Traktor/myenv/Lib/site-packages/sympy/assumptions/predicates/matrices.py

512 lines
12 KiB
Python
Raw Normal View History

2024-05-23 01:57:24 +02:00
from sympy.assumptions import Predicate
from sympy.multipledispatch import Dispatcher
class SquarePredicate(Predicate):
"""
Square matrix predicate.
Explanation
===========
``Q.square(x)`` is true iff ``x`` is a square matrix. A square matrix
is a matrix with the same number of rows and columns.
Examples
========
>>> from sympy import Q, ask, MatrixSymbol, ZeroMatrix, Identity
>>> X = MatrixSymbol('X', 2, 2)
>>> Y = MatrixSymbol('X', 2, 3)
>>> ask(Q.square(X))
True
>>> ask(Q.square(Y))
False
>>> ask(Q.square(ZeroMatrix(3, 3)))
True
>>> ask(Q.square(Identity(3)))
True
References
==========
.. [1] https://en.wikipedia.org/wiki/Square_matrix
"""
name = 'square'
handler = Dispatcher("SquareHandler", doc="Handler for Q.square.")
class SymmetricPredicate(Predicate):
"""
Symmetric matrix predicate.
Explanation
===========
``Q.symmetric(x)`` is true iff ``x`` is a square matrix and is equal to
its transpose. Every square diagonal matrix is a symmetric matrix.
Examples
========
>>> from sympy import Q, ask, MatrixSymbol
>>> X = MatrixSymbol('X', 2, 2)
>>> Y = MatrixSymbol('Y', 2, 3)
>>> Z = MatrixSymbol('Z', 2, 2)
>>> ask(Q.symmetric(X*Z), Q.symmetric(X) & Q.symmetric(Z))
True
>>> ask(Q.symmetric(X + Z), Q.symmetric(X) & Q.symmetric(Z))
True
>>> ask(Q.symmetric(Y))
False
References
==========
.. [1] https://en.wikipedia.org/wiki/Symmetric_matrix
"""
# TODO: Add handlers to make these keys work with
# actual matrices and add more examples in the docstring.
name = 'symmetric'
handler = Dispatcher("SymmetricHandler", doc="Handler for Q.symmetric.")
class InvertiblePredicate(Predicate):
"""
Invertible matrix predicate.
Explanation
===========
``Q.invertible(x)`` is true iff ``x`` is an invertible matrix.
A square matrix is called invertible only if its determinant is 0.
Examples
========
>>> from sympy import Q, ask, MatrixSymbol
>>> X = MatrixSymbol('X', 2, 2)
>>> Y = MatrixSymbol('Y', 2, 3)
>>> Z = MatrixSymbol('Z', 2, 2)
>>> ask(Q.invertible(X*Y), Q.invertible(X))
False
>>> ask(Q.invertible(X*Z), Q.invertible(X) & Q.invertible(Z))
True
>>> ask(Q.invertible(X), Q.fullrank(X) & Q.square(X))
True
References
==========
.. [1] https://en.wikipedia.org/wiki/Invertible_matrix
"""
name = 'invertible'
handler = Dispatcher("InvertibleHandler", doc="Handler for Q.invertible.")
class OrthogonalPredicate(Predicate):
"""
Orthogonal matrix predicate.
Explanation
===========
``Q.orthogonal(x)`` is true iff ``x`` is an orthogonal matrix.
A square matrix ``M`` is an orthogonal matrix if it satisfies
``M^TM = MM^T = I`` where ``M^T`` is the transpose matrix of
``M`` and ``I`` is an identity matrix. Note that an orthogonal
matrix is necessarily invertible.
Examples
========
>>> from sympy import Q, ask, MatrixSymbol, Identity
>>> X = MatrixSymbol('X', 2, 2)
>>> Y = MatrixSymbol('Y', 2, 3)
>>> Z = MatrixSymbol('Z', 2, 2)
>>> ask(Q.orthogonal(Y))
False
>>> ask(Q.orthogonal(X*Z*X), Q.orthogonal(X) & Q.orthogonal(Z))
True
>>> ask(Q.orthogonal(Identity(3)))
True
>>> ask(Q.invertible(X), Q.orthogonal(X))
True
References
==========
.. [1] https://en.wikipedia.org/wiki/Orthogonal_matrix
"""
name = 'orthogonal'
handler = Dispatcher("OrthogonalHandler", doc="Handler for key 'orthogonal'.")
class UnitaryPredicate(Predicate):
"""
Unitary matrix predicate.
Explanation
===========
``Q.unitary(x)`` is true iff ``x`` is a unitary matrix.
Unitary matrix is an analogue to orthogonal matrix. A square
matrix ``M`` with complex elements is unitary if :math:``M^TM = MM^T= I``
where :math:``M^T`` is the conjugate transpose matrix of ``M``.
Examples
========
>>> from sympy import Q, ask, MatrixSymbol, Identity
>>> X = MatrixSymbol('X', 2, 2)
>>> Y = MatrixSymbol('Y', 2, 3)
>>> Z = MatrixSymbol('Z', 2, 2)
>>> ask(Q.unitary(Y))
False
>>> ask(Q.unitary(X*Z*X), Q.unitary(X) & Q.unitary(Z))
True
>>> ask(Q.unitary(Identity(3)))
True
References
==========
.. [1] https://en.wikipedia.org/wiki/Unitary_matrix
"""
name = 'unitary'
handler = Dispatcher("UnitaryHandler", doc="Handler for key 'unitary'.")
class FullRankPredicate(Predicate):
"""
Fullrank matrix predicate.
Explanation
===========
``Q.fullrank(x)`` is true iff ``x`` is a full rank matrix.
A matrix is full rank if all rows and columns of the matrix
are linearly independent. A square matrix is full rank iff
its determinant is nonzero.
Examples
========
>>> from sympy import Q, ask, MatrixSymbol, ZeroMatrix, Identity
>>> X = MatrixSymbol('X', 2, 2)
>>> ask(Q.fullrank(X.T), Q.fullrank(X))
True
>>> ask(Q.fullrank(ZeroMatrix(3, 3)))
False
>>> ask(Q.fullrank(Identity(3)))
True
"""
name = 'fullrank'
handler = Dispatcher("FullRankHandler", doc="Handler for key 'fullrank'.")
class PositiveDefinitePredicate(Predicate):
r"""
Positive definite matrix predicate.
Explanation
===========
If $M$ is a :math:`n \times n` symmetric real matrix, it is said
to be positive definite if :math:`Z^TMZ` is positive for
every non-zero column vector $Z$ of $n$ real numbers.
Examples
========
>>> from sympy import Q, ask, MatrixSymbol, Identity
>>> X = MatrixSymbol('X', 2, 2)
>>> Y = MatrixSymbol('Y', 2, 3)
>>> Z = MatrixSymbol('Z', 2, 2)
>>> ask(Q.positive_definite(Y))
False
>>> ask(Q.positive_definite(Identity(3)))
True
>>> ask(Q.positive_definite(X + Z), Q.positive_definite(X) &
... Q.positive_definite(Z))
True
References
==========
.. [1] https://en.wikipedia.org/wiki/Positive-definite_matrix
"""
name = "positive_definite"
handler = Dispatcher("PositiveDefiniteHandler", doc="Handler for key 'positive_definite'.")
class UpperTriangularPredicate(Predicate):
"""
Upper triangular matrix predicate.
Explanation
===========
A matrix $M$ is called upper triangular matrix if :math:`M_{ij}=0`
for :math:`i<j`.
Examples
========
>>> from sympy import Q, ask, ZeroMatrix, Identity
>>> ask(Q.upper_triangular(Identity(3)))
True
>>> ask(Q.upper_triangular(ZeroMatrix(3, 3)))
True
References
==========
.. [1] https://mathworld.wolfram.com/UpperTriangularMatrix.html
"""
name = "upper_triangular"
handler = Dispatcher("UpperTriangularHandler", doc="Handler for key 'upper_triangular'.")
class LowerTriangularPredicate(Predicate):
"""
Lower triangular matrix predicate.
Explanation
===========
A matrix $M$ is called lower triangular matrix if :math:`M_{ij}=0`
for :math:`i>j`.
Examples
========
>>> from sympy import Q, ask, ZeroMatrix, Identity
>>> ask(Q.lower_triangular(Identity(3)))
True
>>> ask(Q.lower_triangular(ZeroMatrix(3, 3)))
True
References
==========
.. [1] https://mathworld.wolfram.com/LowerTriangularMatrix.html
"""
name = "lower_triangular"
handler = Dispatcher("LowerTriangularHandler", doc="Handler for key 'lower_triangular'.")
class DiagonalPredicate(Predicate):
"""
Diagonal matrix predicate.
Explanation
===========
``Q.diagonal(x)`` is true iff ``x`` is a diagonal matrix. A diagonal
matrix is a matrix in which the entries outside the main diagonal
are all zero.
Examples
========
>>> from sympy import Q, ask, MatrixSymbol, ZeroMatrix
>>> X = MatrixSymbol('X', 2, 2)
>>> ask(Q.diagonal(ZeroMatrix(3, 3)))
True
>>> ask(Q.diagonal(X), Q.lower_triangular(X) &
... Q.upper_triangular(X))
True
References
==========
.. [1] https://en.wikipedia.org/wiki/Diagonal_matrix
"""
name = "diagonal"
handler = Dispatcher("DiagonalHandler", doc="Handler for key 'diagonal'.")
class IntegerElementsPredicate(Predicate):
"""
Integer elements matrix predicate.
Explanation
===========
``Q.integer_elements(x)`` is true iff all the elements of ``x``
are integers.
Examples
========
>>> from sympy import Q, ask, MatrixSymbol
>>> X = MatrixSymbol('X', 4, 4)
>>> ask(Q.integer(X[1, 2]), Q.integer_elements(X))
True
"""
name = "integer_elements"
handler = Dispatcher("IntegerElementsHandler", doc="Handler for key 'integer_elements'.")
class RealElementsPredicate(Predicate):
"""
Real elements matrix predicate.
Explanation
===========
``Q.real_elements(x)`` is true iff all the elements of ``x``
are real numbers.
Examples
========
>>> from sympy import Q, ask, MatrixSymbol
>>> X = MatrixSymbol('X', 4, 4)
>>> ask(Q.real(X[1, 2]), Q.real_elements(X))
True
"""
name = "real_elements"
handler = Dispatcher("RealElementsHandler", doc="Handler for key 'real_elements'.")
class ComplexElementsPredicate(Predicate):
"""
Complex elements matrix predicate.
Explanation
===========
``Q.complex_elements(x)`` is true iff all the elements of ``x``
are complex numbers.
Examples
========
>>> from sympy import Q, ask, MatrixSymbol
>>> X = MatrixSymbol('X', 4, 4)
>>> ask(Q.complex(X[1, 2]), Q.complex_elements(X))
True
>>> ask(Q.complex_elements(X), Q.integer_elements(X))
True
"""
name = "complex_elements"
handler = Dispatcher("ComplexElementsHandler", doc="Handler for key 'complex_elements'.")
class SingularPredicate(Predicate):
"""
Singular matrix predicate.
A matrix is singular iff the value of its determinant is 0.
Examples
========
>>> from sympy import Q, ask, MatrixSymbol
>>> X = MatrixSymbol('X', 4, 4)
>>> ask(Q.singular(X), Q.invertible(X))
False
>>> ask(Q.singular(X), ~Q.invertible(X))
True
References
==========
.. [1] https://mathworld.wolfram.com/SingularMatrix.html
"""
name = "singular"
handler = Dispatcher("SingularHandler", doc="Predicate fore key 'singular'.")
class NormalPredicate(Predicate):
"""
Normal matrix predicate.
A matrix is normal if it commutes with its conjugate transpose.
Examples
========
>>> from sympy import Q, ask, MatrixSymbol
>>> X = MatrixSymbol('X', 4, 4)
>>> ask(Q.normal(X), Q.unitary(X))
True
References
==========
.. [1] https://en.wikipedia.org/wiki/Normal_matrix
"""
name = "normal"
handler = Dispatcher("NormalHandler", doc="Predicate fore key 'normal'.")
class TriangularPredicate(Predicate):
"""
Triangular matrix predicate.
Explanation
===========
``Q.triangular(X)`` is true if ``X`` is one that is either lower
triangular or upper triangular.
Examples
========
>>> from sympy import Q, ask, MatrixSymbol
>>> X = MatrixSymbol('X', 4, 4)
>>> ask(Q.triangular(X), Q.upper_triangular(X))
True
>>> ask(Q.triangular(X), Q.lower_triangular(X))
True
References
==========
.. [1] https://en.wikipedia.org/wiki/Triangular_matrix
"""
name = "triangular"
handler = Dispatcher("TriangularHandler", doc="Predicate fore key 'triangular'.")
class UnitTriangularPredicate(Predicate):
"""
Unit triangular matrix predicate.
Explanation
===========
A unit triangular matrix is a triangular matrix with 1s
on the diagonal.
Examples
========
>>> from sympy import Q, ask, MatrixSymbol
>>> X = MatrixSymbol('X', 4, 4)
>>> ask(Q.triangular(X), Q.unit_triangular(X))
True
"""
name = "unit_triangular"
handler = Dispatcher("UnitTriangularHandler", doc="Predicate fore key 'unit_triangular'.")