3361 lines
87 KiB
Python
3361 lines
87 KiB
Python
|
"""
|
||
|
This file contains some classical ciphers and routines
|
||
|
implementing a linear-feedback shift register (LFSR)
|
||
|
and the Diffie-Hellman key exchange.
|
||
|
|
||
|
.. warning::
|
||
|
|
||
|
This module is intended for educational purposes only. Do not use the
|
||
|
functions in this module for real cryptographic applications. If you wish
|
||
|
to encrypt real data, we recommend using something like the `cryptography
|
||
|
<https://cryptography.io/en/latest/>`_ module.
|
||
|
|
||
|
"""
|
||
|
|
||
|
from string import whitespace, ascii_uppercase as uppercase, printable
|
||
|
from functools import reduce
|
||
|
import warnings
|
||
|
|
||
|
from itertools import cycle
|
||
|
|
||
|
from sympy.core import Symbol
|
||
|
from sympy.core.numbers import igcdex, mod_inverse, igcd, Rational
|
||
|
from sympy.core.random import _randrange, _randint
|
||
|
from sympy.matrices import Matrix
|
||
|
from sympy.ntheory import isprime, primitive_root, factorint
|
||
|
from sympy.ntheory import totient as _euler
|
||
|
from sympy.ntheory import reduced_totient as _carmichael
|
||
|
from sympy.ntheory.generate import nextprime
|
||
|
from sympy.ntheory.modular import crt
|
||
|
from sympy.polys.domains import FF
|
||
|
from sympy.polys.polytools import gcd, Poly
|
||
|
from sympy.utilities.misc import as_int, filldedent, translate
|
||
|
from sympy.utilities.iterables import uniq, multiset
|
||
|
|
||
|
|
||
|
class NonInvertibleCipherWarning(RuntimeWarning):
|
||
|
"""A warning raised if the cipher is not invertible."""
|
||
|
def __init__(self, msg):
|
||
|
self.fullMessage = msg
|
||
|
|
||
|
def __str__(self):
|
||
|
return '\n\t' + self.fullMessage
|
||
|
|
||
|
def warn(self, stacklevel=3):
|
||
|
warnings.warn(self, stacklevel=stacklevel)
|
||
|
|
||
|
|
||
|
def AZ(s=None):
|
||
|
"""Return the letters of ``s`` in uppercase. In case more than
|
||
|
one string is passed, each of them will be processed and a list
|
||
|
of upper case strings will be returned.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.crypto.crypto import AZ
|
||
|
>>> AZ('Hello, world!')
|
||
|
'HELLOWORLD'
|
||
|
>>> AZ('Hello, world!'.split())
|
||
|
['HELLO', 'WORLD']
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
check_and_join
|
||
|
|
||
|
"""
|
||
|
if not s:
|
||
|
return uppercase
|
||
|
t = isinstance(s, str)
|
||
|
if t:
|
||
|
s = [s]
|
||
|
rv = [check_and_join(i.upper().split(), uppercase, filter=True)
|
||
|
for i in s]
|
||
|
if t:
|
||
|
return rv[0]
|
||
|
return rv
|
||
|
|
||
|
bifid5 = AZ().replace('J', '')
|
||
|
bifid6 = AZ() + '0123456789'
|
||
|
bifid10 = printable
|
||
|
|
||
|
|
||
|
def padded_key(key, symbols):
|
||
|
"""Return a string of the distinct characters of ``symbols`` with
|
||
|
those of ``key`` appearing first. A ValueError is raised if
|
||
|
a) there are duplicate characters in ``symbols`` or
|
||
|
b) there are characters in ``key`` that are not in ``symbols``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.crypto.crypto import padded_key
|
||
|
>>> padded_key('PUPPY', 'OPQRSTUVWXY')
|
||
|
'PUYOQRSTVWX'
|
||
|
>>> padded_key('RSA', 'ARTIST')
|
||
|
Traceback (most recent call last):
|
||
|
...
|
||
|
ValueError: duplicate characters in symbols: T
|
||
|
|
||
|
"""
|
||
|
syms = list(uniq(symbols))
|
||
|
if len(syms) != len(symbols):
|
||
|
extra = ''.join(sorted({
|
||
|
i for i in symbols if symbols.count(i) > 1}))
|
||
|
raise ValueError('duplicate characters in symbols: %s' % extra)
|
||
|
extra = set(key) - set(syms)
|
||
|
if extra:
|
||
|
raise ValueError(
|
||
|
'characters in key but not symbols: %s' % ''.join(
|
||
|
sorted(extra)))
|
||
|
key0 = ''.join(list(uniq(key)))
|
||
|
# remove from syms characters in key0
|
||
|
return key0 + translate(''.join(syms), None, key0)
|
||
|
|
||
|
|
||
|
def check_and_join(phrase, symbols=None, filter=None):
|
||
|
"""
|
||
|
Joins characters of ``phrase`` and if ``symbols`` is given, raises
|
||
|
an error if any character in ``phrase`` is not in ``symbols``.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
phrase
|
||
|
String or list of strings to be returned as a string.
|
||
|
|
||
|
symbols
|
||
|
Iterable of characters allowed in ``phrase``.
|
||
|
|
||
|
If ``symbols`` is ``None``, no checking is performed.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.crypto.crypto import check_and_join
|
||
|
>>> check_and_join('a phrase')
|
||
|
'a phrase'
|
||
|
>>> check_and_join('a phrase'.upper().split())
|
||
|
'APHRASE'
|
||
|
>>> check_and_join('a phrase!'.upper().split(), 'ARE', filter=True)
|
||
|
'ARAE'
|
||
|
>>> check_and_join('a phrase!'.upper().split(), 'ARE')
|
||
|
Traceback (most recent call last):
|
||
|
...
|
||
|
ValueError: characters in phrase but not symbols: "!HPS"
|
||
|
|
||
|
"""
|
||
|
rv = ''.join(''.join(phrase))
|
||
|
if symbols is not None:
|
||
|
symbols = check_and_join(symbols)
|
||
|
missing = ''.join(sorted(set(rv) - set(symbols)))
|
||
|
if missing:
|
||
|
if not filter:
|
||
|
raise ValueError(
|
||
|
'characters in phrase but not symbols: "%s"' % missing)
|
||
|
rv = translate(rv, None, missing)
|
||
|
return rv
|
||
|
|
||
|
|
||
|
def _prep(msg, key, alp, default=None):
|
||
|
if not alp:
|
||
|
if not default:
|
||
|
alp = AZ()
|
||
|
msg = AZ(msg)
|
||
|
key = AZ(key)
|
||
|
else:
|
||
|
alp = default
|
||
|
else:
|
||
|
alp = ''.join(alp)
|
||
|
key = check_and_join(key, alp, filter=True)
|
||
|
msg = check_and_join(msg, alp, filter=True)
|
||
|
return msg, key, alp
|
||
|
|
||
|
|
||
|
def cycle_list(k, n):
|
||
|
"""
|
||
|
Returns the elements of the list ``range(n)`` shifted to the
|
||
|
left by ``k`` (so the list starts with ``k`` (mod ``n``)).
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.crypto.crypto import cycle_list
|
||
|
>>> cycle_list(3, 10)
|
||
|
[3, 4, 5, 6, 7, 8, 9, 0, 1, 2]
|
||
|
|
||
|
"""
|
||
|
k = k % n
|
||
|
return list(range(k, n)) + list(range(k))
|
||
|
|
||
|
|
||
|
######## shift cipher examples ############
|
||
|
|
||
|
|
||
|
def encipher_shift(msg, key, symbols=None):
|
||
|
"""
|
||
|
Performs shift cipher encryption on plaintext msg, and returns the
|
||
|
ciphertext.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
key : int
|
||
|
The secret key.
|
||
|
|
||
|
msg : str
|
||
|
Plaintext of upper-case letters.
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
str
|
||
|
Ciphertext of upper-case letters.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.crypto.crypto import encipher_shift, decipher_shift
|
||
|
>>> msg = "GONAVYBEATARMY"
|
||
|
>>> ct = encipher_shift(msg, 1); ct
|
||
|
'HPOBWZCFBUBSNZ'
|
||
|
|
||
|
To decipher the shifted text, change the sign of the key:
|
||
|
|
||
|
>>> encipher_shift(ct, -1)
|
||
|
'GONAVYBEATARMY'
|
||
|
|
||
|
There is also a convenience function that does this with the
|
||
|
original key:
|
||
|
|
||
|
>>> decipher_shift(ct, 1)
|
||
|
'GONAVYBEATARMY'
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
ALGORITHM:
|
||
|
|
||
|
STEPS:
|
||
|
0. Number the letters of the alphabet from 0, ..., N
|
||
|
1. Compute from the string ``msg`` a list ``L1`` of
|
||
|
corresponding integers.
|
||
|
2. Compute from the list ``L1`` a new list ``L2``, given by
|
||
|
adding ``(k mod 26)`` to each element in ``L1``.
|
||
|
3. Compute from the list ``L2`` a string ``ct`` of
|
||
|
corresponding letters.
|
||
|
|
||
|
The shift cipher is also called the Caesar cipher, after
|
||
|
Julius Caesar, who, according to Suetonius, used it with a
|
||
|
shift of three to protect messages of military significance.
|
||
|
Caesar's nephew Augustus reportedly used a similar cipher, but
|
||
|
with a right shift of 1.
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://en.wikipedia.org/wiki/Caesar_cipher
|
||
|
.. [2] https://mathworld.wolfram.com/CaesarsMethod.html
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
decipher_shift
|
||
|
|
||
|
"""
|
||
|
msg, _, A = _prep(msg, '', symbols)
|
||
|
shift = len(A) - key % len(A)
|
||
|
key = A[shift:] + A[:shift]
|
||
|
return translate(msg, key, A)
|
||
|
|
||
|
|
||
|
def decipher_shift(msg, key, symbols=None):
|
||
|
"""
|
||
|
Return the text by shifting the characters of ``msg`` to the
|
||
|
left by the amount given by ``key``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.crypto.crypto import encipher_shift, decipher_shift
|
||
|
>>> msg = "GONAVYBEATARMY"
|
||
|
>>> ct = encipher_shift(msg, 1); ct
|
||
|
'HPOBWZCFBUBSNZ'
|
||
|
|
||
|
To decipher the shifted text, change the sign of the key:
|
||
|
|
||
|
>>> encipher_shift(ct, -1)
|
||
|
'GONAVYBEATARMY'
|
||
|
|
||
|
Or use this function with the original key:
|
||
|
|
||
|
>>> decipher_shift(ct, 1)
|
||
|
'GONAVYBEATARMY'
|
||
|
|
||
|
"""
|
||
|
return encipher_shift(msg, -key, symbols)
|
||
|
|
||
|
def encipher_rot13(msg, symbols=None):
|
||
|
"""
|
||
|
Performs the ROT13 encryption on a given plaintext ``msg``.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
ROT13 is a substitution cipher which substitutes each letter
|
||
|
in the plaintext message for the letter furthest away from it
|
||
|
in the English alphabet.
|
||
|
|
||
|
Equivalently, it is just a Caeser (shift) cipher with a shift
|
||
|
key of 13 (midway point of the alphabet).
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://en.wikipedia.org/wiki/ROT13
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
decipher_rot13
|
||
|
encipher_shift
|
||
|
|
||
|
"""
|
||
|
return encipher_shift(msg, 13, symbols)
|
||
|
|
||
|
def decipher_rot13(msg, symbols=None):
|
||
|
"""
|
||
|
Performs the ROT13 decryption on a given plaintext ``msg``.
|
||
|
|
||
|
Explanation
|
||
|
============
|
||
|
|
||
|
``decipher_rot13`` is equivalent to ``encipher_rot13`` as both
|
||
|
``decipher_shift`` with a key of 13 and ``encipher_shift`` key with a
|
||
|
key of 13 will return the same results. Nonetheless,
|
||
|
``decipher_rot13`` has nonetheless been explicitly defined here for
|
||
|
consistency.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.crypto.crypto import encipher_rot13, decipher_rot13
|
||
|
>>> msg = 'GONAVYBEATARMY'
|
||
|
>>> ciphertext = encipher_rot13(msg);ciphertext
|
||
|
'TBANILORNGNEZL'
|
||
|
>>> decipher_rot13(ciphertext)
|
||
|
'GONAVYBEATARMY'
|
||
|
>>> encipher_rot13(msg) == decipher_rot13(msg)
|
||
|
True
|
||
|
>>> msg == decipher_rot13(ciphertext)
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
return decipher_shift(msg, 13, symbols)
|
||
|
|
||
|
######## affine cipher examples ############
|
||
|
|
||
|
|
||
|
def encipher_affine(msg, key, symbols=None, _inverse=False):
|
||
|
r"""
|
||
|
Performs the affine cipher encryption on plaintext ``msg``, and
|
||
|
returns the ciphertext.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
Encryption is based on the map `x \rightarrow ax+b` (mod `N`)
|
||
|
where ``N`` is the number of characters in the alphabet.
|
||
|
Decryption is based on the map `x \rightarrow cx+d` (mod `N`),
|
||
|
where `c = a^{-1}` (mod `N`) and `d = -a^{-1}b` (mod `N`).
|
||
|
In particular, for the map to be invertible, we need
|
||
|
`\mathrm{gcd}(a, N) = 1` and an error will be raised if this is
|
||
|
not true.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
msg : str
|
||
|
Characters that appear in ``symbols``.
|
||
|
|
||
|
a, b : int, int
|
||
|
A pair integers, with ``gcd(a, N) = 1`` (the secret key).
|
||
|
|
||
|
symbols
|
||
|
String of characters (default = uppercase letters).
|
||
|
|
||
|
When no symbols are given, ``msg`` is converted to upper case
|
||
|
letters and all other characters are ignored.
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
ct
|
||
|
String of characters (the ciphertext message)
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
ALGORITHM:
|
||
|
|
||
|
STEPS:
|
||
|
0. Number the letters of the alphabet from 0, ..., N
|
||
|
1. Compute from the string ``msg`` a list ``L1`` of
|
||
|
corresponding integers.
|
||
|
2. Compute from the list ``L1`` a new list ``L2``, given by
|
||
|
replacing ``x`` by ``a*x + b (mod N)``, for each element
|
||
|
``x`` in ``L1``.
|
||
|
3. Compute from the list ``L2`` a string ``ct`` of
|
||
|
corresponding letters.
|
||
|
|
||
|
This is a straightforward generalization of the shift cipher with
|
||
|
the added complexity of requiring 2 characters to be deciphered in
|
||
|
order to recover the key.
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://en.wikipedia.org/wiki/Affine_cipher
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
decipher_affine
|
||
|
|
||
|
"""
|
||
|
msg, _, A = _prep(msg, '', symbols)
|
||
|
N = len(A)
|
||
|
a, b = key
|
||
|
assert gcd(a, N) == 1
|
||
|
if _inverse:
|
||
|
c = mod_inverse(a, N)
|
||
|
d = -b*c
|
||
|
a, b = c, d
|
||
|
B = ''.join([A[(a*i + b) % N] for i in range(N)])
|
||
|
return translate(msg, A, B)
|
||
|
|
||
|
|
||
|
def decipher_affine(msg, key, symbols=None):
|
||
|
r"""
|
||
|
Return the deciphered text that was made from the mapping,
|
||
|
`x \rightarrow ax+b` (mod `N`), where ``N`` is the
|
||
|
number of characters in the alphabet. Deciphering is done by
|
||
|
reciphering with a new key: `x \rightarrow cx+d` (mod `N`),
|
||
|
where `c = a^{-1}` (mod `N`) and `d = -a^{-1}b` (mod `N`).
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.crypto.crypto import encipher_affine, decipher_affine
|
||
|
>>> msg = "GO NAVY BEAT ARMY"
|
||
|
>>> key = (3, 1)
|
||
|
>>> encipher_affine(msg, key)
|
||
|
'TROBMVENBGBALV'
|
||
|
>>> decipher_affine(_, key)
|
||
|
'GONAVYBEATARMY'
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
encipher_affine
|
||
|
|
||
|
"""
|
||
|
return encipher_affine(msg, key, symbols, _inverse=True)
|
||
|
|
||
|
|
||
|
def encipher_atbash(msg, symbols=None):
|
||
|
r"""
|
||
|
Enciphers a given ``msg`` into its Atbash ciphertext and returns it.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
Atbash is a substitution cipher originally used to encrypt the Hebrew
|
||
|
alphabet. Atbash works on the principle of mapping each alphabet to its
|
||
|
reverse / counterpart (i.e. a would map to z, b to y etc.)
|
||
|
|
||
|
Atbash is functionally equivalent to the affine cipher with ``a = 25``
|
||
|
and ``b = 25``
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
decipher_atbash
|
||
|
|
||
|
"""
|
||
|
return encipher_affine(msg, (25, 25), symbols)
|
||
|
|
||
|
|
||
|
def decipher_atbash(msg, symbols=None):
|
||
|
r"""
|
||
|
Deciphers a given ``msg`` using Atbash cipher and returns it.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
``decipher_atbash`` is functionally equivalent to ``encipher_atbash``.
|
||
|
However, it has still been added as a separate function to maintain
|
||
|
consistency.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.crypto.crypto import encipher_atbash, decipher_atbash
|
||
|
>>> msg = 'GONAVYBEATARMY'
|
||
|
>>> encipher_atbash(msg)
|
||
|
'TLMZEBYVZGZINB'
|
||
|
>>> decipher_atbash(msg)
|
||
|
'TLMZEBYVZGZINB'
|
||
|
>>> encipher_atbash(msg) == decipher_atbash(msg)
|
||
|
True
|
||
|
>>> msg == encipher_atbash(encipher_atbash(msg))
|
||
|
True
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://en.wikipedia.org/wiki/Atbash
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
encipher_atbash
|
||
|
|
||
|
"""
|
||
|
return decipher_affine(msg, (25, 25), symbols)
|
||
|
|
||
|
#################### substitution cipher ###########################
|
||
|
|
||
|
|
||
|
def encipher_substitution(msg, old, new=None):
|
||
|
r"""
|
||
|
Returns the ciphertext obtained by replacing each character that
|
||
|
appears in ``old`` with the corresponding character in ``new``.
|
||
|
If ``old`` is a mapping, then new is ignored and the replacements
|
||
|
defined by ``old`` are used.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
This is a more general than the affine cipher in that the key can
|
||
|
only be recovered by determining the mapping for each symbol.
|
||
|
Though in practice, once a few symbols are recognized the mappings
|
||
|
for other characters can be quickly guessed.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.crypto.crypto import encipher_substitution, AZ
|
||
|
>>> old = 'OEYAG'
|
||
|
>>> new = '034^6'
|
||
|
>>> msg = AZ("go navy! beat army!")
|
||
|
>>> ct = encipher_substitution(msg, old, new); ct
|
||
|
'60N^V4B3^T^RM4'
|
||
|
|
||
|
To decrypt a substitution, reverse the last two arguments:
|
||
|
|
||
|
>>> encipher_substitution(ct, new, old)
|
||
|
'GONAVYBEATARMY'
|
||
|
|
||
|
In the special case where ``old`` and ``new`` are a permutation of
|
||
|
order 2 (representing a transposition of characters) their order
|
||
|
is immaterial:
|
||
|
|
||
|
>>> old = 'NAVY'
|
||
|
>>> new = 'ANYV'
|
||
|
>>> encipher = lambda x: encipher_substitution(x, old, new)
|
||
|
>>> encipher('NAVY')
|
||
|
'ANYV'
|
||
|
>>> encipher(_)
|
||
|
'NAVY'
|
||
|
|
||
|
The substitution cipher, in general, is a method
|
||
|
whereby "units" (not necessarily single characters) of plaintext
|
||
|
are replaced with ciphertext according to a regular system.
|
||
|
|
||
|
>>> ords = dict(zip('abc', ['\\%i' % ord(i) for i in 'abc']))
|
||
|
>>> print(encipher_substitution('abc', ords))
|
||
|
\97\98\99
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://en.wikipedia.org/wiki/Substitution_cipher
|
||
|
|
||
|
"""
|
||
|
return translate(msg, old, new)
|
||
|
|
||
|
|
||
|
######################################################################
|
||
|
#################### Vigenere cipher examples ########################
|
||
|
######################################################################
|
||
|
|
||
|
def encipher_vigenere(msg, key, symbols=None):
|
||
|
"""
|
||
|
Performs the Vigenere cipher encryption on plaintext ``msg``, and
|
||
|
returns the ciphertext.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.crypto.crypto import encipher_vigenere, AZ
|
||
|
>>> key = "encrypt"
|
||
|
>>> msg = "meet me on monday"
|
||
|
>>> encipher_vigenere(msg, key)
|
||
|
'QRGKKTHRZQEBPR'
|
||
|
|
||
|
Section 1 of the Kryptos sculpture at the CIA headquarters
|
||
|
uses this cipher and also changes the order of the
|
||
|
alphabet [2]_. Here is the first line of that section of
|
||
|
the sculpture:
|
||
|
|
||
|
>>> from sympy.crypto.crypto import decipher_vigenere, padded_key
|
||
|
>>> alp = padded_key('KRYPTOS', AZ())
|
||
|
>>> key = 'PALIMPSEST'
|
||
|
>>> msg = 'EMUFPHZLRFAXYUSDJKZLDKRNSHGNFIVJ'
|
||
|
>>> decipher_vigenere(msg, key, alp)
|
||
|
'BETWEENSUBTLESHADINGANDTHEABSENC'
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
The Vigenere cipher is named after Blaise de Vigenere, a sixteenth
|
||
|
century diplomat and cryptographer, by a historical accident.
|
||
|
Vigenere actually invented a different and more complicated cipher.
|
||
|
The so-called *Vigenere cipher* was actually invented
|
||
|
by Giovan Batista Belaso in 1553.
|
||
|
|
||
|
This cipher was used in the 1800's, for example, during the American
|
||
|
Civil War. The Confederacy used a brass cipher disk to implement the
|
||
|
Vigenere cipher (now on display in the NSA Museum in Fort
|
||
|
Meade) [1]_.
|
||
|
|
||
|
The Vigenere cipher is a generalization of the shift cipher.
|
||
|
Whereas the shift cipher shifts each letter by the same amount
|
||
|
(that amount being the key of the shift cipher) the Vigenere
|
||
|
cipher shifts a letter by an amount determined by the key (which is
|
||
|
a word or phrase known only to the sender and receiver).
|
||
|
|
||
|
For example, if the key was a single letter, such as "C", then the
|
||
|
so-called Vigenere cipher is actually a shift cipher with a
|
||
|
shift of `2` (since "C" is the 2nd letter of the alphabet, if
|
||
|
you start counting at `0`). If the key was a word with two
|
||
|
letters, such as "CA", then the so-called Vigenere cipher will
|
||
|
shift letters in even positions by `2` and letters in odd positions
|
||
|
are left alone (shifted by `0`, since "A" is the 0th letter, if
|
||
|
you start counting at `0`).
|
||
|
|
||
|
|
||
|
ALGORITHM:
|
||
|
|
||
|
INPUT:
|
||
|
|
||
|
``msg``: string of characters that appear in ``symbols``
|
||
|
(the plaintext)
|
||
|
|
||
|
``key``: a string of characters that appear in ``symbols``
|
||
|
(the secret key)
|
||
|
|
||
|
``symbols``: a string of letters defining the alphabet
|
||
|
|
||
|
|
||
|
OUTPUT:
|
||
|
|
||
|
``ct``: string of characters (the ciphertext message)
|
||
|
|
||
|
STEPS:
|
||
|
0. Number the letters of the alphabet from 0, ..., N
|
||
|
1. Compute from the string ``key`` a list ``L1`` of
|
||
|
corresponding integers. Let ``n1 = len(L1)``.
|
||
|
2. Compute from the string ``msg`` a list ``L2`` of
|
||
|
corresponding integers. Let ``n2 = len(L2)``.
|
||
|
3. Break ``L2`` up sequentially into sublists of size
|
||
|
``n1``; the last sublist may be smaller than ``n1``
|
||
|
4. For each of these sublists ``L`` of ``L2``, compute a
|
||
|
new list ``C`` given by ``C[i] = L[i] + L1[i] (mod N)``
|
||
|
to the ``i``-th element in the sublist, for each ``i``.
|
||
|
5. Assemble these lists ``C`` by concatenation into a new
|
||
|
list of length ``n2``.
|
||
|
6. Compute from the new list a string ``ct`` of
|
||
|
corresponding letters.
|
||
|
|
||
|
Once it is known that the key is, say, `n` characters long,
|
||
|
frequency analysis can be applied to every `n`-th letter of
|
||
|
the ciphertext to determine the plaintext. This method is
|
||
|
called *Kasiski examination* (although it was first discovered
|
||
|
by Babbage). If they key is as long as the message and is
|
||
|
comprised of randomly selected characters -- a one-time pad -- the
|
||
|
message is theoretically unbreakable.
|
||
|
|
||
|
The cipher Vigenere actually discovered is an "auto-key" cipher
|
||
|
described as follows.
|
||
|
|
||
|
ALGORITHM:
|
||
|
|
||
|
INPUT:
|
||
|
|
||
|
``key``: a string of letters (the secret key)
|
||
|
|
||
|
``msg``: string of letters (the plaintext message)
|
||
|
|
||
|
OUTPUT:
|
||
|
|
||
|
``ct``: string of upper-case letters (the ciphertext message)
|
||
|
|
||
|
STEPS:
|
||
|
0. Number the letters of the alphabet from 0, ..., N
|
||
|
1. Compute from the string ``msg`` a list ``L2`` of
|
||
|
corresponding integers. Let ``n2 = len(L2)``.
|
||
|
2. Let ``n1`` be the length of the key. Append to the
|
||
|
string ``key`` the first ``n2 - n1`` characters of
|
||
|
the plaintext message. Compute from this string (also of
|
||
|
length ``n2``) a list ``L1`` of integers corresponding
|
||
|
to the letter numbers in the first step.
|
||
|
3. Compute a new list ``C`` given by
|
||
|
``C[i] = L1[i] + L2[i] (mod N)``.
|
||
|
4. Compute from the new list a string ``ct`` of letters
|
||
|
corresponding to the new integers.
|
||
|
|
||
|
To decipher the auto-key ciphertext, the key is used to decipher
|
||
|
the first ``n1`` characters and then those characters become the
|
||
|
key to decipher the next ``n1`` characters, etc...:
|
||
|
|
||
|
>>> m = AZ('go navy, beat army! yes you can'); m
|
||
|
'GONAVYBEATARMYYESYOUCAN'
|
||
|
>>> key = AZ('gold bug'); n1 = len(key); n2 = len(m)
|
||
|
>>> auto_key = key + m[:n2 - n1]; auto_key
|
||
|
'GOLDBUGGONAVYBEATARMYYE'
|
||
|
>>> ct = encipher_vigenere(m, auto_key); ct
|
||
|
'MCYDWSHKOGAMKZCELYFGAYR'
|
||
|
>>> n1 = len(key)
|
||
|
>>> pt = []
|
||
|
>>> while ct:
|
||
|
... part, ct = ct[:n1], ct[n1:]
|
||
|
... pt.append(decipher_vigenere(part, key))
|
||
|
... key = pt[-1]
|
||
|
...
|
||
|
>>> ''.join(pt) == m
|
||
|
True
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://en.wikipedia.org/wiki/Vigenere_cipher
|
||
|
.. [2] https://web.archive.org/web/20071116100808/https://filebox.vt.edu/users/batman/kryptos.html
|
||
|
(short URL: https://goo.gl/ijr22d)
|
||
|
|
||
|
"""
|
||
|
msg, key, A = _prep(msg, key, symbols)
|
||
|
map = {c: i for i, c in enumerate(A)}
|
||
|
key = [map[c] for c in key]
|
||
|
N = len(map)
|
||
|
k = len(key)
|
||
|
rv = []
|
||
|
for i, m in enumerate(msg):
|
||
|
rv.append(A[(map[m] + key[i % k]) % N])
|
||
|
rv = ''.join(rv)
|
||
|
return rv
|
||
|
|
||
|
|
||
|
def decipher_vigenere(msg, key, symbols=None):
|
||
|
"""
|
||
|
Decode using the Vigenere cipher.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.crypto.crypto import decipher_vigenere
|
||
|
>>> key = "encrypt"
|
||
|
>>> ct = "QRGK kt HRZQE BPR"
|
||
|
>>> decipher_vigenere(ct, key)
|
||
|
'MEETMEONMONDAY'
|
||
|
|
||
|
"""
|
||
|
msg, key, A = _prep(msg, key, symbols)
|
||
|
map = {c: i for i, c in enumerate(A)}
|
||
|
N = len(A) # normally, 26
|
||
|
K = [map[c] for c in key]
|
||
|
n = len(K)
|
||
|
C = [map[c] for c in msg]
|
||
|
rv = ''.join([A[(-K[i % n] + c) % N] for i, c in enumerate(C)])
|
||
|
return rv
|
||
|
|
||
|
|
||
|
#################### Hill cipher ########################
|
||
|
|
||
|
|
||
|
def encipher_hill(msg, key, symbols=None, pad="Q"):
|
||
|
r"""
|
||
|
Return the Hill cipher encryption of ``msg``.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
The Hill cipher [1]_, invented by Lester S. Hill in the 1920's [2]_,
|
||
|
was the first polygraphic cipher in which it was practical
|
||
|
(though barely) to operate on more than three symbols at once.
|
||
|
The following discussion assumes an elementary knowledge of
|
||
|
matrices.
|
||
|
|
||
|
First, each letter is first encoded as a number starting with 0.
|
||
|
Suppose your message `msg` consists of `n` capital letters, with no
|
||
|
spaces. This may be regarded an `n`-tuple M of elements of
|
||
|
`Z_{26}` (if the letters are those of the English alphabet). A key
|
||
|
in the Hill cipher is a `k x k` matrix `K`, all of whose entries
|
||
|
are in `Z_{26}`, such that the matrix `K` is invertible (i.e., the
|
||
|
linear transformation `K: Z_{N}^k \rightarrow Z_{N}^k`
|
||
|
is one-to-one).
|
||
|
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
msg
|
||
|
Plaintext message of `n` upper-case letters.
|
||
|
|
||
|
key
|
||
|
A `k \times k` invertible matrix `K`, all of whose entries are
|
||
|
in `Z_{26}` (or whatever number of symbols are being used).
|
||
|
|
||
|
pad
|
||
|
Character (default "Q") to use to make length of text be a
|
||
|
multiple of ``k``.
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
ct
|
||
|
Ciphertext of upper-case letters.
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
ALGORITHM:
|
||
|
|
||
|
STEPS:
|
||
|
0. Number the letters of the alphabet from 0, ..., N
|
||
|
1. Compute from the string ``msg`` a list ``L`` of
|
||
|
corresponding integers. Let ``n = len(L)``.
|
||
|
2. Break the list ``L`` up into ``t = ceiling(n/k)``
|
||
|
sublists ``L_1``, ..., ``L_t`` of size ``k`` (with
|
||
|
the last list "padded" to ensure its size is
|
||
|
``k``).
|
||
|
3. Compute new list ``C_1``, ..., ``C_t`` given by
|
||
|
``C[i] = K*L_i`` (arithmetic is done mod N), for each
|
||
|
``i``.
|
||
|
4. Concatenate these into a list ``C = C_1 + ... + C_t``.
|
||
|
5. Compute from ``C`` a string ``ct`` of corresponding
|
||
|
letters. This has length ``k*t``.
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://en.wikipedia.org/wiki/Hill_cipher
|
||
|
.. [2] Lester S. Hill, Cryptography in an Algebraic Alphabet,
|
||
|
The American Mathematical Monthly Vol.36, June-July 1929,
|
||
|
pp.306-312.
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
decipher_hill
|
||
|
|
||
|
"""
|
||
|
assert key.is_square
|
||
|
assert len(pad) == 1
|
||
|
msg, pad, A = _prep(msg, pad, symbols)
|
||
|
map = {c: i for i, c in enumerate(A)}
|
||
|
P = [map[c] for c in msg]
|
||
|
N = len(A)
|
||
|
k = key.cols
|
||
|
n = len(P)
|
||
|
m, r = divmod(n, k)
|
||
|
if r:
|
||
|
P = P + [map[pad]]*(k - r)
|
||
|
m += 1
|
||
|
rv = ''.join([A[c % N] for j in range(m) for c in
|
||
|
list(key*Matrix(k, 1, [P[i]
|
||
|
for i in range(k*j, k*(j + 1))]))])
|
||
|
return rv
|
||
|
|
||
|
|
||
|
def decipher_hill(msg, key, symbols=None):
|
||
|
"""
|
||
|
Deciphering is the same as enciphering but using the inverse of the
|
||
|
key matrix.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.crypto.crypto import encipher_hill, decipher_hill
|
||
|
>>> from sympy import Matrix
|
||
|
|
||
|
>>> key = Matrix([[1, 2], [3, 5]])
|
||
|
>>> encipher_hill("meet me on monday", key)
|
||
|
'UEQDUEODOCTCWQ'
|
||
|
>>> decipher_hill(_, key)
|
||
|
'MEETMEONMONDAY'
|
||
|
|
||
|
When the length of the plaintext (stripped of invalid characters)
|
||
|
is not a multiple of the key dimension, extra characters will
|
||
|
appear at the end of the enciphered and deciphered text. In order to
|
||
|
decipher the text, those characters must be included in the text to
|
||
|
be deciphered. In the following, the key has a dimension of 4 but
|
||
|
the text is 2 short of being a multiple of 4 so two characters will
|
||
|
be added.
|
||
|
|
||
|
>>> key = Matrix([[1, 1, 1, 2], [0, 1, 1, 0],
|
||
|
... [2, 2, 3, 4], [1, 1, 0, 1]])
|
||
|
>>> msg = "ST"
|
||
|
>>> encipher_hill(msg, key)
|
||
|
'HJEB'
|
||
|
>>> decipher_hill(_, key)
|
||
|
'STQQ'
|
||
|
>>> encipher_hill(msg, key, pad="Z")
|
||
|
'ISPK'
|
||
|
>>> decipher_hill(_, key)
|
||
|
'STZZ'
|
||
|
|
||
|
If the last two characters of the ciphertext were ignored in
|
||
|
either case, the wrong plaintext would be recovered:
|
||
|
|
||
|
>>> decipher_hill("HD", key)
|
||
|
'ORMV'
|
||
|
>>> decipher_hill("IS", key)
|
||
|
'UIKY'
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
encipher_hill
|
||
|
|
||
|
"""
|
||
|
assert key.is_square
|
||
|
msg, _, A = _prep(msg, '', symbols)
|
||
|
map = {c: i for i, c in enumerate(A)}
|
||
|
C = [map[c] for c in msg]
|
||
|
N = len(A)
|
||
|
k = key.cols
|
||
|
n = len(C)
|
||
|
m, r = divmod(n, k)
|
||
|
if r:
|
||
|
C = C + [0]*(k - r)
|
||
|
m += 1
|
||
|
key_inv = key.inv_mod(N)
|
||
|
rv = ''.join([A[p % N] for j in range(m) for p in
|
||
|
list(key_inv*Matrix(
|
||
|
k, 1, [C[i] for i in range(k*j, k*(j + 1))]))])
|
||
|
return rv
|
||
|
|
||
|
|
||
|
#################### Bifid cipher ########################
|
||
|
|
||
|
|
||
|
def encipher_bifid(msg, key, symbols=None):
|
||
|
r"""
|
||
|
Performs the Bifid cipher encryption on plaintext ``msg``, and
|
||
|
returns the ciphertext.
|
||
|
|
||
|
This is the version of the Bifid cipher that uses an `n \times n`
|
||
|
Polybius square.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
msg
|
||
|
Plaintext string.
|
||
|
|
||
|
key
|
||
|
Short string for key.
|
||
|
|
||
|
Duplicate characters are ignored and then it is padded with the
|
||
|
characters in ``symbols`` that were not in the short key.
|
||
|
|
||
|
symbols
|
||
|
`n \times n` characters defining the alphabet.
|
||
|
|
||
|
(default is string.printable)
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
ciphertext
|
||
|
Ciphertext using Bifid5 cipher without spaces.
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
decipher_bifid, encipher_bifid5, encipher_bifid6
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://en.wikipedia.org/wiki/Bifid_cipher
|
||
|
|
||
|
"""
|
||
|
msg, key, A = _prep(msg, key, symbols, bifid10)
|
||
|
long_key = ''.join(uniq(key)) or A
|
||
|
|
||
|
n = len(A)**.5
|
||
|
if n != int(n):
|
||
|
raise ValueError(
|
||
|
'Length of alphabet (%s) is not a square number.' % len(A))
|
||
|
N = int(n)
|
||
|
if len(long_key) < N**2:
|
||
|
long_key = list(long_key) + [x for x in A if x not in long_key]
|
||
|
|
||
|
# the fractionalization
|
||
|
row_col = {ch: divmod(i, N) for i, ch in enumerate(long_key)}
|
||
|
r, c = zip(*[row_col[x] for x in msg])
|
||
|
rc = r + c
|
||
|
ch = {i: ch for ch, i in row_col.items()}
|
||
|
rv = ''.join(ch[i] for i in zip(rc[::2], rc[1::2]))
|
||
|
return rv
|
||
|
|
||
|
|
||
|
def decipher_bifid(msg, key, symbols=None):
|
||
|
r"""
|
||
|
Performs the Bifid cipher decryption on ciphertext ``msg``, and
|
||
|
returns the plaintext.
|
||
|
|
||
|
This is the version of the Bifid cipher that uses the `n \times n`
|
||
|
Polybius square.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
msg
|
||
|
Ciphertext string.
|
||
|
|
||
|
key
|
||
|
Short string for key.
|
||
|
|
||
|
Duplicate characters are ignored and then it is padded with the
|
||
|
characters in symbols that were not in the short key.
|
||
|
|
||
|
symbols
|
||
|
`n \times n` characters defining the alphabet.
|
||
|
|
||
|
(default=string.printable, a `10 \times 10` matrix)
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
deciphered
|
||
|
Deciphered text.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.crypto.crypto import (
|
||
|
... encipher_bifid, decipher_bifid, AZ)
|
||
|
|
||
|
Do an encryption using the bifid5 alphabet:
|
||
|
|
||
|
>>> alp = AZ().replace('J', '')
|
||
|
>>> ct = AZ("meet me on monday!")
|
||
|
>>> key = AZ("gold bug")
|
||
|
>>> encipher_bifid(ct, key, alp)
|
||
|
'IEILHHFSTSFQYE'
|
||
|
|
||
|
When entering the text or ciphertext, spaces are ignored so it
|
||
|
can be formatted as desired. Re-entering the ciphertext from the
|
||
|
preceding, putting 4 characters per line and padding with an extra
|
||
|
J, does not cause problems for the deciphering:
|
||
|
|
||
|
>>> decipher_bifid('''
|
||
|
... IEILH
|
||
|
... HFSTS
|
||
|
... FQYEJ''', key, alp)
|
||
|
'MEETMEONMONDAY'
|
||
|
|
||
|
When no alphabet is given, all 100 printable characters will be
|
||
|
used:
|
||
|
|
||
|
>>> key = ''
|
||
|
>>> encipher_bifid('hello world!', key)
|
||
|
'bmtwmg-bIo*w'
|
||
|
>>> decipher_bifid(_, key)
|
||
|
'hello world!'
|
||
|
|
||
|
If the key is changed, a different encryption is obtained:
|
||
|
|
||
|
>>> key = 'gold bug'
|
||
|
>>> encipher_bifid('hello world!', 'gold_bug')
|
||
|
'hg2sfuei7t}w'
|
||
|
|
||
|
And if the key used to decrypt the message is not exact, the
|
||
|
original text will not be perfectly obtained:
|
||
|
|
||
|
>>> decipher_bifid(_, 'gold pug')
|
||
|
'heldo~wor6d!'
|
||
|
|
||
|
"""
|
||
|
msg, _, A = _prep(msg, '', symbols, bifid10)
|
||
|
long_key = ''.join(uniq(key)) or A
|
||
|
|
||
|
n = len(A)**.5
|
||
|
if n != int(n):
|
||
|
raise ValueError(
|
||
|
'Length of alphabet (%s) is not a square number.' % len(A))
|
||
|
N = int(n)
|
||
|
if len(long_key) < N**2:
|
||
|
long_key = list(long_key) + [x for x in A if x not in long_key]
|
||
|
|
||
|
# the reverse fractionalization
|
||
|
row_col = {
|
||
|
ch: divmod(i, N) for i, ch in enumerate(long_key)}
|
||
|
rc = [i for c in msg for i in row_col[c]]
|
||
|
n = len(msg)
|
||
|
rc = zip(*(rc[:n], rc[n:]))
|
||
|
ch = {i: ch for ch, i in row_col.items()}
|
||
|
rv = ''.join(ch[i] for i in rc)
|
||
|
return rv
|
||
|
|
||
|
|
||
|
def bifid_square(key):
|
||
|
"""Return characters of ``key`` arranged in a square.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.crypto.crypto import (
|
||
|
... bifid_square, AZ, padded_key, bifid5)
|
||
|
>>> bifid_square(AZ().replace('J', ''))
|
||
|
Matrix([
|
||
|
[A, B, C, D, E],
|
||
|
[F, G, H, I, K],
|
||
|
[L, M, N, O, P],
|
||
|
[Q, R, S, T, U],
|
||
|
[V, W, X, Y, Z]])
|
||
|
|
||
|
>>> bifid_square(padded_key(AZ('gold bug!'), bifid5))
|
||
|
Matrix([
|
||
|
[G, O, L, D, B],
|
||
|
[U, A, C, E, F],
|
||
|
[H, I, K, M, N],
|
||
|
[P, Q, R, S, T],
|
||
|
[V, W, X, Y, Z]])
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
padded_key
|
||
|
|
||
|
"""
|
||
|
A = ''.join(uniq(''.join(key)))
|
||
|
n = len(A)**.5
|
||
|
if n != int(n):
|
||
|
raise ValueError(
|
||
|
'Length of alphabet (%s) is not a square number.' % len(A))
|
||
|
n = int(n)
|
||
|
f = lambda i, j: Symbol(A[n*i + j])
|
||
|
rv = Matrix(n, n, f)
|
||
|
return rv
|
||
|
|
||
|
|
||
|
def encipher_bifid5(msg, key):
|
||
|
r"""
|
||
|
Performs the Bifid cipher encryption on plaintext ``msg``, and
|
||
|
returns the ciphertext.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
This is the version of the Bifid cipher that uses the `5 \times 5`
|
||
|
Polybius square. The letter "J" is ignored so it must be replaced
|
||
|
with something else (traditionally an "I") before encryption.
|
||
|
|
||
|
ALGORITHM: (5x5 case)
|
||
|
|
||
|
STEPS:
|
||
|
0. Create the `5 \times 5` Polybius square ``S`` associated
|
||
|
to ``key`` as follows:
|
||
|
|
||
|
a) moving from left-to-right, top-to-bottom,
|
||
|
place the letters of the key into a `5 \times 5`
|
||
|
matrix,
|
||
|
b) if the key has less than 25 letters, add the
|
||
|
letters of the alphabet not in the key until the
|
||
|
`5 \times 5` square is filled.
|
||
|
|
||
|
1. Create a list ``P`` of pairs of numbers which are the
|
||
|
coordinates in the Polybius square of the letters in
|
||
|
``msg``.
|
||
|
2. Let ``L1`` be the list of all first coordinates of ``P``
|
||
|
(length of ``L1 = n``), let ``L2`` be the list of all
|
||
|
second coordinates of ``P`` (so the length of ``L2``
|
||
|
is also ``n``).
|
||
|
3. Let ``L`` be the concatenation of ``L1`` and ``L2``
|
||
|
(length ``L = 2*n``), except that consecutive numbers
|
||
|
are paired ``(L[2*i], L[2*i + 1])``. You can regard
|
||
|
``L`` as a list of pairs of length ``n``.
|
||
|
4. Let ``C`` be the list of all letters which are of the
|
||
|
form ``S[i, j]``, for all ``(i, j)`` in ``L``. As a
|
||
|
string, this is the ciphertext of ``msg``.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
msg : str
|
||
|
Plaintext string.
|
||
|
|
||
|
Converted to upper case and filtered of anything but all letters
|
||
|
except J.
|
||
|
|
||
|
key
|
||
|
Short string for key; non-alphabetic letters, J and duplicated
|
||
|
characters are ignored and then, if the length is less than 25
|
||
|
characters, it is padded with other letters of the alphabet
|
||
|
(in alphabetical order).
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
ct
|
||
|
Ciphertext (all caps, no spaces).
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.crypto.crypto import (
|
||
|
... encipher_bifid5, decipher_bifid5)
|
||
|
|
||
|
"J" will be omitted unless it is replaced with something else:
|
||
|
|
||
|
>>> round_trip = lambda m, k: \
|
||
|
... decipher_bifid5(encipher_bifid5(m, k), k)
|
||
|
>>> key = 'a'
|
||
|
>>> msg = "JOSIE"
|
||
|
>>> round_trip(msg, key)
|
||
|
'OSIE'
|
||
|
>>> round_trip(msg.replace("J", "I"), key)
|
||
|
'IOSIE'
|
||
|
>>> j = "QIQ"
|
||
|
>>> round_trip(msg.replace("J", j), key).replace(j, "J")
|
||
|
'JOSIE'
|
||
|
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
The Bifid cipher was invented around 1901 by Felix Delastelle.
|
||
|
It is a *fractional substitution* cipher, where letters are
|
||
|
replaced by pairs of symbols from a smaller alphabet. The
|
||
|
cipher uses a `5 \times 5` square filled with some ordering of the
|
||
|
alphabet, except that "J" is replaced with "I" (this is a so-called
|
||
|
Polybius square; there is a `6 \times 6` analog if you add back in
|
||
|
"J" and also append onto the usual 26 letter alphabet, the digits
|
||
|
0, 1, ..., 9).
|
||
|
According to Helen Gaines' book *Cryptanalysis*, this type of cipher
|
||
|
was used in the field by the German Army during World War I.
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
decipher_bifid5, encipher_bifid
|
||
|
|
||
|
"""
|
||
|
msg, key, _ = _prep(msg.upper(), key.upper(), None, bifid5)
|
||
|
key = padded_key(key, bifid5)
|
||
|
return encipher_bifid(msg, '', key)
|
||
|
|
||
|
|
||
|
def decipher_bifid5(msg, key):
|
||
|
r"""
|
||
|
Return the Bifid cipher decryption of ``msg``.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
This is the version of the Bifid cipher that uses the `5 \times 5`
|
||
|
Polybius square; the letter "J" is ignored unless a ``key`` of
|
||
|
length 25 is used.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
msg
|
||
|
Ciphertext string.
|
||
|
|
||
|
key
|
||
|
Short string for key; duplicated characters are ignored and if
|
||
|
the length is less then 25 characters, it will be padded with
|
||
|
other letters from the alphabet omitting "J".
|
||
|
Non-alphabetic characters are ignored.
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
plaintext
|
||
|
Plaintext from Bifid5 cipher (all caps, no spaces).
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.crypto.crypto import encipher_bifid5, decipher_bifid5
|
||
|
>>> key = "gold bug"
|
||
|
>>> encipher_bifid5('meet me on friday', key)
|
||
|
'IEILEHFSTSFXEE'
|
||
|
>>> encipher_bifid5('meet me on monday', key)
|
||
|
'IEILHHFSTSFQYE'
|
||
|
>>> decipher_bifid5(_, key)
|
||
|
'MEETMEONMONDAY'
|
||
|
|
||
|
"""
|
||
|
msg, key, _ = _prep(msg.upper(), key.upper(), None, bifid5)
|
||
|
key = padded_key(key, bifid5)
|
||
|
return decipher_bifid(msg, '', key)
|
||
|
|
||
|
|
||
|
def bifid5_square(key=None):
|
||
|
r"""
|
||
|
5x5 Polybius square.
|
||
|
|
||
|
Produce the Polybius square for the `5 \times 5` Bifid cipher.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.crypto.crypto import bifid5_square
|
||
|
>>> bifid5_square("gold bug")
|
||
|
Matrix([
|
||
|
[G, O, L, D, B],
|
||
|
[U, A, C, E, F],
|
||
|
[H, I, K, M, N],
|
||
|
[P, Q, R, S, T],
|
||
|
[V, W, X, Y, Z]])
|
||
|
|
||
|
"""
|
||
|
if not key:
|
||
|
key = bifid5
|
||
|
else:
|
||
|
_, key, _ = _prep('', key.upper(), None, bifid5)
|
||
|
key = padded_key(key, bifid5)
|
||
|
return bifid_square(key)
|
||
|
|
||
|
|
||
|
def encipher_bifid6(msg, key):
|
||
|
r"""
|
||
|
Performs the Bifid cipher encryption on plaintext ``msg``, and
|
||
|
returns the ciphertext.
|
||
|
|
||
|
This is the version of the Bifid cipher that uses the `6 \times 6`
|
||
|
Polybius square.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
msg
|
||
|
Plaintext string (digits okay).
|
||
|
|
||
|
key
|
||
|
Short string for key (digits okay).
|
||
|
|
||
|
If ``key`` is less than 36 characters long, the square will be
|
||
|
filled with letters A through Z and digits 0 through 9.
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
ciphertext
|
||
|
Ciphertext from Bifid cipher (all caps, no spaces).
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
decipher_bifid6, encipher_bifid
|
||
|
|
||
|
"""
|
||
|
msg, key, _ = _prep(msg.upper(), key.upper(), None, bifid6)
|
||
|
key = padded_key(key, bifid6)
|
||
|
return encipher_bifid(msg, '', key)
|
||
|
|
||
|
|
||
|
def decipher_bifid6(msg, key):
|
||
|
r"""
|
||
|
Performs the Bifid cipher decryption on ciphertext ``msg``, and
|
||
|
returns the plaintext.
|
||
|
|
||
|
This is the version of the Bifid cipher that uses the `6 \times 6`
|
||
|
Polybius square.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
msg
|
||
|
Ciphertext string (digits okay); converted to upper case
|
||
|
|
||
|
key
|
||
|
Short string for key (digits okay).
|
||
|
|
||
|
If ``key`` is less than 36 characters long, the square will be
|
||
|
filled with letters A through Z and digits 0 through 9.
|
||
|
All letters are converted to uppercase.
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
plaintext
|
||
|
Plaintext from Bifid cipher (all caps, no spaces).
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.crypto.crypto import encipher_bifid6, decipher_bifid6
|
||
|
>>> key = "gold bug"
|
||
|
>>> encipher_bifid6('meet me on monday at 8am', key)
|
||
|
'KFKLJJHF5MMMKTFRGPL'
|
||
|
>>> decipher_bifid6(_, key)
|
||
|
'MEETMEONMONDAYAT8AM'
|
||
|
|
||
|
"""
|
||
|
msg, key, _ = _prep(msg.upper(), key.upper(), None, bifid6)
|
||
|
key = padded_key(key, bifid6)
|
||
|
return decipher_bifid(msg, '', key)
|
||
|
|
||
|
|
||
|
def bifid6_square(key=None):
|
||
|
r"""
|
||
|
6x6 Polybius square.
|
||
|
|
||
|
Produces the Polybius square for the `6 \times 6` Bifid cipher.
|
||
|
Assumes alphabet of symbols is "A", ..., "Z", "0", ..., "9".
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.crypto.crypto import bifid6_square
|
||
|
>>> key = "gold bug"
|
||
|
>>> bifid6_square(key)
|
||
|
Matrix([
|
||
|
[G, O, L, D, B, U],
|
||
|
[A, C, E, F, H, I],
|
||
|
[J, K, M, N, P, Q],
|
||
|
[R, S, T, V, W, X],
|
||
|
[Y, Z, 0, 1, 2, 3],
|
||
|
[4, 5, 6, 7, 8, 9]])
|
||
|
|
||
|
"""
|
||
|
if not key:
|
||
|
key = bifid6
|
||
|
else:
|
||
|
_, key, _ = _prep('', key.upper(), None, bifid6)
|
||
|
key = padded_key(key, bifid6)
|
||
|
return bifid_square(key)
|
||
|
|
||
|
|
||
|
#################### RSA #############################
|
||
|
|
||
|
def _decipher_rsa_crt(i, d, factors):
|
||
|
"""Decipher RSA using chinese remainder theorem from the information
|
||
|
of the relatively-prime factors of the modulus.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
i : integer
|
||
|
Ciphertext
|
||
|
|
||
|
d : integer
|
||
|
The exponent component.
|
||
|
|
||
|
factors : list of relatively-prime integers
|
||
|
The integers given must be coprime and the product must equal
|
||
|
the modulus component of the original RSA key.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
How to decrypt RSA with CRT:
|
||
|
|
||
|
>>> from sympy.crypto.crypto import rsa_public_key, rsa_private_key
|
||
|
>>> primes = [61, 53]
|
||
|
>>> e = 17
|
||
|
>>> args = primes + [e]
|
||
|
>>> puk = rsa_public_key(*args)
|
||
|
>>> prk = rsa_private_key(*args)
|
||
|
|
||
|
>>> from sympy.crypto.crypto import encipher_rsa, _decipher_rsa_crt
|
||
|
>>> msg = 65
|
||
|
>>> crt_primes = primes
|
||
|
>>> encrypted = encipher_rsa(msg, puk)
|
||
|
>>> decrypted = _decipher_rsa_crt(encrypted, prk[1], primes)
|
||
|
>>> decrypted
|
||
|
65
|
||
|
"""
|
||
|
moduluses = [pow(i, d, p) for p in factors]
|
||
|
|
||
|
result = crt(factors, moduluses)
|
||
|
if not result:
|
||
|
raise ValueError("CRT failed")
|
||
|
return result[0]
|
||
|
|
||
|
|
||
|
def _rsa_key(*args, public=True, private=True, totient='Euler', index=None, multipower=None):
|
||
|
r"""A private subroutine to generate RSA key
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
public, private : bool, optional
|
||
|
Flag to generate either a public key, a private key.
|
||
|
|
||
|
totient : 'Euler' or 'Carmichael'
|
||
|
Different notation used for totient.
|
||
|
|
||
|
multipower : bool, optional
|
||
|
Flag to bypass warning for multipower RSA.
|
||
|
"""
|
||
|
|
||
|
if len(args) < 2:
|
||
|
return False
|
||
|
|
||
|
if totient not in ('Euler', 'Carmichael'):
|
||
|
raise ValueError(
|
||
|
"The argument totient={} should either be " \
|
||
|
"'Euler', 'Carmichalel'." \
|
||
|
.format(totient))
|
||
|
|
||
|
if totient == 'Euler':
|
||
|
_totient = _euler
|
||
|
else:
|
||
|
_totient = _carmichael
|
||
|
|
||
|
if index is not None:
|
||
|
index = as_int(index)
|
||
|
if totient != 'Carmichael':
|
||
|
raise ValueError(
|
||
|
"Setting the 'index' keyword argument requires totient"
|
||
|
"notation to be specified as 'Carmichael'.")
|
||
|
|
||
|
primes, e = args[:-1], args[-1]
|
||
|
|
||
|
if not all(isprime(p) for p in primes):
|
||
|
new_primes = []
|
||
|
for i in primes:
|
||
|
new_primes.extend(factorint(i, multiple=True))
|
||
|
primes = new_primes
|
||
|
|
||
|
n = reduce(lambda i, j: i*j, primes)
|
||
|
|
||
|
tally = multiset(primes)
|
||
|
if all(v == 1 for v in tally.values()):
|
||
|
multiple = list(tally.keys())
|
||
|
phi = _totient._from_distinct_primes(*multiple)
|
||
|
|
||
|
else:
|
||
|
if not multipower:
|
||
|
NonInvertibleCipherWarning(
|
||
|
'Non-distinctive primes found in the factors {}. '
|
||
|
'The cipher may not be decryptable for some numbers '
|
||
|
'in the complete residue system Z[{}], but the cipher '
|
||
|
'can still be valid if you restrict the domain to be '
|
||
|
'the reduced residue system Z*[{}]. You can pass '
|
||
|
'the flag multipower=True if you want to suppress this '
|
||
|
'warning.'
|
||
|
.format(primes, n, n)
|
||
|
# stacklevel=4 because most users will call a function that
|
||
|
# calls this function
|
||
|
).warn(stacklevel=4)
|
||
|
phi = _totient._from_factors(tally)
|
||
|
|
||
|
if igcd(e, phi) == 1:
|
||
|
if public and not private:
|
||
|
if isinstance(index, int):
|
||
|
e = e % phi
|
||
|
e += index * phi
|
||
|
return n, e
|
||
|
|
||
|
if private and not public:
|
||
|
d = mod_inverse(e, phi)
|
||
|
if isinstance(index, int):
|
||
|
d += index * phi
|
||
|
return n, d
|
||
|
|
||
|
return False
|
||
|
|
||
|
|
||
|
def rsa_public_key(*args, **kwargs):
|
||
|
r"""Return the RSA *public key* pair, `(n, e)`
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
args : naturals
|
||
|
If specified as `p, q, e` where `p` and `q` are distinct primes
|
||
|
and `e` is a desired public exponent of the RSA, `n = p q` and
|
||
|
`e` will be verified against the totient
|
||
|
`\phi(n)` (Euler totient) or `\lambda(n)` (Carmichael totient)
|
||
|
to be `\gcd(e, \phi(n)) = 1` or `\gcd(e, \lambda(n)) = 1`.
|
||
|
|
||
|
If specified as `p_1, p_2, \dots, p_n, e` where
|
||
|
`p_1, p_2, \dots, p_n` are specified as primes,
|
||
|
and `e` is specified as a desired public exponent of the RSA,
|
||
|
it will be able to form a multi-prime RSA, which is a more
|
||
|
generalized form of the popular 2-prime RSA.
|
||
|
|
||
|
It can also be possible to form a single-prime RSA by specifying
|
||
|
the argument as `p, e`, which can be considered a trivial case
|
||
|
of a multiprime RSA.
|
||
|
|
||
|
Furthermore, it can be possible to form a multi-power RSA by
|
||
|
specifying two or more pairs of the primes to be same.
|
||
|
However, unlike the two-distinct prime RSA or multi-prime
|
||
|
RSA, not every numbers in the complete residue system
|
||
|
(`\mathbb{Z}_n`) will be decryptable since the mapping
|
||
|
`\mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}`
|
||
|
will not be bijective.
|
||
|
(Only except for the trivial case when
|
||
|
`e = 1`
|
||
|
or more generally,
|
||
|
|
||
|
.. math::
|
||
|
e \in \left \{ 1 + k \lambda(n)
|
||
|
\mid k \in \mathbb{Z} \land k \geq 0 \right \}
|
||
|
|
||
|
when RSA reduces to the identity.)
|
||
|
However, the RSA can still be decryptable for the numbers in the
|
||
|
reduced residue system (`\mathbb{Z}_n^{\times}`), since the
|
||
|
mapping
|
||
|
`\mathbb{Z}_{n}^{\times} \rightarrow \mathbb{Z}_{n}^{\times}`
|
||
|
can still be bijective.
|
||
|
|
||
|
If you pass a non-prime integer to the arguments
|
||
|
`p_1, p_2, \dots, p_n`, the particular number will be
|
||
|
prime-factored and it will become either a multi-prime RSA or a
|
||
|
multi-power RSA in its canonical form, depending on whether the
|
||
|
product equals its radical or not.
|
||
|
`p_1 p_2 \dots p_n = \text{rad}(p_1 p_2 \dots p_n)`
|
||
|
|
||
|
totient : bool, optional
|
||
|
If ``'Euler'``, it uses Euler's totient `\phi(n)` which is
|
||
|
:meth:`sympy.ntheory.factor_.totient` in SymPy.
|
||
|
|
||
|
If ``'Carmichael'``, it uses Carmichael's totient `\lambda(n)`
|
||
|
which is :meth:`sympy.ntheory.factor_.reduced_totient` in SymPy.
|
||
|
|
||
|
Unlike private key generation, this is a trivial keyword for
|
||
|
public key generation because
|
||
|
`\gcd(e, \phi(n)) = 1 \iff \gcd(e, \lambda(n)) = 1`.
|
||
|
|
||
|
index : nonnegative integer, optional
|
||
|
Returns an arbitrary solution of a RSA public key at the index
|
||
|
specified at `0, 1, 2, \dots`. This parameter needs to be
|
||
|
specified along with ``totient='Carmichael'``.
|
||
|
|
||
|
Similarly to the non-uniquenss of a RSA private key as described
|
||
|
in the ``index`` parameter documentation in
|
||
|
:meth:`rsa_private_key`, RSA public key is also not unique and
|
||
|
there is an infinite number of RSA public exponents which
|
||
|
can behave in the same manner.
|
||
|
|
||
|
From any given RSA public exponent `e`, there are can be an
|
||
|
another RSA public exponent `e + k \lambda(n)` where `k` is an
|
||
|
integer, `\lambda` is a Carmichael's totient function.
|
||
|
|
||
|
However, considering only the positive cases, there can be
|
||
|
a principal solution of a RSA public exponent `e_0` in
|
||
|
`0 < e_0 < \lambda(n)`, and all the other solutions
|
||
|
can be canonicalzed in a form of `e_0 + k \lambda(n)`.
|
||
|
|
||
|
``index`` specifies the `k` notation to yield any possible value
|
||
|
an RSA public key can have.
|
||
|
|
||
|
An example of computing any arbitrary RSA public key:
|
||
|
|
||
|
>>> from sympy.crypto.crypto import rsa_public_key
|
||
|
>>> rsa_public_key(61, 53, 17, totient='Carmichael', index=0)
|
||
|
(3233, 17)
|
||
|
>>> rsa_public_key(61, 53, 17, totient='Carmichael', index=1)
|
||
|
(3233, 797)
|
||
|
>>> rsa_public_key(61, 53, 17, totient='Carmichael', index=2)
|
||
|
(3233, 1577)
|
||
|
|
||
|
multipower : bool, optional
|
||
|
Any pair of non-distinct primes found in the RSA specification
|
||
|
will restrict the domain of the cryptosystem, as noted in the
|
||
|
explanation of the parameter ``args``.
|
||
|
|
||
|
SymPy RSA key generator may give a warning before dispatching it
|
||
|
as a multi-power RSA, however, you can disable the warning if
|
||
|
you pass ``True`` to this keyword.
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
(n, e) : int, int
|
||
|
`n` is a product of any arbitrary number of primes given as
|
||
|
the argument.
|
||
|
|
||
|
`e` is relatively prime (coprime) to the Euler totient
|
||
|
`\phi(n)`.
|
||
|
|
||
|
False
|
||
|
Returned if less than two arguments are given, or `e` is
|
||
|
not relatively prime to the modulus.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.crypto.crypto import rsa_public_key
|
||
|
|
||
|
A public key of a two-prime RSA:
|
||
|
|
||
|
>>> p, q, e = 3, 5, 7
|
||
|
>>> rsa_public_key(p, q, e)
|
||
|
(15, 7)
|
||
|
>>> rsa_public_key(p, q, 30)
|
||
|
False
|
||
|
|
||
|
A public key of a multiprime RSA:
|
||
|
|
||
|
>>> primes = [2, 3, 5, 7, 11, 13]
|
||
|
>>> e = 7
|
||
|
>>> args = primes + [e]
|
||
|
>>> rsa_public_key(*args)
|
||
|
(30030, 7)
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
Although the RSA can be generalized over any modulus `n`, using
|
||
|
two large primes had became the most popular specification because a
|
||
|
product of two large primes is usually the hardest to factor
|
||
|
relatively to the digits of `n` can have.
|
||
|
|
||
|
However, it may need further understanding of the time complexities
|
||
|
of each prime-factoring algorithms to verify the claim.
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
rsa_private_key
|
||
|
encipher_rsa
|
||
|
decipher_rsa
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://en.wikipedia.org/wiki/RSA_%28cryptosystem%29
|
||
|
|
||
|
.. [2] https://cacr.uwaterloo.ca/techreports/2006/cacr2006-16.pdf
|
||
|
|
||
|
.. [3] https://link.springer.com/content/pdf/10.1007/BFb0055738.pdf
|
||
|
|
||
|
.. [4] https://www.itiis.org/digital-library/manuscript/1381
|
||
|
"""
|
||
|
return _rsa_key(*args, public=True, private=False, **kwargs)
|
||
|
|
||
|
|
||
|
def rsa_private_key(*args, **kwargs):
|
||
|
r"""Return the RSA *private key* pair, `(n, d)`
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
args : naturals
|
||
|
The keyword is identical to the ``args`` in
|
||
|
:meth:`rsa_public_key`.
|
||
|
|
||
|
totient : bool, optional
|
||
|
If ``'Euler'``, it uses Euler's totient convention `\phi(n)`
|
||
|
which is :meth:`sympy.ntheory.factor_.totient` in SymPy.
|
||
|
|
||
|
If ``'Carmichael'``, it uses Carmichael's totient convention
|
||
|
`\lambda(n)` which is
|
||
|
:meth:`sympy.ntheory.factor_.reduced_totient` in SymPy.
|
||
|
|
||
|
There can be some output differences for private key generation
|
||
|
as examples below.
|
||
|
|
||
|
Example using Euler's totient:
|
||
|
|
||
|
>>> from sympy.crypto.crypto import rsa_private_key
|
||
|
>>> rsa_private_key(61, 53, 17, totient='Euler')
|
||
|
(3233, 2753)
|
||
|
|
||
|
Example using Carmichael's totient:
|
||
|
|
||
|
>>> from sympy.crypto.crypto import rsa_private_key
|
||
|
>>> rsa_private_key(61, 53, 17, totient='Carmichael')
|
||
|
(3233, 413)
|
||
|
|
||
|
index : nonnegative integer, optional
|
||
|
Returns an arbitrary solution of a RSA private key at the index
|
||
|
specified at `0, 1, 2, \dots`. This parameter needs to be
|
||
|
specified along with ``totient='Carmichael'``.
|
||
|
|
||
|
RSA private exponent is a non-unique solution of
|
||
|
`e d \mod \lambda(n) = 1` and it is possible in any form of
|
||
|
`d + k \lambda(n)`, where `d` is an another
|
||
|
already-computed private exponent, and `\lambda` is a
|
||
|
Carmichael's totient function, and `k` is any integer.
|
||
|
|
||
|
However, considering only the positive cases, there can be
|
||
|
a principal solution of a RSA private exponent `d_0` in
|
||
|
`0 < d_0 < \lambda(n)`, and all the other solutions
|
||
|
can be canonicalzed in a form of `d_0 + k \lambda(n)`.
|
||
|
|
||
|
``index`` specifies the `k` notation to yield any possible value
|
||
|
an RSA private key can have.
|
||
|
|
||
|
An example of computing any arbitrary RSA private key:
|
||
|
|
||
|
>>> from sympy.crypto.crypto import rsa_private_key
|
||
|
>>> rsa_private_key(61, 53, 17, totient='Carmichael', index=0)
|
||
|
(3233, 413)
|
||
|
>>> rsa_private_key(61, 53, 17, totient='Carmichael', index=1)
|
||
|
(3233, 1193)
|
||
|
>>> rsa_private_key(61, 53, 17, totient='Carmichael', index=2)
|
||
|
(3233, 1973)
|
||
|
|
||
|
multipower : bool, optional
|
||
|
The keyword is identical to the ``multipower`` in
|
||
|
:meth:`rsa_public_key`.
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
(n, d) : int, int
|
||
|
`n` is a product of any arbitrary number of primes given as
|
||
|
the argument.
|
||
|
|
||
|
`d` is the inverse of `e` (mod `\phi(n)`) where `e` is the
|
||
|
exponent given, and `\phi` is a Euler totient.
|
||
|
|
||
|
False
|
||
|
Returned if less than two arguments are given, or `e` is
|
||
|
not relatively prime to the totient of the modulus.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.crypto.crypto import rsa_private_key
|
||
|
|
||
|
A private key of a two-prime RSA:
|
||
|
|
||
|
>>> p, q, e = 3, 5, 7
|
||
|
>>> rsa_private_key(p, q, e)
|
||
|
(15, 7)
|
||
|
>>> rsa_private_key(p, q, 30)
|
||
|
False
|
||
|
|
||
|
A private key of a multiprime RSA:
|
||
|
|
||
|
>>> primes = [2, 3, 5, 7, 11, 13]
|
||
|
>>> e = 7
|
||
|
>>> args = primes + [e]
|
||
|
>>> rsa_private_key(*args)
|
||
|
(30030, 823)
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
rsa_public_key
|
||
|
encipher_rsa
|
||
|
decipher_rsa
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://en.wikipedia.org/wiki/RSA_%28cryptosystem%29
|
||
|
|
||
|
.. [2] https://cacr.uwaterloo.ca/techreports/2006/cacr2006-16.pdf
|
||
|
|
||
|
.. [3] https://link.springer.com/content/pdf/10.1007/BFb0055738.pdf
|
||
|
|
||
|
.. [4] https://www.itiis.org/digital-library/manuscript/1381
|
||
|
"""
|
||
|
return _rsa_key(*args, public=False, private=True, **kwargs)
|
||
|
|
||
|
|
||
|
def _encipher_decipher_rsa(i, key, factors=None):
|
||
|
n, d = key
|
||
|
if not factors:
|
||
|
return pow(i, d, n)
|
||
|
|
||
|
def _is_coprime_set(l):
|
||
|
is_coprime_set = True
|
||
|
for i in range(len(l)):
|
||
|
for j in range(i+1, len(l)):
|
||
|
if igcd(l[i], l[j]) != 1:
|
||
|
is_coprime_set = False
|
||
|
break
|
||
|
return is_coprime_set
|
||
|
|
||
|
prod = reduce(lambda i, j: i*j, factors)
|
||
|
if prod == n and _is_coprime_set(factors):
|
||
|
return _decipher_rsa_crt(i, d, factors)
|
||
|
return _encipher_decipher_rsa(i, key, factors=None)
|
||
|
|
||
|
|
||
|
def encipher_rsa(i, key, factors=None):
|
||
|
r"""Encrypt the plaintext with RSA.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
i : integer
|
||
|
The plaintext to be encrypted for.
|
||
|
|
||
|
key : (n, e) where n, e are integers
|
||
|
`n` is the modulus of the key and `e` is the exponent of the
|
||
|
key. The encryption is computed by `i^e \bmod n`.
|
||
|
|
||
|
The key can either be a public key or a private key, however,
|
||
|
the message encrypted by a public key can only be decrypted by
|
||
|
a private key, and vice versa, as RSA is an asymmetric
|
||
|
cryptography system.
|
||
|
|
||
|
factors : list of coprime integers
|
||
|
This is identical to the keyword ``factors`` in
|
||
|
:meth:`decipher_rsa`.
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
Some specifications may make the RSA not cryptographically
|
||
|
meaningful.
|
||
|
|
||
|
For example, `0`, `1` will remain always same after taking any
|
||
|
number of exponentiation, thus, should be avoided.
|
||
|
|
||
|
Furthermore, if `i^e < n`, `i` may easily be figured out by taking
|
||
|
`e` th root.
|
||
|
|
||
|
And also, specifying the exponent as `1` or in more generalized form
|
||
|
as `1 + k \lambda(n)` where `k` is an nonnegative integer,
|
||
|
`\lambda` is a carmichael totient, the RSA becomes an identity
|
||
|
mapping.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.crypto.crypto import encipher_rsa
|
||
|
>>> from sympy.crypto.crypto import rsa_public_key, rsa_private_key
|
||
|
|
||
|
Public Key Encryption:
|
||
|
|
||
|
>>> p, q, e = 3, 5, 7
|
||
|
>>> puk = rsa_public_key(p, q, e)
|
||
|
>>> msg = 12
|
||
|
>>> encipher_rsa(msg, puk)
|
||
|
3
|
||
|
|
||
|
Private Key Encryption:
|
||
|
|
||
|
>>> p, q, e = 3, 5, 7
|
||
|
>>> prk = rsa_private_key(p, q, e)
|
||
|
>>> msg = 12
|
||
|
>>> encipher_rsa(msg, prk)
|
||
|
3
|
||
|
|
||
|
Encryption using chinese remainder theorem:
|
||
|
|
||
|
>>> encipher_rsa(msg, prk, factors=[p, q])
|
||
|
3
|
||
|
"""
|
||
|
return _encipher_decipher_rsa(i, key, factors=factors)
|
||
|
|
||
|
|
||
|
def decipher_rsa(i, key, factors=None):
|
||
|
r"""Decrypt the ciphertext with RSA.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
i : integer
|
||
|
The ciphertext to be decrypted for.
|
||
|
|
||
|
key : (n, d) where n, d are integers
|
||
|
`n` is the modulus of the key and `d` is the exponent of the
|
||
|
key. The decryption is computed by `i^d \bmod n`.
|
||
|
|
||
|
The key can either be a public key or a private key, however,
|
||
|
the message encrypted by a public key can only be decrypted by
|
||
|
a private key, and vice versa, as RSA is an asymmetric
|
||
|
cryptography system.
|
||
|
|
||
|
factors : list of coprime integers
|
||
|
As the modulus `n` created from RSA key generation is composed
|
||
|
of arbitrary prime factors
|
||
|
`n = {p_1}^{k_1}{p_2}^{k_2}\dots{p_n}^{k_n}` where
|
||
|
`p_1, p_2, \dots, p_n` are distinct primes and
|
||
|
`k_1, k_2, \dots, k_n` are positive integers, chinese remainder
|
||
|
theorem can be used to compute `i^d \bmod n` from the
|
||
|
fragmented modulo operations like
|
||
|
|
||
|
.. math::
|
||
|
i^d \bmod {p_1}^{k_1}, i^d \bmod {p_2}^{k_2}, \dots,
|
||
|
i^d \bmod {p_n}^{k_n}
|
||
|
|
||
|
or like
|
||
|
|
||
|
.. math::
|
||
|
i^d \bmod {p_1}^{k_1}{p_2}^{k_2},
|
||
|
i^d \bmod {p_3}^{k_3}, \dots ,
|
||
|
i^d \bmod {p_n}^{k_n}
|
||
|
|
||
|
as long as every moduli does not share any common divisor each
|
||
|
other.
|
||
|
|
||
|
The raw primes used in generating the RSA key pair can be a good
|
||
|
option.
|
||
|
|
||
|
Note that the speed advantage of using this is only viable for
|
||
|
very large cases (Like 2048-bit RSA keys) since the
|
||
|
overhead of using pure Python implementation of
|
||
|
:meth:`sympy.ntheory.modular.crt` may overcompensate the
|
||
|
theoretical speed advantage.
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
See the ``Notes`` section in the documentation of
|
||
|
:meth:`encipher_rsa`
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.crypto.crypto import decipher_rsa, encipher_rsa
|
||
|
>>> from sympy.crypto.crypto import rsa_public_key, rsa_private_key
|
||
|
|
||
|
Public Key Encryption and Decryption:
|
||
|
|
||
|
>>> p, q, e = 3, 5, 7
|
||
|
>>> prk = rsa_private_key(p, q, e)
|
||
|
>>> puk = rsa_public_key(p, q, e)
|
||
|
>>> msg = 12
|
||
|
>>> new_msg = encipher_rsa(msg, prk)
|
||
|
>>> new_msg
|
||
|
3
|
||
|
>>> decipher_rsa(new_msg, puk)
|
||
|
12
|
||
|
|
||
|
Private Key Encryption and Decryption:
|
||
|
|
||
|
>>> p, q, e = 3, 5, 7
|
||
|
>>> prk = rsa_private_key(p, q, e)
|
||
|
>>> puk = rsa_public_key(p, q, e)
|
||
|
>>> msg = 12
|
||
|
>>> new_msg = encipher_rsa(msg, puk)
|
||
|
>>> new_msg
|
||
|
3
|
||
|
>>> decipher_rsa(new_msg, prk)
|
||
|
12
|
||
|
|
||
|
Decryption using chinese remainder theorem:
|
||
|
|
||
|
>>> decipher_rsa(new_msg, prk, factors=[p, q])
|
||
|
12
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
encipher_rsa
|
||
|
"""
|
||
|
return _encipher_decipher_rsa(i, key, factors=factors)
|
||
|
|
||
|
|
||
|
#################### kid krypto (kid RSA) #############################
|
||
|
|
||
|
|
||
|
def kid_rsa_public_key(a, b, A, B):
|
||
|
r"""
|
||
|
Kid RSA is a version of RSA useful to teach grade school children
|
||
|
since it does not involve exponentiation.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
Alice wants to talk to Bob. Bob generates keys as follows.
|
||
|
Key generation:
|
||
|
|
||
|
* Select positive integers `a, b, A, B` at random.
|
||
|
* Compute `M = a b - 1`, `e = A M + a`, `d = B M + b`,
|
||
|
`n = (e d - 1)//M`.
|
||
|
* The *public key* is `(n, e)`. Bob sends these to Alice.
|
||
|
* The *private key* is `(n, d)`, which Bob keeps secret.
|
||
|
|
||
|
Encryption: If `p` is the plaintext message then the
|
||
|
ciphertext is `c = p e \pmod n`.
|
||
|
|
||
|
Decryption: If `c` is the ciphertext message then the
|
||
|
plaintext is `p = c d \pmod n`.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.crypto.crypto import kid_rsa_public_key
|
||
|
>>> a, b, A, B = 3, 4, 5, 6
|
||
|
>>> kid_rsa_public_key(a, b, A, B)
|
||
|
(369, 58)
|
||
|
|
||
|
"""
|
||
|
M = a*b - 1
|
||
|
e = A*M + a
|
||
|
d = B*M + b
|
||
|
n = (e*d - 1)//M
|
||
|
return n, e
|
||
|
|
||
|
|
||
|
def kid_rsa_private_key(a, b, A, B):
|
||
|
"""
|
||
|
Compute `M = a b - 1`, `e = A M + a`, `d = B M + b`,
|
||
|
`n = (e d - 1) / M`. The *private key* is `d`, which Bob
|
||
|
keeps secret.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.crypto.crypto import kid_rsa_private_key
|
||
|
>>> a, b, A, B = 3, 4, 5, 6
|
||
|
>>> kid_rsa_private_key(a, b, A, B)
|
||
|
(369, 70)
|
||
|
|
||
|
"""
|
||
|
M = a*b - 1
|
||
|
e = A*M + a
|
||
|
d = B*M + b
|
||
|
n = (e*d - 1)//M
|
||
|
return n, d
|
||
|
|
||
|
|
||
|
def encipher_kid_rsa(msg, key):
|
||
|
"""
|
||
|
Here ``msg`` is the plaintext and ``key`` is the public key.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.crypto.crypto import (
|
||
|
... encipher_kid_rsa, kid_rsa_public_key)
|
||
|
>>> msg = 200
|
||
|
>>> a, b, A, B = 3, 4, 5, 6
|
||
|
>>> key = kid_rsa_public_key(a, b, A, B)
|
||
|
>>> encipher_kid_rsa(msg, key)
|
||
|
161
|
||
|
|
||
|
"""
|
||
|
n, e = key
|
||
|
return (msg*e) % n
|
||
|
|
||
|
|
||
|
def decipher_kid_rsa(msg, key):
|
||
|
"""
|
||
|
Here ``msg`` is the plaintext and ``key`` is the private key.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.crypto.crypto import (
|
||
|
... kid_rsa_public_key, kid_rsa_private_key,
|
||
|
... decipher_kid_rsa, encipher_kid_rsa)
|
||
|
>>> a, b, A, B = 3, 4, 5, 6
|
||
|
>>> d = kid_rsa_private_key(a, b, A, B)
|
||
|
>>> msg = 200
|
||
|
>>> pub = kid_rsa_public_key(a, b, A, B)
|
||
|
>>> pri = kid_rsa_private_key(a, b, A, B)
|
||
|
>>> ct = encipher_kid_rsa(msg, pub)
|
||
|
>>> decipher_kid_rsa(ct, pri)
|
||
|
200
|
||
|
|
||
|
"""
|
||
|
n, d = key
|
||
|
return (msg*d) % n
|
||
|
|
||
|
|
||
|
#################### Morse Code ######################################
|
||
|
|
||
|
morse_char = {
|
||
|
".-": "A", "-...": "B",
|
||
|
"-.-.": "C", "-..": "D",
|
||
|
".": "E", "..-.": "F",
|
||
|
"--.": "G", "....": "H",
|
||
|
"..": "I", ".---": "J",
|
||
|
"-.-": "K", ".-..": "L",
|
||
|
"--": "M", "-.": "N",
|
||
|
"---": "O", ".--.": "P",
|
||
|
"--.-": "Q", ".-.": "R",
|
||
|
"...": "S", "-": "T",
|
||
|
"..-": "U", "...-": "V",
|
||
|
".--": "W", "-..-": "X",
|
||
|
"-.--": "Y", "--..": "Z",
|
||
|
"-----": "0", ".----": "1",
|
||
|
"..---": "2", "...--": "3",
|
||
|
"....-": "4", ".....": "5",
|
||
|
"-....": "6", "--...": "7",
|
||
|
"---..": "8", "----.": "9",
|
||
|
".-.-.-": ".", "--..--": ",",
|
||
|
"---...": ":", "-.-.-.": ";",
|
||
|
"..--..": "?", "-....-": "-",
|
||
|
"..--.-": "_", "-.--.": "(",
|
||
|
"-.--.-": ")", ".----.": "'",
|
||
|
"-...-": "=", ".-.-.": "+",
|
||
|
"-..-.": "/", ".--.-.": "@",
|
||
|
"...-..-": "$", "-.-.--": "!"}
|
||
|
char_morse = {v: k for k, v in morse_char.items()}
|
||
|
|
||
|
|
||
|
def encode_morse(msg, sep='|', mapping=None):
|
||
|
"""
|
||
|
Encodes a plaintext into popular Morse Code with letters
|
||
|
separated by ``sep`` and words by a double ``sep``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.crypto.crypto import encode_morse
|
||
|
>>> msg = 'ATTACK RIGHT FLANK'
|
||
|
>>> encode_morse(msg)
|
||
|
'.-|-|-|.-|-.-.|-.-||.-.|..|--.|....|-||..-.|.-..|.-|-.|-.-'
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://en.wikipedia.org/wiki/Morse_code
|
||
|
|
||
|
"""
|
||
|
|
||
|
mapping = mapping or char_morse
|
||
|
assert sep not in mapping
|
||
|
word_sep = 2*sep
|
||
|
mapping[" "] = word_sep
|
||
|
suffix = msg and msg[-1] in whitespace
|
||
|
|
||
|
# normalize whitespace
|
||
|
msg = (' ' if word_sep else '').join(msg.split())
|
||
|
# omit unmapped chars
|
||
|
chars = set(''.join(msg.split()))
|
||
|
ok = set(mapping.keys())
|
||
|
msg = translate(msg, None, ''.join(chars - ok))
|
||
|
|
||
|
morsestring = []
|
||
|
words = msg.split()
|
||
|
for word in words:
|
||
|
morseword = []
|
||
|
for letter in word:
|
||
|
morseletter = mapping[letter]
|
||
|
morseword.append(morseletter)
|
||
|
|
||
|
word = sep.join(morseword)
|
||
|
morsestring.append(word)
|
||
|
|
||
|
return word_sep.join(morsestring) + (word_sep if suffix else '')
|
||
|
|
||
|
|
||
|
def decode_morse(msg, sep='|', mapping=None):
|
||
|
"""
|
||
|
Decodes a Morse Code with letters separated by ``sep``
|
||
|
(default is '|') and words by `word_sep` (default is '||)
|
||
|
into plaintext.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.crypto.crypto import decode_morse
|
||
|
>>> mc = '--|---|...-|.||.|.-|...|-'
|
||
|
>>> decode_morse(mc)
|
||
|
'MOVE EAST'
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://en.wikipedia.org/wiki/Morse_code
|
||
|
|
||
|
"""
|
||
|
|
||
|
mapping = mapping or morse_char
|
||
|
word_sep = 2*sep
|
||
|
characterstring = []
|
||
|
words = msg.strip(word_sep).split(word_sep)
|
||
|
for word in words:
|
||
|
letters = word.split(sep)
|
||
|
chars = [mapping[c] for c in letters]
|
||
|
word = ''.join(chars)
|
||
|
characterstring.append(word)
|
||
|
rv = " ".join(characterstring)
|
||
|
return rv
|
||
|
|
||
|
|
||
|
#################### LFSRs ##########################################
|
||
|
|
||
|
|
||
|
def lfsr_sequence(key, fill, n):
|
||
|
r"""
|
||
|
This function creates an LFSR sequence.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
key : list
|
||
|
A list of finite field elements, `[c_0, c_1, \ldots, c_k].`
|
||
|
|
||
|
fill : list
|
||
|
The list of the initial terms of the LFSR sequence,
|
||
|
`[x_0, x_1, \ldots, x_k].`
|
||
|
|
||
|
n
|
||
|
Number of terms of the sequence that the function returns.
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
L
|
||
|
The LFSR sequence defined by
|
||
|
`x_{n+1} = c_k x_n + \ldots + c_0 x_{n-k}`, for
|
||
|
`n \leq k`.
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
S. Golomb [G]_ gives a list of three statistical properties a
|
||
|
sequence of numbers `a = \{a_n\}_{n=1}^\infty`,
|
||
|
`a_n \in \{0,1\}`, should display to be considered
|
||
|
"random". Define the autocorrelation of `a` to be
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
C(k) = C(k,a) = \lim_{N\rightarrow \infty} {1\over N}\sum_{n=1}^N (-1)^{a_n + a_{n+k}}.
|
||
|
|
||
|
In the case where `a` is periodic with period
|
||
|
`P` then this reduces to
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
C(k) = {1\over P}\sum_{n=1}^P (-1)^{a_n + a_{n+k}}.
|
||
|
|
||
|
Assume `a` is periodic with period `P`.
|
||
|
|
||
|
- balance:
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
\left|\sum_{n=1}^P(-1)^{a_n}\right| \leq 1.
|
||
|
|
||
|
- low autocorrelation:
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
C(k) = \left\{ \begin{array}{cc} 1,& k = 0,\\ \epsilon, & k \ne 0. \end{array} \right.
|
||
|
|
||
|
(For sequences satisfying these first two properties, it is known
|
||
|
that `\epsilon = -1/P` must hold.)
|
||
|
|
||
|
- proportional runs property: In each period, half the runs have
|
||
|
length `1`, one-fourth have length `2`, etc.
|
||
|
Moreover, there are as many runs of `1`'s as there are of
|
||
|
`0`'s.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.crypto.crypto import lfsr_sequence
|
||
|
>>> from sympy.polys.domains import FF
|
||
|
>>> F = FF(2)
|
||
|
>>> fill = [F(1), F(1), F(0), F(1)]
|
||
|
>>> key = [F(1), F(0), F(0), F(1)]
|
||
|
>>> lfsr_sequence(key, fill, 10)
|
||
|
[1 mod 2, 1 mod 2, 0 mod 2, 1 mod 2, 0 mod 2,
|
||
|
1 mod 2, 1 mod 2, 0 mod 2, 0 mod 2, 1 mod 2]
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [G] Solomon Golomb, Shift register sequences, Aegean Park Press,
|
||
|
Laguna Hills, Ca, 1967
|
||
|
|
||
|
"""
|
||
|
if not isinstance(key, list):
|
||
|
raise TypeError("key must be a list")
|
||
|
if not isinstance(fill, list):
|
||
|
raise TypeError("fill must be a list")
|
||
|
p = key[0].mod
|
||
|
F = FF(p)
|
||
|
s = fill
|
||
|
k = len(fill)
|
||
|
L = []
|
||
|
for i in range(n):
|
||
|
s0 = s[:]
|
||
|
L.append(s[0])
|
||
|
s = s[1:k]
|
||
|
x = sum([int(key[i]*s0[i]) for i in range(k)])
|
||
|
s.append(F(x))
|
||
|
return L # use [x.to_int() for x in L] for int version
|
||
|
|
||
|
|
||
|
def lfsr_autocorrelation(L, P, k):
|
||
|
"""
|
||
|
This function computes the LFSR autocorrelation function.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
L
|
||
|
A periodic sequence of elements of `GF(2)`.
|
||
|
L must have length larger than P.
|
||
|
|
||
|
P
|
||
|
The period of L.
|
||
|
|
||
|
k : int
|
||
|
An integer `k` (`0 < k < P`).
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
autocorrelation
|
||
|
The k-th value of the autocorrelation of the LFSR L.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.crypto.crypto import (
|
||
|
... lfsr_sequence, lfsr_autocorrelation)
|
||
|
>>> from sympy.polys.domains import FF
|
||
|
>>> F = FF(2)
|
||
|
>>> fill = [F(1), F(1), F(0), F(1)]
|
||
|
>>> key = [F(1), F(0), F(0), F(1)]
|
||
|
>>> s = lfsr_sequence(key, fill, 20)
|
||
|
>>> lfsr_autocorrelation(s, 15, 7)
|
||
|
-1/15
|
||
|
>>> lfsr_autocorrelation(s, 15, 0)
|
||
|
1
|
||
|
|
||
|
"""
|
||
|
if not isinstance(L, list):
|
||
|
raise TypeError("L (=%s) must be a list" % L)
|
||
|
P = int(P)
|
||
|
k = int(k)
|
||
|
L0 = L[:P] # slices makes a copy
|
||
|
L1 = L0 + L0[:k]
|
||
|
L2 = [(-1)**(L1[i].to_int() + L1[i + k].to_int()) for i in range(P)]
|
||
|
tot = sum(L2)
|
||
|
return Rational(tot, P)
|
||
|
|
||
|
|
||
|
def lfsr_connection_polynomial(s):
|
||
|
"""
|
||
|
This function computes the LFSR connection polynomial.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
s
|
||
|
A sequence of elements of even length, with entries in a finite
|
||
|
field.
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
C(x)
|
||
|
The connection polynomial of a minimal LFSR yielding s.
|
||
|
|
||
|
This implements the algorithm in section 3 of J. L. Massey's
|
||
|
article [M]_.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.crypto.crypto import (
|
||
|
... lfsr_sequence, lfsr_connection_polynomial)
|
||
|
>>> from sympy.polys.domains import FF
|
||
|
>>> F = FF(2)
|
||
|
>>> fill = [F(1), F(1), F(0), F(1)]
|
||
|
>>> key = [F(1), F(0), F(0), F(1)]
|
||
|
>>> s = lfsr_sequence(key, fill, 20)
|
||
|
>>> lfsr_connection_polynomial(s)
|
||
|
x**4 + x + 1
|
||
|
>>> fill = [F(1), F(0), F(0), F(1)]
|
||
|
>>> key = [F(1), F(1), F(0), F(1)]
|
||
|
>>> s = lfsr_sequence(key, fill, 20)
|
||
|
>>> lfsr_connection_polynomial(s)
|
||
|
x**3 + 1
|
||
|
>>> fill = [F(1), F(0), F(1)]
|
||
|
>>> key = [F(1), F(1), F(0)]
|
||
|
>>> s = lfsr_sequence(key, fill, 20)
|
||
|
>>> lfsr_connection_polynomial(s)
|
||
|
x**3 + x**2 + 1
|
||
|
>>> fill = [F(1), F(0), F(1)]
|
||
|
>>> key = [F(1), F(0), F(1)]
|
||
|
>>> s = lfsr_sequence(key, fill, 20)
|
||
|
>>> lfsr_connection_polynomial(s)
|
||
|
x**3 + x + 1
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [M] James L. Massey, "Shift-Register Synthesis and BCH Decoding."
|
||
|
IEEE Trans. on Information Theory, vol. 15(1), pp. 122-127,
|
||
|
Jan 1969.
|
||
|
|
||
|
"""
|
||
|
# Initialization:
|
||
|
p = s[0].mod
|
||
|
x = Symbol("x")
|
||
|
C = 1*x**0
|
||
|
B = 1*x**0
|
||
|
m = 1
|
||
|
b = 1*x**0
|
||
|
L = 0
|
||
|
N = 0
|
||
|
while N < len(s):
|
||
|
if L > 0:
|
||
|
dC = Poly(C).degree()
|
||
|
r = min(L + 1, dC + 1)
|
||
|
coeffsC = [C.subs(x, 0)] + [C.coeff(x**i)
|
||
|
for i in range(1, dC + 1)]
|
||
|
d = (s[N].to_int() + sum([coeffsC[i]*s[N - i].to_int()
|
||
|
for i in range(1, r)])) % p
|
||
|
if L == 0:
|
||
|
d = s[N].to_int()*x**0
|
||
|
if d == 0:
|
||
|
m += 1
|
||
|
N += 1
|
||
|
if d > 0:
|
||
|
if 2*L > N:
|
||
|
C = (C - d*((b**(p - 2)) % p)*x**m*B).expand()
|
||
|
m += 1
|
||
|
N += 1
|
||
|
else:
|
||
|
T = C
|
||
|
C = (C - d*((b**(p - 2)) % p)*x**m*B).expand()
|
||
|
L = N + 1 - L
|
||
|
m = 1
|
||
|
b = d
|
||
|
B = T
|
||
|
N += 1
|
||
|
dC = Poly(C).degree()
|
||
|
coeffsC = [C.subs(x, 0)] + [C.coeff(x**i) for i in range(1, dC + 1)]
|
||
|
return sum([coeffsC[i] % p*x**i for i in range(dC + 1)
|
||
|
if coeffsC[i] is not None])
|
||
|
|
||
|
|
||
|
#################### ElGamal #############################
|
||
|
|
||
|
|
||
|
def elgamal_private_key(digit=10, seed=None):
|
||
|
r"""
|
||
|
Return three number tuple as private key.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
Elgamal encryption is based on the mathematical problem
|
||
|
called the Discrete Logarithm Problem (DLP). For example,
|
||
|
|
||
|
`a^{b} \equiv c \pmod p`
|
||
|
|
||
|
In general, if ``a`` and ``b`` are known, ``ct`` is easily
|
||
|
calculated. If ``b`` is unknown, it is hard to use
|
||
|
``a`` and ``ct`` to get ``b``.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
digit : int
|
||
|
Minimum number of binary digits for key.
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
tuple : (p, r, d)
|
||
|
p = prime number.
|
||
|
|
||
|
r = primitive root.
|
||
|
|
||
|
d = random number.
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
For testing purposes, the ``seed`` parameter may be set to control
|
||
|
the output of this routine. See sympy.core.random._randrange.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.crypto.crypto import elgamal_private_key
|
||
|
>>> from sympy.ntheory import is_primitive_root, isprime
|
||
|
>>> a, b, _ = elgamal_private_key()
|
||
|
>>> isprime(a)
|
||
|
True
|
||
|
>>> is_primitive_root(b, a)
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
randrange = _randrange(seed)
|
||
|
p = nextprime(2**digit)
|
||
|
return p, primitive_root(p), randrange(2, p)
|
||
|
|
||
|
|
||
|
def elgamal_public_key(key):
|
||
|
r"""
|
||
|
Return three number tuple as public key.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
key : (p, r, e)
|
||
|
Tuple generated by ``elgamal_private_key``.
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
tuple : (p, r, e)
|
||
|
`e = r**d \bmod p`
|
||
|
|
||
|
`d` is a random number in private key.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.crypto.crypto import elgamal_public_key
|
||
|
>>> elgamal_public_key((1031, 14, 636))
|
||
|
(1031, 14, 212)
|
||
|
|
||
|
"""
|
||
|
p, r, e = key
|
||
|
return p, r, pow(r, e, p)
|
||
|
|
||
|
|
||
|
def encipher_elgamal(i, key, seed=None):
|
||
|
r"""
|
||
|
Encrypt message with public key.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
``i`` is a plaintext message expressed as an integer.
|
||
|
``key`` is public key (p, r, e). In order to encrypt
|
||
|
a message, a random number ``a`` in ``range(2, p)``
|
||
|
is generated and the encryped message is returned as
|
||
|
`c_{1}` and `c_{2}` where:
|
||
|
|
||
|
`c_{1} \equiv r^{a} \pmod p`
|
||
|
|
||
|
`c_{2} \equiv m e^{a} \pmod p`
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
msg
|
||
|
int of encoded message.
|
||
|
|
||
|
key
|
||
|
Public key.
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
tuple : (c1, c2)
|
||
|
Encipher into two number.
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
For testing purposes, the ``seed`` parameter may be set to control
|
||
|
the output of this routine. See sympy.core.random._randrange.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.crypto.crypto import encipher_elgamal, elgamal_private_key, elgamal_public_key
|
||
|
>>> pri = elgamal_private_key(5, seed=[3]); pri
|
||
|
(37, 2, 3)
|
||
|
>>> pub = elgamal_public_key(pri); pub
|
||
|
(37, 2, 8)
|
||
|
>>> msg = 36
|
||
|
>>> encipher_elgamal(msg, pub, seed=[3])
|
||
|
(8, 6)
|
||
|
|
||
|
"""
|
||
|
p, r, e = key
|
||
|
if i < 0 or i >= p:
|
||
|
raise ValueError(
|
||
|
'Message (%s) should be in range(%s)' % (i, p))
|
||
|
randrange = _randrange(seed)
|
||
|
a = randrange(2, p)
|
||
|
return pow(r, a, p), i*pow(e, a, p) % p
|
||
|
|
||
|
|
||
|
def decipher_elgamal(msg, key):
|
||
|
r"""
|
||
|
Decrypt message with private key.
|
||
|
|
||
|
`msg = (c_{1}, c_{2})`
|
||
|
|
||
|
`key = (p, r, d)`
|
||
|
|
||
|
According to extended Eucliden theorem,
|
||
|
`u c_{1}^{d} + p n = 1`
|
||
|
|
||
|
`u \equiv 1/{{c_{1}}^d} \pmod p`
|
||
|
|
||
|
`u c_{2} \equiv \frac{1}{c_{1}^d} c_{2} \equiv \frac{1}{r^{ad}} c_{2} \pmod p`
|
||
|
|
||
|
`\frac{1}{r^{ad}} m e^a \equiv \frac{1}{r^{ad}} m {r^{d a}} \equiv m \pmod p`
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.crypto.crypto import decipher_elgamal
|
||
|
>>> from sympy.crypto.crypto import encipher_elgamal
|
||
|
>>> from sympy.crypto.crypto import elgamal_private_key
|
||
|
>>> from sympy.crypto.crypto import elgamal_public_key
|
||
|
|
||
|
>>> pri = elgamal_private_key(5, seed=[3])
|
||
|
>>> pub = elgamal_public_key(pri); pub
|
||
|
(37, 2, 8)
|
||
|
>>> msg = 17
|
||
|
>>> decipher_elgamal(encipher_elgamal(msg, pub), pri) == msg
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
p, _, d = key
|
||
|
c1, c2 = msg
|
||
|
u = igcdex(c1**d, p)[0]
|
||
|
return u * c2 % p
|
||
|
|
||
|
|
||
|
################ Diffie-Hellman Key Exchange #########################
|
||
|
|
||
|
def dh_private_key(digit=10, seed=None):
|
||
|
r"""
|
||
|
Return three integer tuple as private key.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
Diffie-Hellman key exchange is based on the mathematical problem
|
||
|
called the Discrete Logarithm Problem (see ElGamal).
|
||
|
|
||
|
Diffie-Hellman key exchange is divided into the following steps:
|
||
|
|
||
|
* Alice and Bob agree on a base that consist of a prime ``p``
|
||
|
and a primitive root of ``p`` called ``g``
|
||
|
* Alice choses a number ``a`` and Bob choses a number ``b`` where
|
||
|
``a`` and ``b`` are random numbers in range `[2, p)`. These are
|
||
|
their private keys.
|
||
|
* Alice then publicly sends Bob `g^{a} \pmod p` while Bob sends
|
||
|
Alice `g^{b} \pmod p`
|
||
|
* They both raise the received value to their secretly chosen
|
||
|
number (``a`` or ``b``) and now have both as their shared key
|
||
|
`g^{ab} \pmod p`
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
digit
|
||
|
Minimum number of binary digits required in key.
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
tuple : (p, g, a)
|
||
|
p = prime number.
|
||
|
|
||
|
g = primitive root of p.
|
||
|
|
||
|
a = random number from 2 through p - 1.
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
For testing purposes, the ``seed`` parameter may be set to control
|
||
|
the output of this routine. See sympy.core.random._randrange.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.crypto.crypto import dh_private_key
|
||
|
>>> from sympy.ntheory import isprime, is_primitive_root
|
||
|
>>> p, g, _ = dh_private_key()
|
||
|
>>> isprime(p)
|
||
|
True
|
||
|
>>> is_primitive_root(g, p)
|
||
|
True
|
||
|
>>> p, g, _ = dh_private_key(5)
|
||
|
>>> isprime(p)
|
||
|
True
|
||
|
>>> is_primitive_root(g, p)
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
p = nextprime(2**digit)
|
||
|
g = primitive_root(p)
|
||
|
randrange = _randrange(seed)
|
||
|
a = randrange(2, p)
|
||
|
return p, g, a
|
||
|
|
||
|
|
||
|
def dh_public_key(key):
|
||
|
r"""
|
||
|
Return three number tuple as public key.
|
||
|
|
||
|
This is the tuple that Alice sends to Bob.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
key : (p, g, a)
|
||
|
A tuple generated by ``dh_private_key``.
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
tuple : int, int, int
|
||
|
A tuple of `(p, g, g^a \mod p)` with `p`, `g` and `a` given as
|
||
|
parameters.s
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.crypto.crypto import dh_private_key, dh_public_key
|
||
|
>>> p, g, a = dh_private_key();
|
||
|
>>> _p, _g, x = dh_public_key((p, g, a))
|
||
|
>>> p == _p and g == _g
|
||
|
True
|
||
|
>>> x == pow(g, a, p)
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
p, g, a = key
|
||
|
return p, g, pow(g, a, p)
|
||
|
|
||
|
|
||
|
def dh_shared_key(key, b):
|
||
|
"""
|
||
|
Return an integer that is the shared key.
|
||
|
|
||
|
This is what Bob and Alice can both calculate using the public
|
||
|
keys they received from each other and their private keys.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
key : (p, g, x)
|
||
|
Tuple `(p, g, x)` generated by ``dh_public_key``.
|
||
|
|
||
|
b
|
||
|
Random number in the range of `2` to `p - 1`
|
||
|
(Chosen by second key exchange member (Bob)).
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
int
|
||
|
A shared key.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.crypto.crypto import (
|
||
|
... dh_private_key, dh_public_key, dh_shared_key)
|
||
|
>>> prk = dh_private_key();
|
||
|
>>> p, g, x = dh_public_key(prk);
|
||
|
>>> sk = dh_shared_key((p, g, x), 1000)
|
||
|
>>> sk == pow(x, 1000, p)
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
p, _, x = key
|
||
|
if 1 >= b or b >= p:
|
||
|
raise ValueError(filldedent('''
|
||
|
Value of b should be greater 1 and less
|
||
|
than prime %s.''' % p))
|
||
|
|
||
|
return pow(x, b, p)
|
||
|
|
||
|
|
||
|
################ Goldwasser-Micali Encryption #########################
|
||
|
|
||
|
|
||
|
def _legendre(a, p):
|
||
|
"""
|
||
|
Returns the legendre symbol of a and p
|
||
|
assuming that p is a prime.
|
||
|
|
||
|
i.e. 1 if a is a quadratic residue mod p
|
||
|
-1 if a is not a quadratic residue mod p
|
||
|
0 if a is divisible by p
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
a : int
|
||
|
The number to test.
|
||
|
|
||
|
p : prime
|
||
|
The prime to test ``a`` against.
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
int
|
||
|
Legendre symbol (a / p).
|
||
|
|
||
|
"""
|
||
|
sig = pow(a, (p - 1)//2, p)
|
||
|
if sig == 1:
|
||
|
return 1
|
||
|
elif sig == 0:
|
||
|
return 0
|
||
|
else:
|
||
|
return -1
|
||
|
|
||
|
|
||
|
def _random_coprime_stream(n, seed=None):
|
||
|
randrange = _randrange(seed)
|
||
|
while True:
|
||
|
y = randrange(n)
|
||
|
if gcd(y, n) == 1:
|
||
|
yield y
|
||
|
|
||
|
|
||
|
def gm_private_key(p, q, a=None):
|
||
|
r"""
|
||
|
Check if ``p`` and ``q`` can be used as private keys for
|
||
|
the Goldwasser-Micali encryption. The method works
|
||
|
roughly as follows.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
#. Pick two large primes $p$ and $q$.
|
||
|
#. Call their product $N$.
|
||
|
#. Given a message as an integer $i$, write $i$ in its bit representation $b_0, \dots, b_n$.
|
||
|
#. For each $k$,
|
||
|
|
||
|
if $b_k = 0$:
|
||
|
let $a_k$ be a random square
|
||
|
(quadratic residue) modulo $p q$
|
||
|
such that ``jacobi_symbol(a, p*q) = 1``
|
||
|
if $b_k = 1$:
|
||
|
let $a_k$ be a random non-square
|
||
|
(non-quadratic residue) modulo $p q$
|
||
|
such that ``jacobi_symbol(a, p*q) = 1``
|
||
|
|
||
|
returns $\left[a_1, a_2, \dots\right]$
|
||
|
|
||
|
$b_k$ can be recovered by checking whether or not
|
||
|
$a_k$ is a residue. And from the $b_k$'s, the message
|
||
|
can be reconstructed.
|
||
|
|
||
|
The idea is that, while ``jacobi_symbol(a, p*q)``
|
||
|
can be easily computed (and when it is equal to $-1$ will
|
||
|
tell you that $a$ is not a square mod $p q$), quadratic
|
||
|
residuosity modulo a composite number is hard to compute
|
||
|
without knowing its factorization.
|
||
|
|
||
|
Moreover, approximately half the numbers coprime to $p q$ have
|
||
|
:func:`~.jacobi_symbol` equal to $1$ . And among those, approximately half
|
||
|
are residues and approximately half are not. This maximizes the
|
||
|
entropy of the code.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
p, q, a
|
||
|
Initialization variables.
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
tuple : (p, q)
|
||
|
The input value ``p`` and ``q``.
|
||
|
|
||
|
Raises
|
||
|
======
|
||
|
|
||
|
ValueError
|
||
|
If ``p`` and ``q`` are not distinct odd primes.
|
||
|
|
||
|
"""
|
||
|
if p == q:
|
||
|
raise ValueError("expected distinct primes, "
|
||
|
"got two copies of %i" % p)
|
||
|
elif not isprime(p) or not isprime(q):
|
||
|
raise ValueError("first two arguments must be prime, "
|
||
|
"got %i of %i" % (p, q))
|
||
|
elif p == 2 or q == 2:
|
||
|
raise ValueError("first two arguments must not be even, "
|
||
|
"got %i of %i" % (p, q))
|
||
|
return p, q
|
||
|
|
||
|
|
||
|
def gm_public_key(p, q, a=None, seed=None):
|
||
|
"""
|
||
|
Compute public keys for ``p`` and ``q``.
|
||
|
Note that in Goldwasser-Micali Encryption,
|
||
|
public keys are randomly selected.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
p, q, a : int, int, int
|
||
|
Initialization variables.
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
tuple : (a, N)
|
||
|
``a`` is the input ``a`` if it is not ``None`` otherwise
|
||
|
some random integer coprime to ``p`` and ``q``.
|
||
|
|
||
|
``N`` is the product of ``p`` and ``q``.
|
||
|
|
||
|
"""
|
||
|
|
||
|
p, q = gm_private_key(p, q)
|
||
|
N = p * q
|
||
|
|
||
|
if a is None:
|
||
|
randrange = _randrange(seed)
|
||
|
while True:
|
||
|
a = randrange(N)
|
||
|
if _legendre(a, p) == _legendre(a, q) == -1:
|
||
|
break
|
||
|
else:
|
||
|
if _legendre(a, p) != -1 or _legendre(a, q) != -1:
|
||
|
return False
|
||
|
return (a, N)
|
||
|
|
||
|
|
||
|
def encipher_gm(i, key, seed=None):
|
||
|
"""
|
||
|
Encrypt integer 'i' using public_key 'key'
|
||
|
Note that gm uses random encryption.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
i : int
|
||
|
The message to encrypt.
|
||
|
|
||
|
key : (a, N)
|
||
|
The public key.
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
list : list of int
|
||
|
The randomized encrypted message.
|
||
|
|
||
|
"""
|
||
|
if i < 0:
|
||
|
raise ValueError(
|
||
|
"message must be a non-negative "
|
||
|
"integer: got %d instead" % i)
|
||
|
a, N = key
|
||
|
bits = []
|
||
|
while i > 0:
|
||
|
bits.append(i % 2)
|
||
|
i //= 2
|
||
|
|
||
|
gen = _random_coprime_stream(N, seed)
|
||
|
rev = reversed(bits)
|
||
|
encode = lambda b: next(gen)**2*pow(a, b) % N
|
||
|
return [ encode(b) for b in rev ]
|
||
|
|
||
|
|
||
|
|
||
|
def decipher_gm(message, key):
|
||
|
"""
|
||
|
Decrypt message 'message' using public_key 'key'.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
message : list of int
|
||
|
The randomized encrypted message.
|
||
|
|
||
|
key : (p, q)
|
||
|
The private key.
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
int
|
||
|
The encrypted message.
|
||
|
|
||
|
"""
|
||
|
p, q = key
|
||
|
res = lambda m, p: _legendre(m, p) > 0
|
||
|
bits = [res(m, p) * res(m, q) for m in message]
|
||
|
m = 0
|
||
|
for b in bits:
|
||
|
m <<= 1
|
||
|
m += not b
|
||
|
return m
|
||
|
|
||
|
|
||
|
|
||
|
########### RailFence Cipher #############
|
||
|
|
||
|
def encipher_railfence(message,rails):
|
||
|
"""
|
||
|
Performs Railfence Encryption on plaintext and returns ciphertext
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.crypto.crypto import encipher_railfence
|
||
|
>>> message = "hello world"
|
||
|
>>> encipher_railfence(message,3)
|
||
|
'horel ollwd'
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
message : string, the message to encrypt.
|
||
|
rails : int, the number of rails.
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
The Encrypted string message.
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
.. [1] https://en.wikipedia.org/wiki/Rail_fence_cipher
|
||
|
|
||
|
"""
|
||
|
r = list(range(rails))
|
||
|
p = cycle(r + r[-2:0:-1])
|
||
|
return ''.join(sorted(message, key=lambda i: next(p)))
|
||
|
|
||
|
|
||
|
def decipher_railfence(ciphertext,rails):
|
||
|
"""
|
||
|
Decrypt the message using the given rails
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.crypto.crypto import decipher_railfence
|
||
|
>>> decipher_railfence("horel ollwd",3)
|
||
|
'hello world'
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
message : string, the message to encrypt.
|
||
|
rails : int, the number of rails.
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
The Decrypted string message.
|
||
|
|
||
|
"""
|
||
|
r = list(range(rails))
|
||
|
p = cycle(r + r[-2:0:-1])
|
||
|
|
||
|
idx = sorted(range(len(ciphertext)), key=lambda i: next(p))
|
||
|
res = [''] * len(ciphertext)
|
||
|
for i, c in zip(idx, ciphertext):
|
||
|
res[i] = c
|
||
|
return ''.join(res)
|
||
|
|
||
|
|
||
|
################ Blum-Goldwasser cryptosystem #########################
|
||
|
|
||
|
def bg_private_key(p, q):
|
||
|
"""
|
||
|
Check if p and q can be used as private keys for
|
||
|
the Blum-Goldwasser cryptosystem.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
The three necessary checks for p and q to pass
|
||
|
so that they can be used as private keys:
|
||
|
|
||
|
1. p and q must both be prime
|
||
|
2. p and q must be distinct
|
||
|
3. p and q must be congruent to 3 mod 4
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
p, q
|
||
|
The keys to be checked.
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
p, q
|
||
|
Input values.
|
||
|
|
||
|
Raises
|
||
|
======
|
||
|
|
||
|
ValueError
|
||
|
If p and q do not pass the above conditions.
|
||
|
|
||
|
"""
|
||
|
|
||
|
if not isprime(p) or not isprime(q):
|
||
|
raise ValueError("the two arguments must be prime, "
|
||
|
"got %i and %i" %(p, q))
|
||
|
elif p == q:
|
||
|
raise ValueError("the two arguments must be distinct, "
|
||
|
"got two copies of %i. " %p)
|
||
|
elif (p - 3) % 4 != 0 or (q - 3) % 4 != 0:
|
||
|
raise ValueError("the two arguments must be congruent to 3 mod 4, "
|
||
|
"got %i and %i" %(p, q))
|
||
|
return p, q
|
||
|
|
||
|
def bg_public_key(p, q):
|
||
|
"""
|
||
|
Calculates public keys from private keys.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
The function first checks the validity of
|
||
|
private keys passed as arguments and
|
||
|
then returns their product.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
p, q
|
||
|
The private keys.
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
N
|
||
|
The public key.
|
||
|
|
||
|
"""
|
||
|
p, q = bg_private_key(p, q)
|
||
|
N = p * q
|
||
|
return N
|
||
|
|
||
|
def encipher_bg(i, key, seed=None):
|
||
|
"""
|
||
|
Encrypts the message using public key and seed.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
ALGORITHM:
|
||
|
1. Encodes i as a string of L bits, m.
|
||
|
2. Select a random element r, where 1 < r < key, and computes
|
||
|
x = r^2 mod key.
|
||
|
3. Use BBS pseudo-random number generator to generate L random bits, b,
|
||
|
using the initial seed as x.
|
||
|
4. Encrypted message, c_i = m_i XOR b_i, 1 <= i <= L.
|
||
|
5. x_L = x^(2^L) mod key.
|
||
|
6. Return (c, x_L)
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
i
|
||
|
Message, a non-negative integer
|
||
|
|
||
|
key
|
||
|
The public key
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
Tuple
|
||
|
(encrypted_message, x_L)
|
||
|
|
||
|
Raises
|
||
|
======
|
||
|
|
||
|
ValueError
|
||
|
If i is negative.
|
||
|
|
||
|
"""
|
||
|
|
||
|
if i < 0:
|
||
|
raise ValueError(
|
||
|
"message must be a non-negative "
|
||
|
"integer: got %d instead" % i)
|
||
|
|
||
|
enc_msg = []
|
||
|
while i > 0:
|
||
|
enc_msg.append(i % 2)
|
||
|
i //= 2
|
||
|
enc_msg.reverse()
|
||
|
L = len(enc_msg)
|
||
|
|
||
|
r = _randint(seed)(2, key - 1)
|
||
|
x = r**2 % key
|
||
|
x_L = pow(int(x), int(2**L), int(key))
|
||
|
|
||
|
rand_bits = []
|
||
|
for _ in range(L):
|
||
|
rand_bits.append(x % 2)
|
||
|
x = x**2 % key
|
||
|
|
||
|
encrypt_msg = [m ^ b for (m, b) in zip(enc_msg, rand_bits)]
|
||
|
|
||
|
return (encrypt_msg, x_L)
|
||
|
|
||
|
def decipher_bg(message, key):
|
||
|
"""
|
||
|
Decrypts the message using private keys.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
ALGORITHM:
|
||
|
1. Let, c be the encrypted message, y the second number received,
|
||
|
and p and q be the private keys.
|
||
|
2. Compute, r_p = y^((p+1)/4 ^ L) mod p and
|
||
|
r_q = y^((q+1)/4 ^ L) mod q.
|
||
|
3. Compute x_0 = (q(q^-1 mod p)r_p + p(p^-1 mod q)r_q) mod N.
|
||
|
4. From, recompute the bits using the BBS generator, as in the
|
||
|
encryption algorithm.
|
||
|
5. Compute original message by XORing c and b.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
message
|
||
|
Tuple of encrypted message and a non-negative integer.
|
||
|
|
||
|
key
|
||
|
Tuple of private keys.
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
orig_msg
|
||
|
The original message
|
||
|
|
||
|
"""
|
||
|
|
||
|
p, q = key
|
||
|
encrypt_msg, y = message
|
||
|
public_key = p * q
|
||
|
L = len(encrypt_msg)
|
||
|
p_t = ((p + 1)/4)**L
|
||
|
q_t = ((q + 1)/4)**L
|
||
|
r_p = pow(int(y), int(p_t), int(p))
|
||
|
r_q = pow(int(y), int(q_t), int(q))
|
||
|
|
||
|
x = (q * mod_inverse(q, p) * r_p + p * mod_inverse(p, q) * r_q) % public_key
|
||
|
|
||
|
orig_bits = []
|
||
|
for _ in range(L):
|
||
|
orig_bits.append(x % 2)
|
||
|
x = x**2 % public_key
|
||
|
|
||
|
orig_msg = 0
|
||
|
for (m, b) in zip(encrypt_msg, orig_bits):
|
||
|
orig_msg = orig_msg * 2
|
||
|
orig_msg += (m ^ b)
|
||
|
|
||
|
return orig_msg
|