Traktor/myenv/Lib/site-packages/sympy/assumptions/satask.py

362 lines
11 KiB
Python
Raw Normal View History

2024-05-23 01:57:24 +02:00
"""
Module to evaluate the proposition with assumptions using SAT algorithm.
"""
from sympy.core.singleton import S
from sympy.core.symbol import Symbol
from sympy.assumptions.ask_generated import get_all_known_facts
from sympy.assumptions.assume import global_assumptions, AppliedPredicate
from sympy.assumptions.sathandlers import class_fact_registry
from sympy.core import oo
from sympy.logic.inference import satisfiable
from sympy.assumptions.cnf import CNF, EncodedCNF
def satask(proposition, assumptions=True, context=global_assumptions,
use_known_facts=True, iterations=oo):
"""
Function to evaluate the proposition with assumptions using SAT algorithm.
This function extracts every fact relevant to the expressions composing
proposition and assumptions. For example, if a predicate containing
``Abs(x)`` is proposed, then ``Q.zero(Abs(x)) | Q.positive(Abs(x))``
will be found and passed to SAT solver because ``Q.nonnegative`` is
registered as a fact for ``Abs``.
Proposition is evaluated to ``True`` or ``False`` if the truth value can be
determined. If not, ``None`` is returned.
Parameters
==========
proposition : Any boolean expression.
Proposition which will be evaluated to boolean value.
assumptions : Any boolean expression, optional.
Local assumptions to evaluate the *proposition*.
context : AssumptionsContext, optional.
Default assumptions to evaluate the *proposition*. By default,
this is ``sympy.assumptions.global_assumptions`` variable.
use_known_facts : bool, optional.
If ``True``, facts from ``sympy.assumptions.ask_generated``
module are passed to SAT solver as well.
iterations : int, optional.
Number of times that relevant facts are recursively extracted.
Default is infinite times until no new fact is found.
Returns
=======
``True``, ``False``, or ``None``
Examples
========
>>> from sympy import Abs, Q
>>> from sympy.assumptions.satask import satask
>>> from sympy.abc import x
>>> satask(Q.zero(Abs(x)), Q.zero(x))
True
"""
props = CNF.from_prop(proposition)
_props = CNF.from_prop(~proposition)
assumptions = CNF.from_prop(assumptions)
context_cnf = CNF()
if context:
context_cnf = context_cnf.extend(context)
sat = get_all_relevant_facts(props, assumptions, context_cnf,
use_known_facts=use_known_facts, iterations=iterations)
sat.add_from_cnf(assumptions)
if context:
sat.add_from_cnf(context_cnf)
return check_satisfiability(props, _props, sat)
def check_satisfiability(prop, _prop, factbase):
sat_true = factbase.copy()
sat_false = factbase.copy()
sat_true.add_from_cnf(prop)
sat_false.add_from_cnf(_prop)
can_be_true = satisfiable(sat_true)
can_be_false = satisfiable(sat_false)
if can_be_true and can_be_false:
return None
if can_be_true and not can_be_false:
return True
if not can_be_true and can_be_false:
return False
if not can_be_true and not can_be_false:
# TODO: Run additional checks to see which combination of the
# assumptions, global_assumptions, and relevant_facts are
# inconsistent.
raise ValueError("Inconsistent assumptions")
def extract_predargs(proposition, assumptions=None, context=None):
"""
Extract every expression in the argument of predicates from *proposition*,
*assumptions* and *context*.
Parameters
==========
proposition : sympy.assumptions.cnf.CNF
assumptions : sympy.assumptions.cnf.CNF, optional.
context : sympy.assumptions.cnf.CNF, optional.
CNF generated from assumptions context.
Examples
========
>>> from sympy import Q, Abs
>>> from sympy.assumptions.cnf import CNF
>>> from sympy.assumptions.satask import extract_predargs
>>> from sympy.abc import x, y
>>> props = CNF.from_prop(Q.zero(Abs(x*y)))
>>> assump = CNF.from_prop(Q.zero(x) & Q.zero(y))
>>> extract_predargs(props, assump)
{x, y, Abs(x*y)}
"""
req_keys = find_symbols(proposition)
keys = proposition.all_predicates()
# XXX: We need this since True/False are not Basic
lkeys = set()
if assumptions:
lkeys |= assumptions.all_predicates()
if context:
lkeys |= context.all_predicates()
lkeys = lkeys - {S.true, S.false}
tmp_keys = None
while tmp_keys != set():
tmp = set()
for l in lkeys:
syms = find_symbols(l)
if (syms & req_keys) != set():
tmp |= syms
tmp_keys = tmp - req_keys
req_keys |= tmp_keys
keys |= {l for l in lkeys if find_symbols(l) & req_keys != set()}
exprs = set()
for key in keys:
if isinstance(key, AppliedPredicate):
exprs |= set(key.arguments)
else:
exprs.add(key)
return exprs
def find_symbols(pred):
"""
Find every :obj:`~.Symbol` in *pred*.
Parameters
==========
pred : sympy.assumptions.cnf.CNF, or any Expr.
"""
if isinstance(pred, CNF):
symbols = set()
for a in pred.all_predicates():
symbols |= find_symbols(a)
return symbols
return pred.atoms(Symbol)
def get_relevant_clsfacts(exprs, relevant_facts=None):
"""
Extract relevant facts from the items in *exprs*. Facts are defined in
``assumptions.sathandlers`` module.
This function is recursively called by ``get_all_relevant_facts()``.
Parameters
==========
exprs : set
Expressions whose relevant facts are searched.
relevant_facts : sympy.assumptions.cnf.CNF, optional.
Pre-discovered relevant facts.
Returns
=======
exprs : set
Candidates for next relevant fact searching.
relevant_facts : sympy.assumptions.cnf.CNF
Updated relevant facts.
Examples
========
Here, we will see how facts relevant to ``Abs(x*y)`` are recursively
extracted. On the first run, set containing the expression is passed
without pre-discovered relevant facts. The result is a set containing
candidates for next run, and ``CNF()`` instance containing facts
which are relevant to ``Abs`` and its argument.
>>> from sympy import Abs
>>> from sympy.assumptions.satask import get_relevant_clsfacts
>>> from sympy.abc import x, y
>>> exprs = {Abs(x*y)}
>>> exprs, facts = get_relevant_clsfacts(exprs)
>>> exprs
{x*y}
>>> facts.clauses #doctest: +SKIP
{frozenset({Literal(Q.odd(Abs(x*y)), False), Literal(Q.odd(x*y), True)}),
frozenset({Literal(Q.zero(Abs(x*y)), False), Literal(Q.zero(x*y), True)}),
frozenset({Literal(Q.even(Abs(x*y)), False), Literal(Q.even(x*y), True)}),
frozenset({Literal(Q.zero(Abs(x*y)), True), Literal(Q.zero(x*y), False)}),
frozenset({Literal(Q.even(Abs(x*y)), False),
Literal(Q.odd(Abs(x*y)), False),
Literal(Q.odd(x*y), True)}),
frozenset({Literal(Q.even(Abs(x*y)), False),
Literal(Q.even(x*y), True),
Literal(Q.odd(Abs(x*y)), False)}),
frozenset({Literal(Q.positive(Abs(x*y)), False),
Literal(Q.zero(Abs(x*y)), False)})}
We pass the first run's results to the second run, and get the expressions
for next run and updated facts.
>>> exprs, facts = get_relevant_clsfacts(exprs, relevant_facts=facts)
>>> exprs
{x, y}
On final run, no more candidate is returned thus we know that all
relevant facts are successfully retrieved.
>>> exprs, facts = get_relevant_clsfacts(exprs, relevant_facts=facts)
>>> exprs
set()
"""
if not relevant_facts:
relevant_facts = CNF()
newexprs = set()
for expr in exprs:
for fact in class_fact_registry(expr):
newfact = CNF.to_CNF(fact)
relevant_facts = relevant_facts._and(newfact)
for key in newfact.all_predicates():
if isinstance(key, AppliedPredicate):
newexprs |= set(key.arguments)
return newexprs - exprs, relevant_facts
def get_all_relevant_facts(proposition, assumptions, context,
use_known_facts=True, iterations=oo):
"""
Extract all relevant facts from *proposition* and *assumptions*.
This function extracts the facts by recursively calling
``get_relevant_clsfacts()``. Extracted facts are converted to
``EncodedCNF`` and returned.
Parameters
==========
proposition : sympy.assumptions.cnf.CNF
CNF generated from proposition expression.
assumptions : sympy.assumptions.cnf.CNF
CNF generated from assumption expression.
context : sympy.assumptions.cnf.CNF
CNF generated from assumptions context.
use_known_facts : bool, optional.
If ``True``, facts from ``sympy.assumptions.ask_generated``
module are encoded as well.
iterations : int, optional.
Number of times that relevant facts are recursively extracted.
Default is infinite times until no new fact is found.
Returns
=======
sympy.assumptions.cnf.EncodedCNF
Examples
========
>>> from sympy import Q
>>> from sympy.assumptions.cnf import CNF
>>> from sympy.assumptions.satask import get_all_relevant_facts
>>> from sympy.abc import x, y
>>> props = CNF.from_prop(Q.nonzero(x*y))
>>> assump = CNF.from_prop(Q.nonzero(x))
>>> context = CNF.from_prop(Q.nonzero(y))
>>> get_all_relevant_facts(props, assump, context) #doctest: +SKIP
<sympy.assumptions.cnf.EncodedCNF at 0x7f09faa6ccd0>
"""
# The relevant facts might introduce new keys, e.g., Q.zero(x*y) will
# introduce the keys Q.zero(x) and Q.zero(y), so we need to run it until
# we stop getting new things. Hopefully this strategy won't lead to an
# infinite loop in the future.
i = 0
relevant_facts = CNF()
all_exprs = set()
while True:
if i == 0:
exprs = extract_predargs(proposition, assumptions, context)
all_exprs |= exprs
exprs, relevant_facts = get_relevant_clsfacts(exprs, relevant_facts)
i += 1
if i >= iterations:
break
if not exprs:
break
if use_known_facts:
known_facts_CNF = CNF()
known_facts_CNF.add_clauses(get_all_known_facts())
kf_encoded = EncodedCNF()
kf_encoded.from_cnf(known_facts_CNF)
def translate_literal(lit, delta):
if lit > 0:
return lit + delta
else:
return lit - delta
def translate_data(data, delta):
return [{translate_literal(i, delta) for i in clause} for clause in data]
data = []
symbols = []
n_lit = len(kf_encoded.symbols)
for i, expr in enumerate(all_exprs):
symbols += [pred(expr) for pred in kf_encoded.symbols]
data += translate_data(kf_encoded.data, i * n_lit)
encoding = dict(list(zip(symbols, range(1, len(symbols)+1))))
ctx = EncodedCNF(data, encoding)
else:
ctx = EncodedCNF()
ctx.add_from_cnf(relevant_facts)
return ctx