Traktor/myenv/Lib/site-packages/sklearn/_config.py

374 lines
13 KiB
Python
Raw Normal View History

2024-05-23 01:57:24 +02:00
"""Global configuration state and functions for management"""
import os
import threading
from contextlib import contextmanager as contextmanager
_global_config = {
"assume_finite": bool(os.environ.get("SKLEARN_ASSUME_FINITE", False)),
"working_memory": int(os.environ.get("SKLEARN_WORKING_MEMORY", 1024)),
"print_changed_only": True,
"display": "diagram",
"pairwise_dist_chunk_size": int(
os.environ.get("SKLEARN_PAIRWISE_DIST_CHUNK_SIZE", 256)
),
"enable_cython_pairwise_dist": True,
"array_api_dispatch": False,
"transform_output": "default",
"enable_metadata_routing": False,
"skip_parameter_validation": False,
}
_threadlocal = threading.local()
def _get_threadlocal_config():
"""Get a threadlocal **mutable** configuration. If the configuration
does not exist, copy the default global configuration."""
if not hasattr(_threadlocal, "global_config"):
_threadlocal.global_config = _global_config.copy()
return _threadlocal.global_config
def get_config():
"""Retrieve current values for configuration set by :func:`set_config`.
Returns
-------
config : dict
Keys are parameter names that can be passed to :func:`set_config`.
See Also
--------
config_context : Context manager for global scikit-learn configuration.
set_config : Set global scikit-learn configuration.
Examples
--------
>>> import sklearn
>>> config = sklearn.get_config()
>>> config.keys()
dict_keys([...])
"""
# Return a copy of the threadlocal configuration so that users will
# not be able to modify the configuration with the returned dict.
return _get_threadlocal_config().copy()
def set_config(
assume_finite=None,
working_memory=None,
print_changed_only=None,
display=None,
pairwise_dist_chunk_size=None,
enable_cython_pairwise_dist=None,
array_api_dispatch=None,
transform_output=None,
enable_metadata_routing=None,
skip_parameter_validation=None,
):
"""Set global scikit-learn configuration.
.. versionadded:: 0.19
Parameters
----------
assume_finite : bool, default=None
If True, validation for finiteness will be skipped,
saving time, but leading to potential crashes. If
False, validation for finiteness will be performed,
avoiding error. Global default: False.
.. versionadded:: 0.19
working_memory : int, default=None
If set, scikit-learn will attempt to limit the size of temporary arrays
to this number of MiB (per job when parallelised), often saving both
computation time and memory on expensive operations that can be
performed in chunks. Global default: 1024.
.. versionadded:: 0.20
print_changed_only : bool, default=None
If True, only the parameters that were set to non-default
values will be printed when printing an estimator. For example,
``print(SVC())`` while True will only print 'SVC()' while the default
behaviour would be to print 'SVC(C=1.0, cache_size=200, ...)' with
all the non-changed parameters.
.. versionadded:: 0.21
display : {'text', 'diagram'}, default=None
If 'diagram', estimators will be displayed as a diagram in a Jupyter
lab or notebook context. If 'text', estimators will be displayed as
text. Default is 'diagram'.
.. versionadded:: 0.23
pairwise_dist_chunk_size : int, default=None
The number of row vectors per chunk for the accelerated pairwise-
distances reduction backend. Default is 256 (suitable for most of
modern laptops' caches and architectures).
Intended for easier benchmarking and testing of scikit-learn internals.
End users are not expected to benefit from customizing this configuration
setting.
.. versionadded:: 1.1
enable_cython_pairwise_dist : bool, default=None
Use the accelerated pairwise-distances reduction backend when
possible. Global default: True.
Intended for easier benchmarking and testing of scikit-learn internals.
End users are not expected to benefit from customizing this configuration
setting.
.. versionadded:: 1.1
array_api_dispatch : bool, default=None
Use Array API dispatching when inputs follow the Array API standard.
Default is False.
See the :ref:`User Guide <array_api>` for more details.
.. versionadded:: 1.2
transform_output : str, default=None
Configure output of `transform` and `fit_transform`.
See :ref:`sphx_glr_auto_examples_miscellaneous_plot_set_output.py`
for an example on how to use the API.
- `"default"`: Default output format of a transformer
- `"pandas"`: DataFrame output
- `"polars"`: Polars output
- `None`: Transform configuration is unchanged
.. versionadded:: 1.2
.. versionadded:: 1.4
`"polars"` option was added.
enable_metadata_routing : bool, default=None
Enable metadata routing. By default this feature is disabled.
Refer to :ref:`metadata routing user guide <metadata_routing>` for more
details.
- `True`: Metadata routing is enabled
- `False`: Metadata routing is disabled, use the old syntax.
- `None`: Configuration is unchanged
.. versionadded:: 1.3
skip_parameter_validation : bool, default=None
If `True`, disable the validation of the hyper-parameters' types and values in
the fit method of estimators and for arguments passed to public helper
functions. It can save time in some situations but can lead to low level
crashes and exceptions with confusing error messages.
Note that for data parameters, such as `X` and `y`, only type validation is
skipped but validation with `check_array` will continue to run.
.. versionadded:: 1.3
See Also
--------
config_context : Context manager for global scikit-learn configuration.
get_config : Retrieve current values of the global configuration.
Examples
--------
>>> from sklearn import set_config
>>> set_config(display='diagram') # doctest: +SKIP
"""
local_config = _get_threadlocal_config()
if assume_finite is not None:
local_config["assume_finite"] = assume_finite
if working_memory is not None:
local_config["working_memory"] = working_memory
if print_changed_only is not None:
local_config["print_changed_only"] = print_changed_only
if display is not None:
local_config["display"] = display
if pairwise_dist_chunk_size is not None:
local_config["pairwise_dist_chunk_size"] = pairwise_dist_chunk_size
if enable_cython_pairwise_dist is not None:
local_config["enable_cython_pairwise_dist"] = enable_cython_pairwise_dist
if array_api_dispatch is not None:
from .utils._array_api import _check_array_api_dispatch
_check_array_api_dispatch(array_api_dispatch)
local_config["array_api_dispatch"] = array_api_dispatch
if transform_output is not None:
local_config["transform_output"] = transform_output
if enable_metadata_routing is not None:
local_config["enable_metadata_routing"] = enable_metadata_routing
if skip_parameter_validation is not None:
local_config["skip_parameter_validation"] = skip_parameter_validation
@contextmanager
def config_context(
*,
assume_finite=None,
working_memory=None,
print_changed_only=None,
display=None,
pairwise_dist_chunk_size=None,
enable_cython_pairwise_dist=None,
array_api_dispatch=None,
transform_output=None,
enable_metadata_routing=None,
skip_parameter_validation=None,
):
"""Context manager for global scikit-learn configuration.
Parameters
----------
assume_finite : bool, default=None
If True, validation for finiteness will be skipped,
saving time, but leading to potential crashes. If
False, validation for finiteness will be performed,
avoiding error. If None, the existing value won't change.
The default value is False.
working_memory : int, default=None
If set, scikit-learn will attempt to limit the size of temporary arrays
to this number of MiB (per job when parallelised), often saving both
computation time and memory on expensive operations that can be
performed in chunks. If None, the existing value won't change.
The default value is 1024.
print_changed_only : bool, default=None
If True, only the parameters that were set to non-default
values will be printed when printing an estimator. For example,
``print(SVC())`` while True will only print 'SVC()', but would print
'SVC(C=1.0, cache_size=200, ...)' with all the non-changed parameters
when False. If None, the existing value won't change.
The default value is True.
.. versionchanged:: 0.23
Default changed from False to True.
display : {'text', 'diagram'}, default=None
If 'diagram', estimators will be displayed as a diagram in a Jupyter
lab or notebook context. If 'text', estimators will be displayed as
text. If None, the existing value won't change.
The default value is 'diagram'.
.. versionadded:: 0.23
pairwise_dist_chunk_size : int, default=None
The number of row vectors per chunk for the accelerated pairwise-
distances reduction backend. Default is 256 (suitable for most of
modern laptops' caches and architectures).
Intended for easier benchmarking and testing of scikit-learn internals.
End users are not expected to benefit from customizing this configuration
setting.
.. versionadded:: 1.1
enable_cython_pairwise_dist : bool, default=None
Use the accelerated pairwise-distances reduction backend when
possible. Global default: True.
Intended for easier benchmarking and testing of scikit-learn internals.
End users are not expected to benefit from customizing this configuration
setting.
.. versionadded:: 1.1
array_api_dispatch : bool, default=None
Use Array API dispatching when inputs follow the Array API standard.
Default is False.
See the :ref:`User Guide <array_api>` for more details.
.. versionadded:: 1.2
transform_output : str, default=None
Configure output of `transform` and `fit_transform`.
See :ref:`sphx_glr_auto_examples_miscellaneous_plot_set_output.py`
for an example on how to use the API.
- `"default"`: Default output format of a transformer
- `"pandas"`: DataFrame output
- `"polars"`: Polars output
- `None`: Transform configuration is unchanged
.. versionadded:: 1.2
.. versionadded:: 1.4
`"polars"` option was added.
enable_metadata_routing : bool, default=None
Enable metadata routing. By default this feature is disabled.
Refer to :ref:`metadata routing user guide <metadata_routing>` for more
details.
- `True`: Metadata routing is enabled
- `False`: Metadata routing is disabled, use the old syntax.
- `None`: Configuration is unchanged
.. versionadded:: 1.3
skip_parameter_validation : bool, default=None
If `True`, disable the validation of the hyper-parameters' types and values in
the fit method of estimators and for arguments passed to public helper
functions. It can save time in some situations but can lead to low level
crashes and exceptions with confusing error messages.
Note that for data parameters, such as `X` and `y`, only type validation is
skipped but validation with `check_array` will continue to run.
.. versionadded:: 1.3
Yields
------
None.
See Also
--------
set_config : Set global scikit-learn configuration.
get_config : Retrieve current values of the global configuration.
Notes
-----
All settings, not just those presently modified, will be returned to
their previous values when the context manager is exited.
Examples
--------
>>> import sklearn
>>> from sklearn.utils.validation import assert_all_finite
>>> with sklearn.config_context(assume_finite=True):
... assert_all_finite([float('nan')])
>>> with sklearn.config_context(assume_finite=True):
... with sklearn.config_context(assume_finite=False):
... assert_all_finite([float('nan')])
Traceback (most recent call last):
...
ValueError: Input contains NaN...
"""
old_config = get_config()
set_config(
assume_finite=assume_finite,
working_memory=working_memory,
print_changed_only=print_changed_only,
display=display,
pairwise_dist_chunk_size=pairwise_dist_chunk_size,
enable_cython_pairwise_dist=enable_cython_pairwise_dist,
array_api_dispatch=array_api_dispatch,
transform_output=transform_output,
enable_metadata_routing=enable_metadata_routing,
skip_parameter_validation=skip_parameter_validation,
)
try:
yield
finally:
set_config(**old_config)