool | Literal["equiv"] = True,
err_msg=None,
check_same=None,
obj: str = "numpy array",
index_values=None,
) -> None:
"""
Check that 'np.ndarray' is equivalent.
Parameters
----------
left, right : numpy.ndarray or iterable
The two arrays to be compared.
strict_nan : bool, default False
If True, consider NaN and None to be different.
check_dtype : bool, default True
Check dtype if both a and b are np.ndarray.
err_msg : str, default None
If provided, used as assertion message.
check_same : None|'copy'|'same', default None
Ensure left and right refer/do not refer to the same memory area.
obj : str, default 'numpy array'
Specify object name being compared, internally used to show appropriate
assertion message.
index_values : Index | numpy.ndarray, default None
optional index (shared by both left and right), used in output.
"""
__tracebackhide__ = True
# instance validation
# Show a detailed error message when classes are different
assert_class_equal(left, right, obj=obj)
# both classes must be an np.ndarray
_check_isinstance(left, right, np.ndarray)
def _get_base(obj):
return obj.base if getattr(obj, "base", None) is not None else obj
left_base = _get_base(left)
right_base = _get_base(right)
if check_same == "same":
if left_base is not right_base:
raise AssertionError(f"{repr(left_base)} is not {repr(right_base)}")
elif check_same == "copy":
if left_base is right_base:
raise AssertionError(f"{repr(left_base)} is {repr(right_base)}")
def _raise(left, right, err_msg) -> NoReturn:
if err_msg is None:
if left.shape != right.shape:
raise_assert_detail(
obj, f"{obj} shapes are different", left.shape, right.shape
)
diff = 0
for left_arr, right_arr in zip(left, right):
# count up differences
if not array_equivalent(left_arr, right_arr, strict_nan=strict_nan):
diff += 1
diff = diff * 100.0 / left.size
msg = f"{obj} values are different ({np.round(diff, 5)} %)"
raise_assert_detail(obj, msg, left, right, index_values=index_values)
raise AssertionError(err_msg)
# compare shape and values
if not array_equivalent(left, right, strict_nan=strict_nan):
_raise(left, right, err_msg)
if check_dtype:
if isinstance(left, np.ndarray) and isinstance(right, np.ndarray):
assert_attr_equal("dtype", left, right, obj=obj)
def assert_extension_array_equal(
left,
right,
check_dtype: bool | Literal["equiv"] = True,
index_values=None,
check_exact: bool | lib.NoDefault = lib.no_default,
rtol: float | lib.NoDefault = lib.no_default,
atol: float | lib.NoDefault = lib.no_default,
obj: str = "ExtensionArray",
) -> None:
"""
Check that left and right ExtensionArrays are equal.
Parameters
----------
left, right : ExtensionArray
The two arrays to compare.
check_dtype : bool, default True
Whether to check if the ExtensionArray dtypes are identical.
index_values : Index | numpy.ndarray, default None
Optional index (shared by both left and right), used in output.
check_exact : bool, default False
Whether to compare number exactly.
.. versionchanged:: 2.2.0
Defaults to True for integer dtypes if none of
``check_exact``, ``rtol`` and ``atol`` are specified.
rtol : float, default 1e-5
Relative tolerance. Only used when check_exact is False.
atol : float, default 1e-8
Absolute tolerance. Only used when check_exact is False.
obj : str, default 'ExtensionArray'
Specify object name being compared, internally used to show appropriate
assertion message.
.. versionadded:: 2.0.0
Notes
-----
Missing values are checked separately from valid values.
A mask of missing values is computed for each and checked to match.
The remaining all-valid values are cast to object dtype and checked.
Examples
--------
>>> from pandas import testing as tm
>>> a = pd.Series([1, 2, 3, 4])
>>> b, c = a.array, a.array
>>> tm.assert_extension_array_equal(b, c)
"""
if (
check_exact is lib.no_default
and rtol is lib.no_default
and atol is lib.no_default
):
check_exact = (
is_numeric_dtype(left.dtype)
and not is_float_dtype(left.dtype)
or is_numeric_dtype(right.dtype)
and not is_float_dtype(right.dtype)
)
elif check_exact is lib.no_default:
check_exact = False
rtol = rtol if rtol is not lib.no_default else 1.0e-5
atol = atol if atol is not lib.no_default else 1.0e-8
assert isinstance(left, ExtensionArray), "left is not an ExtensionArray"
assert isinstance(right, ExtensionArray), "right is not an ExtensionArray"
if check_dtype:
assert_attr_equal("dtype", left, right, obj=f"Attributes of {obj}")
if (
isinstance(left, DatetimeLikeArrayMixin)
and isinstance(right, DatetimeLikeArrayMixin)
and type(right) == type(left)
):
# GH 52449
if not check_dtype and left.dtype.kind in "mM":
if not isinstance(left.dtype, np.dtype):
l_unit = cast(DatetimeTZDtype, left.dtype).unit
else:
l_unit = np.datetime_data(left.dtype)[0]
if not isinstance(right.dtype, np.dtype):
r_unit = cast(DatetimeTZDtype, right.dtype).unit
else:
r_unit = np.datetime_data(right.dtype)[0]
if (
l_unit != r_unit
and compare_mismatched_resolutions(
left._ndarray, right._ndarray, operator.eq
).all()
):
return
# Avoid slow object-dtype comparisons
# np.asarray for case where we have a np.MaskedArray
assert_numpy_array_equal(
np.asarray(left.asi8),
np.asarray(right.asi8),
index_values=index_values,
obj=obj,
)
return
left_na = np.asarray(left.isna())
right_na = np.asarray(right.isna())
assert_numpy_array_equal(
left_na, right_na, obj=f"{obj} NA mask", index_values=index_values
)
left_valid = left[~left_na].to_numpy(dtype=object)
right_valid = right[~right_na].to_numpy(dtype=object)
if check_exact:
assert_numpy_array_equal(
left_valid, right_valid, obj=obj, index_values=index_values
)
else:
_testing.assert_almost_equal(
left_valid,
right_valid,
check_dtype=bool(check_dtype),
rtol=rtol,
atol=atol,
obj=obj,
index_values=index_values,
)
# This could be refactored to use the NDFrame.equals method
def assert_series_equal(
left,
right,
check_dtype: bool | Literal["equiv"] = True,
check_index_type: bool | Literal["equiv"] = "equiv",
check_series_type: bool = True,
check_names: bool = True,
check_exact: bool | lib.NoDefault = lib.no_default,
check_datetimelike_compat: bool = False,
check_categorical: bool = True,
check_category_order: bool = True,
check_freq: bool = True,
check_flags: bool = True,
rtol: float | lib.NoDefault = lib.no_default,
atol: float | lib.NoDefault = lib.no_default,
obj: str = "Series",
*,
check_index: bool = True,
check_like: bool = False,
) -> None:
"""
Check that left and right Series are equal.
Parameters
----------
left : Series
right : Series
check_dtype : bool, default True
Whether to check the Series dtype is identical.
check_index_type : bool or {'equiv'}, default 'equiv'
Whether to check the Index class, dtype and inferred_type
are identical.
check_series_type : bool, default True
Whether to check the Series class is identical.
check_names : bool, default True
Whether to check the Series and Index names attribute.
check_exact : bool, default False
Whether to compare number exactly.
.. versionchanged:: 2.2.0
Defaults to True for integer dtypes if none of
``check_exact``, ``rtol`` and ``atol`` are specified.
check_datetimelike_compat : bool, default False
Compare datetime-like which is comparable ignoring dtype.
check_categorical : bool, default True
Whether to compare internal Categorical exactly.
check_category_order : bool, default True
Whether to compare category order of internal Categoricals.
check_freq : bool, default True
Whether to check the `freq` attribute on a DatetimeIndex or TimedeltaIndex.
check_flags : bool, default True
Whether to check the `flags` attribute.
rtol : float, default 1e-5
Relative tolerance. Only used when check_exact is False.
atol : float, default 1e-8
Absolute tolerance. Only used when check_exact is False.
obj : str, default 'Series'
Specify object name being compared, internally used to show appropriate
assertion message.
check_index : bool, default True
Whether to check index equivalence. If False, then compare only values.
.. versionadded:: 1.3.0
check_like : bool, default False
If True, ignore the order of the index. Must be False if check_index is False.
Note: same labels must be with the same data.
.. versionadded:: 1.5.0
Examples
--------
>>> from pandas import testing as tm
>>> a = pd.Series([1, 2, 3, 4])
>>> b = pd.Series([1, 2, 3, 4])
>>> tm.assert_series_equal(a, b)
"""
__tracebackhide__ = True
check_exact_index = False if check_exact is lib.no_default else check_exact
if (
check_exact is lib.no_default
and rtol is lib.no_default
and atol is lib.no_default
):
check_exact = (
is_numeric_dtype(left.dtype)
and not is_float_dtype(left.dtype)
or is_numeric_dtype(right.dtype)
and not is_float_dtype(right.dtype)
)
elif check_exact is lib.no_default:
check_exact = False
rtol = rtol if rtol is not lib.no_default else 1.0e-5
atol = atol if atol is not lib.no_default else 1.0e-8
if not check_index and check_like:
raise ValueError("check_like must be False if check_index is False")
# instance validation
_check_isinstance(left, right, Series)
if check_series_type:
assert_class_equal(left, right, obj=obj)
# length comparison
if len(left) != len(right):
msg1 = f"{len(left)}, {left.index}"
msg2 = f"{len(right)}, {right.index}"
raise_assert_detail(obj, "Series length are different", msg1, msg2)
if check_flags:
assert left.flags == right.flags, f"{repr(left.flags)} != {repr(right.flags)}"
if check_index:
# GH #38183
assert_index_equal(
left.index,
right.index,
exact=check_index_type,
check_names=check_names,
check_exact=check_exact_index,
check_categorical=check_categorical,
check_order=not check_like,
rtol=rtol,
atol=atol,
obj=f"{obj}.index",
)
if check_like:
left = left.reindex_like(right)
if check_freq and isinstance(left.index, (DatetimeIndex, TimedeltaIndex)):
lidx = left.index
ridx = right.index
assert lidx.freq == ridx.freq, (lidx.freq, ridx.freq)
if check_dtype:
# We want to skip exact dtype checking when `check_categorical`
# is False. We'll still raise if only one is a `Categorical`,
# regardless of `check_categorical`
if (
isinstance(left.dtype, CategoricalDtype)
and isinstance(right.dtype, CategoricalDtype)
and not check_categorical
):
pass
else:
assert_attr_equal("dtype", left, right, obj=f"Attributes of {obj}")
if check_exact:
left_values = left._values
right_values = right._values
# Only check exact if dtype is numeric
if isinstance(left_values, ExtensionArray) and isinstance(
right_values, ExtensionArray
):
assert_extension_array_equal(
left_values,
right_values,
check_dtype=check_dtype,
index_values=left.index,
obj=str(obj),
)
else:
# convert both to NumPy if not, check_dtype would raise earlier
lv, rv = left_values, right_values
if isinstance(left_values, ExtensionArray):
lv = left_values.to_numpy()
if isinstance(right_values, ExtensionArray):
rv = right_values.to_numpy()
assert_numpy_array_equal(
lv,
rv,
check_dtype=check_dtype,
obj=str(obj),
index_values=left.index,
)
elif check_datetimelike_compat and (
needs_i8_conversion(left.dtype) or needs_i8_conversion(right.dtype)
):
# we want to check only if we have compat dtypes
# e.g. integer and M|m are NOT compat, but we can simply check
# the values in that case
# datetimelike may have different objects (e.g. datetime.datetime
# vs Timestamp) but will compare equal
if not Index(left._values).equals(Index(right._values)):
msg = (
f"[datetimelike_compat=True] {left._values} "
f"is not equal to {right._values}."
)
raise AssertionError(msg)
elif isinstance(left.dtype, IntervalDtype) and isinstance(
right.dtype, IntervalDtype
):
assert_interval_array_equal(left.array, right.array)
elif isinstance(left.dtype, CategoricalDtype) or isinstance(
right.dtype, CategoricalDtype
):
_testing.assert_almost_equal(
left._values,
right._values,
rtol=rtol,
atol=atol,
check_dtype=bool(check_dtype),
obj=str(obj),
index_values=left.index,
)
elif isinstance(left.dtype, ExtensionDtype) and isinstance(
right.dtype, ExtensionDtype
):
assert_extension_array_equal(
left._values,
right._values,
rtol=rtol,
atol=atol,
check_dtype=check_dtype,
index_values=left.index,
obj=str(obj),
)
elif is_extension_array_dtype_and_needs_i8_conversion(
left.dtype, right.dtype
) or is_extension_array_dtype_and_needs_i8_conversion(right.dtype, left.dtype):
assert_extension_array_equal(
left._values,
right._values,
check_dtype=check_dtype,
index_values=left.index,
obj=str(obj),
)
elif needs_i8_conversion(left.dtype) and needs_i8_conversion(right.dtype):
# DatetimeArray or TimedeltaArray
assert_extension_array_equal(
left._values,
right._values,
check_dtype=check_dtype,
index_values=left.index,
obj=str(obj),
)
else:
_testing.assert_almost_equal(
left._values,
right._values,
rtol=rtol,
atol=atol,
check_dtype=bool(check_dtype),
obj=str(obj),
index_values=left.index,
)
# metadata comparison
if check_names:
assert_attr_equal("name", left, right, obj=obj)
if check_categorical:
if isinstance(left.dtype, CategoricalDtype) or isinstance(
right.dtype, CategoricalDtype
):
assert_categorical_equal(
left._values,
right._values,
obj=f"{obj} category",
check_category_order=check_category_order,
)
# This could be refactored to use the NDFrame.equals method
def assert_frame_equal(
left,
right,
check_dtype: bool | Literal["equiv"] = True,
check_index_type: bool | Literal["equiv"] = "equiv",
check_column_type: bool | Literal["equiv"] = "equiv",
check_frame_type: bool = True,
check_names: bool = True,
by_blocks: bool = False,
check_exact: bool | lib.NoDefault = lib.no_default,
check_datetimelike_compat: bool = False,
check_categorical: bool = True,
check_like: bool = False,
check_freq: bool = True,
check_flags: bool = True,
rtol: float | lib.NoDefault = lib.no_default,
atol: float | lib.NoDefault = lib.no_default,
obj: str = "DataFrame",
) -> None:
"""
Check that left and right DataFrame are equal.
This function is intended to compare two DataFrames and output any
differences. It is mostly intended for use in unit tests.
Additional parameters allow varying the strictness of the
equality checks performed.
Parameters
----------
left : DataFrame
First DataFrame to compare.
right : DataFrame
Second DataFrame to compare.
check_dtype : bool, default True
Whether to check the DataFrame dtype is identical.
check_index_type : bool or {'equiv'}, default 'equiv'
Whether to check the Index class, dtype and inferred_type
are identical.
check_column_type : bool or {'equiv'}, default 'equiv'
Whether to check the columns class, dtype and inferred_type
are identical. Is passed as the ``exact`` argument of
:func:`assert_index_equal`.
check_frame_type : bool, default True
Whether to check the DataFrame class is identical.
check_names : bool, default True
Whether to check that the `names` attribute for both the `index`
and `column` attributes of the DataFrame is identical.
by_blocks : bool, default False
Specify how to compare internal data. If False, compare by columns.
If True, compare by blocks.
check_exact : bool, default False
Whether to compare number exactly.
.. versionchanged:: 2.2.0
Defaults to True for integer dtypes if none of
``check_exact``, ``rtol`` and ``atol`` are specified.
check_datetimelike_compat : bool, default False
Compare datetime-like which is comparable ignoring dtype.
check_categorical : bool, default True
Whether to compare internal Categorical exactly.
check_like : bool, default False
If True, ignore the order of index & columns.
Note: index labels must match their respective rows
(same as in columns) - same labels must be with the same data.
check_freq : bool, default True
Whether to check the `freq` attribute on a DatetimeIndex or TimedeltaIndex.
check_flags : bool, default True
Whether to check the `flags` attribute.
rtol : float, default 1e-5
Relative tolerance. Only used when check_exact is False.
atol : float, default 1e-8
Absolute tolerance. Only used when check_exact is False.
obj : str, default 'DataFrame'
Specify object name being compared, internally used to show appropriate
assertion message.
See Also
--------
assert_series_equal : Equivalent method for asserting Series equality.
DataFrame.equals : Check DataFrame equality.
Examples
--------
This example shows comparing two DataFrames that are equal
but with columns of differing dtypes.
>>> from pandas.testing import assert_frame_equal
>>> df1 = pd.DataFrame({'a': [1, 2], 'b': [3, 4]})
>>> df2 = pd.DataFrame({'a': [1, 2], 'b': [3.0, 4.0]})
df1 equals itself.
>>> assert_frame_equal(df1, df1)
df1 differs from df2 as column 'b' is of a different type.
>>> assert_frame_equal(df1, df2)
Traceback (most recent call last):
...
AssertionError: Attributes of DataFrame.iloc[:, 1] (column name="b") are different
Attribute "dtype" are different
[left]: int64
[right]: float64
Ignore differing dtypes in columns with check_dtype.
>>> assert_frame_equal(df1, df2, check_dtype=False)
"""
__tracebackhide__ = True
_rtol = rtol if rtol is not lib.no_default else 1.0e-5
_atol = atol if atol is not lib.no_default else 1.0e-8
_check_exact = check_exact if check_exact is not lib.no_default else False
# instance validation
_check_isinstance(left, right, DataFrame)
if check_frame_type:
assert isinstance(left, type(right))
# assert_class_equal(left, right, obj=obj)
# shape comparison
if left.shape != right.shape:
raise_assert_detail(
obj, f"{obj} shape mismatch", f"{repr(left.shape)}", f"{repr(right.shape)}"
)
if check_flags:
assert left.flags == right.flags, f"{repr(left.flags)} != {repr(right.flags)}"
# index comparison
assert_index_equal(
left.index,
right.index,
exact=check_index_type,
check_names=check_names,
check_exact=_check_exact,
check_categorical=check_categorical,
check_order=not check_like,
rtol=_rtol,
atol=_atol,
obj=f"{obj}.index",
)
# column comparison
assert_index_equal(
left.columns,
right.columns,
exact=check_column_type,
check_names=check_names,
check_exact=_check_exact,
check_categorical=check_categorical,
check_order=not check_like,
rtol=_rtol,
atol=_atol,
obj=f"{obj}.columns",
)
if check_like:
left = left.reindex_like(right)
# compare by blocks
if by_blocks:
rblocks = right._to_dict_of_blocks()
lblocks = left._to_dict_of_blocks()
for dtype in list(set(list(lblocks.keys()) + list(rblocks.keys()))):
assert dtype in lblocks
assert dtype in rblocks
assert_frame_equal(
lblocks[dtype], rblocks[dtype], check_dtype=check_dtype, obj=obj
)
# compare by columns
else:
for i, col in enumerate(left.columns):
# We have already checked that columns match, so we can do
# fast location-based lookups
lcol = left._ixs(i, axis=1)
rcol = right._ixs(i, axis=1)
# GH #38183
# use check_index=False, because we do not want to run
# assert_index_equal for each column,
# as we already checked it for the whole dataframe before.
assert_series_equal(
lcol,
rcol,
check_dtype=check_dtype,
check_index_type=check_index_type,
check_exact=check_exact,
check_names=check_names,
check_datetimelike_compat=check_datetimelike_compat,
check_categorical=check_categorical,
check_freq=check_freq,
obj=f'{obj}.iloc[:, {i}] (column name="{col}")',
rtol=rtol,
atol=atol,
check_index=False,
check_flags=False,
)
def assert_equal(left, right, **kwargs) -> None:
"""
Wrapper for tm.assert_*_equal to dispatch to the appropriate test function.
Parameters
----------
left, right : Index, Series, DataFrame, ExtensionArray, or np.ndarray
The two items to be compared.
**kwargs
All keyword arguments are passed through to the underlying assert method.
"""
__tracebackhide__ = True
if isinstance(left, Index):
assert_index_equal(left, right, **kwargs)
if isinstance(left, (DatetimeIndex, TimedeltaIndex)):
assert left.freq == right.freq, (left.freq, right.freq)
elif isinstance(left, Series):
assert_series_equal(left, right, **kwargs)
elif isinstance(left, DataFrame):
assert_frame_equal(left, right, **kwargs)
elif isinstance(left, IntervalArray):
assert_interval_array_equal(left, right, **kwargs)
elif isinstance(left, PeriodArray):
assert_period_array_equal(left, right, **kwargs)
elif isinstance(left, DatetimeArray):
assert_datetime_array_equal(left, right, **kwargs)
elif isinstance(left, TimedeltaArray):
assert_timedelta_array_equal(left, right, **kwargs)
elif isinstance(left, ExtensionArray):
assert_extension_array_equal(left, right, **kwargs)
elif isinstance(left, np.ndarray):
assert_numpy_array_equal(left, right, **kwargs)
elif isinstance(left, str):
assert kwargs == {}
assert left == right
else:
assert kwargs == {}
assert_almost_equal(left, right)
def assert_sp_array_equal(left, right) -> None:
"""
Check that the left and right SparseArray are equal.
Parameters
----------
left : SparseArray
right : SparseArray
"""
_check_isinstance(left, right, pd.arrays.SparseArray)
assert_numpy_array_equal(left.sp_values, right.sp_values)
# SparseIndex comparison
assert isinstance(left.sp_index, SparseIndex)
assert isinstance(right.sp_index, SparseIndex)
left_index = left.sp_index
right_index = right.sp_index
if not left_index.equals(right_index):
raise_assert_detail(
"SparseArray.index", "index are not equal", left_index, right_index
)
else:
# Just ensure a
pass
assert_attr_equal("fill_value", left, right)
assert_attr_equal("dtype", left, right)
assert_numpy_array_equal(left.to_dense(), right.to_dense())
def assert_contains_all(iterable, dic) -> None:
for k in iterable:
assert k in dic, f"Did not contain item: {repr(k)}"
def assert_copy(iter1, iter2, **eql_kwargs) -> None:
"""
iter1, iter2: iterables that produce elements
comparable with assert_almost_equal
Checks that the elements are equal, but not
the same object. (Does not check that items
in sequences are also not the same object)
"""
for elem1, elem2 in zip(iter1, iter2):
assert_almost_equal(elem1, elem2, **eql_kwargs)
msg = (
f"Expected object {repr(type(elem1))} and object {repr(type(elem2))} to be "
"different objects, but they were the same object."
)
assert elem1 is not elem2, msg
def is_extension_array_dtype_and_needs_i8_conversion(
left_dtype: DtypeObj, right_dtype: DtypeObj
) -> bool:
"""
Checks that we have the combination of an ExtensionArraydtype and
a dtype that should be converted to int64
Returns
-------
bool
Related to issue #37609
"""
return isinstance(left_dtype, ExtensionDtype) and needs_i8_conversion(right_dtype)
def assert_indexing_slices_equivalent(ser: Series, l_slc: slice, i_slc: slice) -> None:
"""
Check that ser.iloc[i_slc] matches ser.loc[l_slc] and, if applicable,
ser[l_slc].
"""
expected = ser.iloc[i_slc]
assert_series_equal(ser.loc[l_slc], expected)
if not is_integer_dtype(ser.index):
# For integer indices, .loc and plain getitem are position-based.
assert_series_equal(ser[l_slc], expected)
def assert_metadata_equivalent(
left: DataFrame | Series, right: DataFrame | Series | None = None
) -> None:
"""
Check that ._metadata attributes are equivalent.
"""
for attr in left._metadata:
val = getattr(left, attr, None)
if right is None:
assert val is None
else:
assert val == getattr(right, attr, None)