609 lines
23 KiB
Python
609 lines
23 KiB
Python
|
"""
|
||
|
Unit test for SLSQP optimization.
|
||
|
"""
|
||
|
from numpy.testing import (assert_, assert_array_almost_equal,
|
||
|
assert_allclose, assert_equal)
|
||
|
from pytest import raises as assert_raises
|
||
|
import pytest
|
||
|
import numpy as np
|
||
|
|
||
|
from scipy.optimize import fmin_slsqp, minimize, Bounds, NonlinearConstraint
|
||
|
|
||
|
|
||
|
class MyCallBack:
|
||
|
"""pass a custom callback function
|
||
|
|
||
|
This makes sure it's being used.
|
||
|
"""
|
||
|
def __init__(self):
|
||
|
self.been_called = False
|
||
|
self.ncalls = 0
|
||
|
|
||
|
def __call__(self, x):
|
||
|
self.been_called = True
|
||
|
self.ncalls += 1
|
||
|
|
||
|
|
||
|
class TestSLSQP:
|
||
|
"""
|
||
|
Test SLSQP algorithm using Example 14.4 from Numerical Methods for
|
||
|
Engineers by Steven Chapra and Raymond Canale.
|
||
|
This example maximizes the function f(x) = 2*x*y + 2*x - x**2 - 2*y**2,
|
||
|
which has a maximum at x=2, y=1.
|
||
|
"""
|
||
|
def setup_method(self):
|
||
|
self.opts = {'disp': False}
|
||
|
|
||
|
def fun(self, d, sign=1.0):
|
||
|
"""
|
||
|
Arguments:
|
||
|
d - A list of two elements, where d[0] represents x and d[1] represents y
|
||
|
in the following equation.
|
||
|
sign - A multiplier for f. Since we want to optimize it, and the SciPy
|
||
|
optimizers can only minimize functions, we need to multiply it by
|
||
|
-1 to achieve the desired solution
|
||
|
Returns:
|
||
|
2*x*y + 2*x - x**2 - 2*y**2
|
||
|
|
||
|
"""
|
||
|
x = d[0]
|
||
|
y = d[1]
|
||
|
return sign*(2*x*y + 2*x - x**2 - 2*y**2)
|
||
|
|
||
|
def jac(self, d, sign=1.0):
|
||
|
"""
|
||
|
This is the derivative of fun, returning a NumPy array
|
||
|
representing df/dx and df/dy.
|
||
|
|
||
|
"""
|
||
|
x = d[0]
|
||
|
y = d[1]
|
||
|
dfdx = sign*(-2*x + 2*y + 2)
|
||
|
dfdy = sign*(2*x - 4*y)
|
||
|
return np.array([dfdx, dfdy], float)
|
||
|
|
||
|
def fun_and_jac(self, d, sign=1.0):
|
||
|
return self.fun(d, sign), self.jac(d, sign)
|
||
|
|
||
|
def f_eqcon(self, x, sign=1.0):
|
||
|
""" Equality constraint """
|
||
|
return np.array([x[0] - x[1]])
|
||
|
|
||
|
def fprime_eqcon(self, x, sign=1.0):
|
||
|
""" Equality constraint, derivative """
|
||
|
return np.array([[1, -1]])
|
||
|
|
||
|
def f_eqcon_scalar(self, x, sign=1.0):
|
||
|
""" Scalar equality constraint """
|
||
|
return self.f_eqcon(x, sign)[0]
|
||
|
|
||
|
def fprime_eqcon_scalar(self, x, sign=1.0):
|
||
|
""" Scalar equality constraint, derivative """
|
||
|
return self.fprime_eqcon(x, sign)[0].tolist()
|
||
|
|
||
|
def f_ieqcon(self, x, sign=1.0):
|
||
|
""" Inequality constraint """
|
||
|
return np.array([x[0] - x[1] - 1.0])
|
||
|
|
||
|
def fprime_ieqcon(self, x, sign=1.0):
|
||
|
""" Inequality constraint, derivative """
|
||
|
return np.array([[1, -1]])
|
||
|
|
||
|
def f_ieqcon2(self, x):
|
||
|
""" Vector inequality constraint """
|
||
|
return np.asarray(x)
|
||
|
|
||
|
def fprime_ieqcon2(self, x):
|
||
|
""" Vector inequality constraint, derivative """
|
||
|
return np.identity(x.shape[0])
|
||
|
|
||
|
# minimize
|
||
|
def test_minimize_unbounded_approximated(self):
|
||
|
# Minimize, method='SLSQP': unbounded, approximated jacobian.
|
||
|
jacs = [None, False, '2-point', '3-point']
|
||
|
for jac in jacs:
|
||
|
res = minimize(self.fun, [-1.0, 1.0], args=(-1.0, ),
|
||
|
jac=jac, method='SLSQP',
|
||
|
options=self.opts)
|
||
|
assert_(res['success'], res['message'])
|
||
|
assert_allclose(res.x, [2, 1])
|
||
|
|
||
|
def test_minimize_unbounded_given(self):
|
||
|
# Minimize, method='SLSQP': unbounded, given Jacobian.
|
||
|
res = minimize(self.fun, [-1.0, 1.0], args=(-1.0, ),
|
||
|
jac=self.jac, method='SLSQP', options=self.opts)
|
||
|
assert_(res['success'], res['message'])
|
||
|
assert_allclose(res.x, [2, 1])
|
||
|
|
||
|
def test_minimize_bounded_approximated(self):
|
||
|
# Minimize, method='SLSQP': bounded, approximated jacobian.
|
||
|
jacs = [None, False, '2-point', '3-point']
|
||
|
for jac in jacs:
|
||
|
with np.errstate(invalid='ignore'):
|
||
|
res = minimize(self.fun, [-1.0, 1.0], args=(-1.0, ),
|
||
|
jac=jac,
|
||
|
bounds=((2.5, None), (None, 0.5)),
|
||
|
method='SLSQP', options=self.opts)
|
||
|
assert_(res['success'], res['message'])
|
||
|
assert_allclose(res.x, [2.5, 0.5])
|
||
|
assert_(2.5 <= res.x[0])
|
||
|
assert_(res.x[1] <= 0.5)
|
||
|
|
||
|
def test_minimize_unbounded_combined(self):
|
||
|
# Minimize, method='SLSQP': unbounded, combined function and Jacobian.
|
||
|
res = minimize(self.fun_and_jac, [-1.0, 1.0], args=(-1.0, ),
|
||
|
jac=True, method='SLSQP', options=self.opts)
|
||
|
assert_(res['success'], res['message'])
|
||
|
assert_allclose(res.x, [2, 1])
|
||
|
|
||
|
def test_minimize_equality_approximated(self):
|
||
|
# Minimize with method='SLSQP': equality constraint, approx. jacobian.
|
||
|
jacs = [None, False, '2-point', '3-point']
|
||
|
for jac in jacs:
|
||
|
res = minimize(self.fun, [-1.0, 1.0], args=(-1.0, ),
|
||
|
jac=jac,
|
||
|
constraints={'type': 'eq',
|
||
|
'fun': self.f_eqcon,
|
||
|
'args': (-1.0, )},
|
||
|
method='SLSQP', options=self.opts)
|
||
|
assert_(res['success'], res['message'])
|
||
|
assert_allclose(res.x, [1, 1])
|
||
|
|
||
|
def test_minimize_equality_given(self):
|
||
|
# Minimize with method='SLSQP': equality constraint, given Jacobian.
|
||
|
res = minimize(self.fun, [-1.0, 1.0], jac=self.jac,
|
||
|
method='SLSQP', args=(-1.0,),
|
||
|
constraints={'type': 'eq', 'fun':self.f_eqcon,
|
||
|
'args': (-1.0, )},
|
||
|
options=self.opts)
|
||
|
assert_(res['success'], res['message'])
|
||
|
assert_allclose(res.x, [1, 1])
|
||
|
|
||
|
def test_minimize_equality_given2(self):
|
||
|
# Minimize with method='SLSQP': equality constraint, given Jacobian
|
||
|
# for fun and const.
|
||
|
res = minimize(self.fun, [-1.0, 1.0], method='SLSQP',
|
||
|
jac=self.jac, args=(-1.0,),
|
||
|
constraints={'type': 'eq',
|
||
|
'fun': self.f_eqcon,
|
||
|
'args': (-1.0, ),
|
||
|
'jac': self.fprime_eqcon},
|
||
|
options=self.opts)
|
||
|
assert_(res['success'], res['message'])
|
||
|
assert_allclose(res.x, [1, 1])
|
||
|
|
||
|
def test_minimize_equality_given_cons_scalar(self):
|
||
|
# Minimize with method='SLSQP': scalar equality constraint, given
|
||
|
# Jacobian for fun and const.
|
||
|
res = minimize(self.fun, [-1.0, 1.0], method='SLSQP',
|
||
|
jac=self.jac, args=(-1.0,),
|
||
|
constraints={'type': 'eq',
|
||
|
'fun': self.f_eqcon_scalar,
|
||
|
'args': (-1.0, ),
|
||
|
'jac': self.fprime_eqcon_scalar},
|
||
|
options=self.opts)
|
||
|
assert_(res['success'], res['message'])
|
||
|
assert_allclose(res.x, [1, 1])
|
||
|
|
||
|
def test_minimize_inequality_given(self):
|
||
|
# Minimize with method='SLSQP': inequality constraint, given Jacobian.
|
||
|
res = minimize(self.fun, [-1.0, 1.0], method='SLSQP',
|
||
|
jac=self.jac, args=(-1.0, ),
|
||
|
constraints={'type': 'ineq',
|
||
|
'fun': self.f_ieqcon,
|
||
|
'args': (-1.0, )},
|
||
|
options=self.opts)
|
||
|
assert_(res['success'], res['message'])
|
||
|
assert_allclose(res.x, [2, 1], atol=1e-3)
|
||
|
|
||
|
def test_minimize_inequality_given_vector_constraints(self):
|
||
|
# Minimize with method='SLSQP': vector inequality constraint, given
|
||
|
# Jacobian.
|
||
|
res = minimize(self.fun, [-1.0, 1.0], jac=self.jac,
|
||
|
method='SLSQP', args=(-1.0,),
|
||
|
constraints={'type': 'ineq',
|
||
|
'fun': self.f_ieqcon2,
|
||
|
'jac': self.fprime_ieqcon2},
|
||
|
options=self.opts)
|
||
|
assert_(res['success'], res['message'])
|
||
|
assert_allclose(res.x, [2, 1])
|
||
|
|
||
|
def test_minimize_bounded_constraint(self):
|
||
|
# when the constraint makes the solver go up against a parameter
|
||
|
# bound make sure that the numerical differentiation of the
|
||
|
# jacobian doesn't try to exceed that bound using a finite difference.
|
||
|
# gh11403
|
||
|
def c(x):
|
||
|
assert 0 <= x[0] <= 1 and 0 <= x[1] <= 1, x
|
||
|
return x[0] ** 0.5 + x[1]
|
||
|
|
||
|
def f(x):
|
||
|
assert 0 <= x[0] <= 1 and 0 <= x[1] <= 1, x
|
||
|
return -x[0] ** 2 + x[1] ** 2
|
||
|
|
||
|
cns = [NonlinearConstraint(c, 0, 1.5)]
|
||
|
x0 = np.asarray([0.9, 0.5])
|
||
|
bnd = Bounds([0., 0.], [1.0, 1.0])
|
||
|
minimize(f, x0, method='SLSQP', bounds=bnd, constraints=cns)
|
||
|
|
||
|
def test_minimize_bound_equality_given2(self):
|
||
|
# Minimize with method='SLSQP': bounds, eq. const., given jac. for
|
||
|
# fun. and const.
|
||
|
res = minimize(self.fun, [-1.0, 1.0], method='SLSQP',
|
||
|
jac=self.jac, args=(-1.0, ),
|
||
|
bounds=[(-0.8, 1.), (-1, 0.8)],
|
||
|
constraints={'type': 'eq',
|
||
|
'fun': self.f_eqcon,
|
||
|
'args': (-1.0, ),
|
||
|
'jac': self.fprime_eqcon},
|
||
|
options=self.opts)
|
||
|
assert_(res['success'], res['message'])
|
||
|
assert_allclose(res.x, [0.8, 0.8], atol=1e-3)
|
||
|
assert_(-0.8 <= res.x[0] <= 1)
|
||
|
assert_(-1 <= res.x[1] <= 0.8)
|
||
|
|
||
|
# fmin_slsqp
|
||
|
def test_unbounded_approximated(self):
|
||
|
# SLSQP: unbounded, approximated Jacobian.
|
||
|
res = fmin_slsqp(self.fun, [-1.0, 1.0], args=(-1.0, ),
|
||
|
iprint = 0, full_output = 1)
|
||
|
x, fx, its, imode, smode = res
|
||
|
assert_(imode == 0, imode)
|
||
|
assert_array_almost_equal(x, [2, 1])
|
||
|
|
||
|
def test_unbounded_given(self):
|
||
|
# SLSQP: unbounded, given Jacobian.
|
||
|
res = fmin_slsqp(self.fun, [-1.0, 1.0], args=(-1.0, ),
|
||
|
fprime = self.jac, iprint = 0,
|
||
|
full_output = 1)
|
||
|
x, fx, its, imode, smode = res
|
||
|
assert_(imode == 0, imode)
|
||
|
assert_array_almost_equal(x, [2, 1])
|
||
|
|
||
|
def test_equality_approximated(self):
|
||
|
# SLSQP: equality constraint, approximated Jacobian.
|
||
|
res = fmin_slsqp(self.fun,[-1.0,1.0], args=(-1.0,),
|
||
|
eqcons = [self.f_eqcon],
|
||
|
iprint = 0, full_output = 1)
|
||
|
x, fx, its, imode, smode = res
|
||
|
assert_(imode == 0, imode)
|
||
|
assert_array_almost_equal(x, [1, 1])
|
||
|
|
||
|
def test_equality_given(self):
|
||
|
# SLSQP: equality constraint, given Jacobian.
|
||
|
res = fmin_slsqp(self.fun, [-1.0, 1.0],
|
||
|
fprime=self.jac, args=(-1.0,),
|
||
|
eqcons = [self.f_eqcon], iprint = 0,
|
||
|
full_output = 1)
|
||
|
x, fx, its, imode, smode = res
|
||
|
assert_(imode == 0, imode)
|
||
|
assert_array_almost_equal(x, [1, 1])
|
||
|
|
||
|
def test_equality_given2(self):
|
||
|
# SLSQP: equality constraint, given Jacobian for fun and const.
|
||
|
res = fmin_slsqp(self.fun, [-1.0, 1.0],
|
||
|
fprime=self.jac, args=(-1.0,),
|
||
|
f_eqcons = self.f_eqcon,
|
||
|
fprime_eqcons = self.fprime_eqcon,
|
||
|
iprint = 0,
|
||
|
full_output = 1)
|
||
|
x, fx, its, imode, smode = res
|
||
|
assert_(imode == 0, imode)
|
||
|
assert_array_almost_equal(x, [1, 1])
|
||
|
|
||
|
def test_inequality_given(self):
|
||
|
# SLSQP: inequality constraint, given Jacobian.
|
||
|
res = fmin_slsqp(self.fun, [-1.0, 1.0],
|
||
|
fprime=self.jac, args=(-1.0, ),
|
||
|
ieqcons = [self.f_ieqcon],
|
||
|
iprint = 0, full_output = 1)
|
||
|
x, fx, its, imode, smode = res
|
||
|
assert_(imode == 0, imode)
|
||
|
assert_array_almost_equal(x, [2, 1], decimal=3)
|
||
|
|
||
|
def test_bound_equality_given2(self):
|
||
|
# SLSQP: bounds, eq. const., given jac. for fun. and const.
|
||
|
res = fmin_slsqp(self.fun, [-1.0, 1.0],
|
||
|
fprime=self.jac, args=(-1.0, ),
|
||
|
bounds = [(-0.8, 1.), (-1, 0.8)],
|
||
|
f_eqcons = self.f_eqcon,
|
||
|
fprime_eqcons = self.fprime_eqcon,
|
||
|
iprint = 0, full_output = 1)
|
||
|
x, fx, its, imode, smode = res
|
||
|
assert_(imode == 0, imode)
|
||
|
assert_array_almost_equal(x, [0.8, 0.8], decimal=3)
|
||
|
assert_(-0.8 <= x[0] <= 1)
|
||
|
assert_(-1 <= x[1] <= 0.8)
|
||
|
|
||
|
def test_scalar_constraints(self):
|
||
|
# Regression test for gh-2182
|
||
|
x = fmin_slsqp(lambda z: z**2, [3.],
|
||
|
ieqcons=[lambda z: z[0] - 1],
|
||
|
iprint=0)
|
||
|
assert_array_almost_equal(x, [1.])
|
||
|
|
||
|
x = fmin_slsqp(lambda z: z**2, [3.],
|
||
|
f_ieqcons=lambda z: [z[0] - 1],
|
||
|
iprint=0)
|
||
|
assert_array_almost_equal(x, [1.])
|
||
|
|
||
|
def test_integer_bounds(self):
|
||
|
# This should not raise an exception
|
||
|
fmin_slsqp(lambda z: z**2 - 1, [0], bounds=[[0, 1]], iprint=0)
|
||
|
|
||
|
def test_array_bounds(self):
|
||
|
# NumPy used to treat n-dimensional 1-element arrays as scalars
|
||
|
# in some cases. The handling of `bounds` by `fmin_slsqp` still
|
||
|
# supports this behavior.
|
||
|
bounds = [(-np.inf, np.inf), (np.array([2]), np.array([3]))]
|
||
|
x = fmin_slsqp(lambda z: np.sum(z**2 - 1), [2.5, 2.5], bounds=bounds,
|
||
|
iprint=0)
|
||
|
assert_array_almost_equal(x, [0, 2])
|
||
|
|
||
|
def test_obj_must_return_scalar(self):
|
||
|
# Regression test for Github Issue #5433
|
||
|
# If objective function does not return a scalar, raises ValueError
|
||
|
with assert_raises(ValueError):
|
||
|
fmin_slsqp(lambda x: [0, 1], [1, 2, 3])
|
||
|
|
||
|
def test_obj_returns_scalar_in_list(self):
|
||
|
# Test for Github Issue #5433 and PR #6691
|
||
|
# Objective function should be able to return length-1 Python list
|
||
|
# containing the scalar
|
||
|
fmin_slsqp(lambda x: [0], [1, 2, 3], iprint=0)
|
||
|
|
||
|
def test_callback(self):
|
||
|
# Minimize, method='SLSQP': unbounded, approximated jacobian. Check for callback
|
||
|
callback = MyCallBack()
|
||
|
res = minimize(self.fun, [-1.0, 1.0], args=(-1.0, ),
|
||
|
method='SLSQP', callback=callback, options=self.opts)
|
||
|
assert_(res['success'], res['message'])
|
||
|
assert_(callback.been_called)
|
||
|
assert_equal(callback.ncalls, res['nit'])
|
||
|
|
||
|
def test_inconsistent_linearization(self):
|
||
|
# SLSQP must be able to solve this problem, even if the
|
||
|
# linearized problem at the starting point is infeasible.
|
||
|
|
||
|
# Linearized constraints are
|
||
|
#
|
||
|
# 2*x0[0]*x[0] >= 1
|
||
|
#
|
||
|
# At x0 = [0, 1], the second constraint is clearly infeasible.
|
||
|
# This triggers a call with n2==1 in the LSQ subroutine.
|
||
|
x = [0, 1]
|
||
|
def f1(x):
|
||
|
return x[0] + x[1] - 2
|
||
|
def f2(x):
|
||
|
return x[0] ** 2 - 1
|
||
|
sol = minimize(
|
||
|
lambda x: x[0]**2 + x[1]**2,
|
||
|
x,
|
||
|
constraints=({'type':'eq','fun': f1},
|
||
|
{'type':'ineq','fun': f2}),
|
||
|
bounds=((0,None), (0,None)),
|
||
|
method='SLSQP')
|
||
|
x = sol.x
|
||
|
|
||
|
assert_allclose(f1(x), 0, atol=1e-8)
|
||
|
assert_(f2(x) >= -1e-8)
|
||
|
assert_(sol.success, sol)
|
||
|
|
||
|
def test_regression_5743(self):
|
||
|
# SLSQP must not indicate success for this problem,
|
||
|
# which is infeasible.
|
||
|
x = [1, 2]
|
||
|
sol = minimize(
|
||
|
lambda x: x[0]**2 + x[1]**2,
|
||
|
x,
|
||
|
constraints=({'type':'eq','fun': lambda x: x[0]+x[1]-1},
|
||
|
{'type':'ineq','fun': lambda x: x[0]-2}),
|
||
|
bounds=((0,None), (0,None)),
|
||
|
method='SLSQP')
|
||
|
assert_(not sol.success, sol)
|
||
|
|
||
|
def test_gh_6676(self):
|
||
|
def func(x):
|
||
|
return (x[0] - 1)**2 + 2*(x[1] - 1)**2 + 0.5*(x[2] - 1)**2
|
||
|
|
||
|
sol = minimize(func, [0, 0, 0], method='SLSQP')
|
||
|
assert_(sol.jac.shape == (3,))
|
||
|
|
||
|
def test_invalid_bounds(self):
|
||
|
# Raise correct error when lower bound is greater than upper bound.
|
||
|
# See Github issue 6875.
|
||
|
bounds_list = [
|
||
|
((1, 2), (2, 1)),
|
||
|
((2, 1), (1, 2)),
|
||
|
((2, 1), (2, 1)),
|
||
|
((np.inf, 0), (np.inf, 0)),
|
||
|
((1, -np.inf), (0, 1)),
|
||
|
]
|
||
|
for bounds in bounds_list:
|
||
|
with assert_raises(ValueError):
|
||
|
minimize(self.fun, [-1.0, 1.0], bounds=bounds, method='SLSQP')
|
||
|
|
||
|
def test_bounds_clipping(self):
|
||
|
#
|
||
|
# SLSQP returns bogus results for initial guess out of bounds, gh-6859
|
||
|
#
|
||
|
def f(x):
|
||
|
return (x[0] - 1)**2
|
||
|
|
||
|
sol = minimize(f, [10], method='slsqp', bounds=[(None, 0)])
|
||
|
assert_(sol.success)
|
||
|
assert_allclose(sol.x, 0, atol=1e-10)
|
||
|
|
||
|
sol = minimize(f, [-10], method='slsqp', bounds=[(2, None)])
|
||
|
assert_(sol.success)
|
||
|
assert_allclose(sol.x, 2, atol=1e-10)
|
||
|
|
||
|
sol = minimize(f, [-10], method='slsqp', bounds=[(None, 0)])
|
||
|
assert_(sol.success)
|
||
|
assert_allclose(sol.x, 0, atol=1e-10)
|
||
|
|
||
|
sol = minimize(f, [10], method='slsqp', bounds=[(2, None)])
|
||
|
assert_(sol.success)
|
||
|
assert_allclose(sol.x, 2, atol=1e-10)
|
||
|
|
||
|
sol = minimize(f, [-0.5], method='slsqp', bounds=[(-1, 0)])
|
||
|
assert_(sol.success)
|
||
|
assert_allclose(sol.x, 0, atol=1e-10)
|
||
|
|
||
|
sol = minimize(f, [10], method='slsqp', bounds=[(-1, 0)])
|
||
|
assert_(sol.success)
|
||
|
assert_allclose(sol.x, 0, atol=1e-10)
|
||
|
|
||
|
def test_infeasible_initial(self):
|
||
|
# Check SLSQP behavior with infeasible initial point
|
||
|
def f(x):
|
||
|
x, = x
|
||
|
return x*x - 2*x + 1
|
||
|
|
||
|
cons_u = [{'type': 'ineq', 'fun': lambda x: 0 - x}]
|
||
|
cons_l = [{'type': 'ineq', 'fun': lambda x: x - 2}]
|
||
|
cons_ul = [{'type': 'ineq', 'fun': lambda x: 0 - x},
|
||
|
{'type': 'ineq', 'fun': lambda x: x + 1}]
|
||
|
|
||
|
sol = minimize(f, [10], method='slsqp', constraints=cons_u)
|
||
|
assert_(sol.success)
|
||
|
assert_allclose(sol.x, 0, atol=1e-10)
|
||
|
|
||
|
sol = minimize(f, [-10], method='slsqp', constraints=cons_l)
|
||
|
assert_(sol.success)
|
||
|
assert_allclose(sol.x, 2, atol=1e-10)
|
||
|
|
||
|
sol = minimize(f, [-10], method='slsqp', constraints=cons_u)
|
||
|
assert_(sol.success)
|
||
|
assert_allclose(sol.x, 0, atol=1e-10)
|
||
|
|
||
|
sol = minimize(f, [10], method='slsqp', constraints=cons_l)
|
||
|
assert_(sol.success)
|
||
|
assert_allclose(sol.x, 2, atol=1e-10)
|
||
|
|
||
|
sol = minimize(f, [-0.5], method='slsqp', constraints=cons_ul)
|
||
|
assert_(sol.success)
|
||
|
assert_allclose(sol.x, 0, atol=1e-10)
|
||
|
|
||
|
sol = minimize(f, [10], method='slsqp', constraints=cons_ul)
|
||
|
assert_(sol.success)
|
||
|
assert_allclose(sol.x, 0, atol=1e-10)
|
||
|
|
||
|
def test_inconsistent_inequalities(self):
|
||
|
# gh-7618
|
||
|
|
||
|
def cost(x):
|
||
|
return -1 * x[0] + 4 * x[1]
|
||
|
|
||
|
def ineqcons1(x):
|
||
|
return x[1] - x[0] - 1
|
||
|
|
||
|
def ineqcons2(x):
|
||
|
return x[0] - x[1]
|
||
|
|
||
|
# The inequalities are inconsistent, so no solution can exist:
|
||
|
#
|
||
|
# x1 >= x0 + 1
|
||
|
# x0 >= x1
|
||
|
|
||
|
x0 = (1,5)
|
||
|
bounds = ((-5, 5), (-5, 5))
|
||
|
cons = (dict(type='ineq', fun=ineqcons1), dict(type='ineq', fun=ineqcons2))
|
||
|
res = minimize(cost, x0, method='SLSQP', bounds=bounds, constraints=cons)
|
||
|
|
||
|
assert_(not res.success)
|
||
|
|
||
|
def test_new_bounds_type(self):
|
||
|
def f(x):
|
||
|
return x[0] ** 2 + x[1] ** 2
|
||
|
bounds = Bounds([1, 0], [np.inf, np.inf])
|
||
|
sol = minimize(f, [0, 0], method='slsqp', bounds=bounds)
|
||
|
assert_(sol.success)
|
||
|
assert_allclose(sol.x, [1, 0])
|
||
|
|
||
|
def test_nested_minimization(self):
|
||
|
|
||
|
class NestedProblem:
|
||
|
|
||
|
def __init__(self):
|
||
|
self.F_outer_count = 0
|
||
|
|
||
|
def F_outer(self, x):
|
||
|
self.F_outer_count += 1
|
||
|
if self.F_outer_count > 1000:
|
||
|
raise Exception("Nested minimization failed to terminate.")
|
||
|
inner_res = minimize(self.F_inner, (3, 4), method="SLSQP")
|
||
|
assert_(inner_res.success)
|
||
|
assert_allclose(inner_res.x, [1, 1])
|
||
|
return x[0]**2 + x[1]**2 + x[2]**2
|
||
|
|
||
|
def F_inner(self, x):
|
||
|
return (x[0] - 1)**2 + (x[1] - 1)**2
|
||
|
|
||
|
def solve(self):
|
||
|
outer_res = minimize(self.F_outer, (5, 5, 5), method="SLSQP")
|
||
|
assert_(outer_res.success)
|
||
|
assert_allclose(outer_res.x, [0, 0, 0])
|
||
|
|
||
|
problem = NestedProblem()
|
||
|
problem.solve()
|
||
|
|
||
|
def test_gh1758(self):
|
||
|
# the test suggested in gh1758
|
||
|
# https://nlopt.readthedocs.io/en/latest/NLopt_Tutorial/
|
||
|
# implement two equality constraints, in R^2.
|
||
|
def fun(x):
|
||
|
return np.sqrt(x[1])
|
||
|
|
||
|
def f_eqcon(x):
|
||
|
""" Equality constraint """
|
||
|
return x[1] - (2 * x[0]) ** 3
|
||
|
|
||
|
def f_eqcon2(x):
|
||
|
""" Equality constraint """
|
||
|
return x[1] - (-x[0] + 1) ** 3
|
||
|
|
||
|
c1 = {'type': 'eq', 'fun': f_eqcon}
|
||
|
c2 = {'type': 'eq', 'fun': f_eqcon2}
|
||
|
|
||
|
res = minimize(fun, [8, 0.25], method='SLSQP',
|
||
|
constraints=[c1, c2], bounds=[(-0.5, 1), (0, 8)])
|
||
|
|
||
|
np.testing.assert_allclose(res.fun, 0.5443310539518)
|
||
|
np.testing.assert_allclose(res.x, [0.33333333, 0.2962963])
|
||
|
assert res.success
|
||
|
|
||
|
def test_gh9640(self):
|
||
|
np.random.seed(10)
|
||
|
cons = ({'type': 'ineq', 'fun': lambda x: -x[0] - x[1] - 3},
|
||
|
{'type': 'ineq', 'fun': lambda x: x[1] + x[2] - 2})
|
||
|
bnds = ((-2, 2), (-2, 2), (-2, 2))
|
||
|
|
||
|
def target(x):
|
||
|
return 1
|
||
|
x0 = [-1.8869783504471584, -0.640096352696244, -0.8174212253407696]
|
||
|
res = minimize(target, x0, method='SLSQP', bounds=bnds, constraints=cons,
|
||
|
options={'disp':False, 'maxiter':10000})
|
||
|
|
||
|
# The problem is infeasible, so it cannot succeed
|
||
|
assert not res.success
|
||
|
|
||
|
def test_parameters_stay_within_bounds(self):
|
||
|
# gh11403. For some problems the SLSQP Fortran code suggests a step
|
||
|
# outside one of the lower/upper bounds. When this happens
|
||
|
# approx_derivative complains because it's being asked to evaluate
|
||
|
# a gradient outside its domain.
|
||
|
np.random.seed(1)
|
||
|
bounds = Bounds(np.array([0.1]), np.array([1.0]))
|
||
|
n_inputs = len(bounds.lb)
|
||
|
x0 = np.array(bounds.lb + (bounds.ub - bounds.lb) *
|
||
|
np.random.random(n_inputs))
|
||
|
|
||
|
def f(x):
|
||
|
assert (x >= bounds.lb).all()
|
||
|
return np.linalg.norm(x)
|
||
|
|
||
|
with pytest.warns(RuntimeWarning, match='x were outside bounds'):
|
||
|
res = minimize(f, x0, method='SLSQP', bounds=bounds)
|
||
|
assert res.success
|