2090 lines
62 KiB
Python
2090 lines
62 KiB
Python
|
from functools import wraps
|
||
|
|
||
|
from sympy.core import S
|
||
|
from sympy.core.add import Add
|
||
|
from sympy.core.cache import cacheit
|
||
|
from sympy.core.expr import Expr
|
||
|
from sympy.core.function import Function, ArgumentIndexError, _mexpand
|
||
|
from sympy.core.logic import fuzzy_or, fuzzy_not
|
||
|
from sympy.core.numbers import Rational, pi, I
|
||
|
from sympy.core.power import Pow
|
||
|
from sympy.core.symbol import Dummy, Wild
|
||
|
from sympy.core.sympify import sympify
|
||
|
from sympy.functions.combinatorial.factorials import factorial
|
||
|
from sympy.functions.elementary.trigonometric import sin, cos, csc, cot
|
||
|
from sympy.functions.elementary.integers import ceiling
|
||
|
from sympy.functions.elementary.exponential import exp, log
|
||
|
from sympy.functions.elementary.miscellaneous import cbrt, sqrt, root
|
||
|
from sympy.functions.elementary.complexes import (Abs, re, im, polar_lift, unpolarify)
|
||
|
from sympy.functions.special.gamma_functions import gamma, digamma, uppergamma
|
||
|
from sympy.functions.special.hyper import hyper
|
||
|
from sympy.polys.orthopolys import spherical_bessel_fn
|
||
|
|
||
|
from mpmath import mp, workprec
|
||
|
|
||
|
# TODO
|
||
|
# o Scorer functions G1 and G2
|
||
|
# o Asymptotic expansions
|
||
|
# These are possible, e.g. for fixed order, but since the bessel type
|
||
|
# functions are oscillatory they are not actually tractable at
|
||
|
# infinity, so this is not particularly useful right now.
|
||
|
# o Nicer series expansions.
|
||
|
# o More rewriting.
|
||
|
# o Add solvers to ode.py (or rather add solvers for the hypergeometric equation).
|
||
|
|
||
|
|
||
|
class BesselBase(Function):
|
||
|
"""
|
||
|
Abstract base class for Bessel-type functions.
|
||
|
|
||
|
This class is meant to reduce code duplication.
|
||
|
All Bessel-type functions can 1) be differentiated, with the derivatives
|
||
|
expressed in terms of similar functions, and 2) be rewritten in terms
|
||
|
of other Bessel-type functions.
|
||
|
|
||
|
Here, Bessel-type functions are assumed to have one complex parameter.
|
||
|
|
||
|
To use this base class, define class attributes ``_a`` and ``_b`` such that
|
||
|
``2*F_n' = -_a*F_{n+1} + b*F_{n-1}``.
|
||
|
|
||
|
"""
|
||
|
|
||
|
@property
|
||
|
def order(self):
|
||
|
""" The order of the Bessel-type function. """
|
||
|
return self.args[0]
|
||
|
|
||
|
@property
|
||
|
def argument(self):
|
||
|
""" The argument of the Bessel-type function. """
|
||
|
return self.args[1]
|
||
|
|
||
|
@classmethod
|
||
|
def eval(cls, nu, z):
|
||
|
return
|
||
|
|
||
|
def fdiff(self, argindex=2):
|
||
|
if argindex != 2:
|
||
|
raise ArgumentIndexError(self, argindex)
|
||
|
return (self._b/2 * self.__class__(self.order - 1, self.argument) -
|
||
|
self._a/2 * self.__class__(self.order + 1, self.argument))
|
||
|
|
||
|
def _eval_conjugate(self):
|
||
|
z = self.argument
|
||
|
if z.is_extended_negative is False:
|
||
|
return self.__class__(self.order.conjugate(), z.conjugate())
|
||
|
|
||
|
def _eval_is_meromorphic(self, x, a):
|
||
|
nu, z = self.order, self.argument
|
||
|
|
||
|
if nu.has(x):
|
||
|
return False
|
||
|
if not z._eval_is_meromorphic(x, a):
|
||
|
return None
|
||
|
z0 = z.subs(x, a)
|
||
|
if nu.is_integer:
|
||
|
if isinstance(self, (besselj, besseli, hn1, hn2, jn, yn)) or not nu.is_zero:
|
||
|
return fuzzy_not(z0.is_infinite)
|
||
|
return fuzzy_not(fuzzy_or([z0.is_zero, z0.is_infinite]))
|
||
|
|
||
|
def _eval_expand_func(self, **hints):
|
||
|
nu, z, f = self.order, self.argument, self.__class__
|
||
|
if nu.is_real:
|
||
|
if (nu - 1).is_positive:
|
||
|
return (-self._a*self._b*f(nu - 2, z)._eval_expand_func() +
|
||
|
2*self._a*(nu - 1)*f(nu - 1, z)._eval_expand_func()/z)
|
||
|
elif (nu + 1).is_negative:
|
||
|
return (2*self._b*(nu + 1)*f(nu + 1, z)._eval_expand_func()/z -
|
||
|
self._a*self._b*f(nu + 2, z)._eval_expand_func())
|
||
|
return self
|
||
|
|
||
|
def _eval_simplify(self, **kwargs):
|
||
|
from sympy.simplify.simplify import besselsimp
|
||
|
return besselsimp(self)
|
||
|
|
||
|
|
||
|
class besselj(BesselBase):
|
||
|
r"""
|
||
|
Bessel function of the first kind.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
The Bessel $J$ function of order $\nu$ is defined to be the function
|
||
|
satisfying Bessel's differential equation
|
||
|
|
||
|
.. math ::
|
||
|
z^2 \frac{\mathrm{d}^2 w}{\mathrm{d}z^2}
|
||
|
+ z \frac{\mathrm{d}w}{\mathrm{d}z} + (z^2 - \nu^2) w = 0,
|
||
|
|
||
|
with Laurent expansion
|
||
|
|
||
|
.. math ::
|
||
|
J_\nu(z) = z^\nu \left(\frac{1}{\Gamma(\nu + 1) 2^\nu} + O(z^2) \right),
|
||
|
|
||
|
if $\nu$ is not a negative integer. If $\nu=-n \in \mathbb{Z}_{<0}$
|
||
|
*is* a negative integer, then the definition is
|
||
|
|
||
|
.. math ::
|
||
|
J_{-n}(z) = (-1)^n J_n(z).
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
Create a Bessel function object:
|
||
|
|
||
|
>>> from sympy import besselj, jn
|
||
|
>>> from sympy.abc import z, n
|
||
|
>>> b = besselj(n, z)
|
||
|
|
||
|
Differentiate it:
|
||
|
|
||
|
>>> b.diff(z)
|
||
|
besselj(n - 1, z)/2 - besselj(n + 1, z)/2
|
||
|
|
||
|
Rewrite in terms of spherical Bessel functions:
|
||
|
|
||
|
>>> b.rewrite(jn)
|
||
|
sqrt(2)*sqrt(z)*jn(n - 1/2, z)/sqrt(pi)
|
||
|
|
||
|
Access the parameter and argument:
|
||
|
|
||
|
>>> b.order
|
||
|
n
|
||
|
>>> b.argument
|
||
|
z
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
bessely, besseli, besselk
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] Abramowitz, Milton; Stegun, Irene A., eds. (1965), "Chapter 9",
|
||
|
Handbook of Mathematical Functions with Formulas, Graphs, and
|
||
|
Mathematical Tables
|
||
|
.. [2] Luke, Y. L. (1969), The Special Functions and Their
|
||
|
Approximations, Volume 1
|
||
|
.. [3] https://en.wikipedia.org/wiki/Bessel_function
|
||
|
.. [4] https://functions.wolfram.com/Bessel-TypeFunctions/BesselJ/
|
||
|
|
||
|
"""
|
||
|
|
||
|
_a = S.One
|
||
|
_b = S.One
|
||
|
|
||
|
@classmethod
|
||
|
def eval(cls, nu, z):
|
||
|
if z.is_zero:
|
||
|
if nu.is_zero:
|
||
|
return S.One
|
||
|
elif (nu.is_integer and nu.is_zero is False) or re(nu).is_positive:
|
||
|
return S.Zero
|
||
|
elif re(nu).is_negative and not (nu.is_integer is True):
|
||
|
return S.ComplexInfinity
|
||
|
elif nu.is_imaginary:
|
||
|
return S.NaN
|
||
|
if z in (S.Infinity, S.NegativeInfinity):
|
||
|
return S.Zero
|
||
|
|
||
|
if z.could_extract_minus_sign():
|
||
|
return (z)**nu*(-z)**(-nu)*besselj(nu, -z)
|
||
|
if nu.is_integer:
|
||
|
if nu.could_extract_minus_sign():
|
||
|
return S.NegativeOne**(-nu)*besselj(-nu, z)
|
||
|
newz = z.extract_multiplicatively(I)
|
||
|
if newz: # NOTE we don't want to change the function if z==0
|
||
|
return I**(nu)*besseli(nu, newz)
|
||
|
|
||
|
# branch handling:
|
||
|
if nu.is_integer:
|
||
|
newz = unpolarify(z)
|
||
|
if newz != z:
|
||
|
return besselj(nu, newz)
|
||
|
else:
|
||
|
newz, n = z.extract_branch_factor()
|
||
|
if n != 0:
|
||
|
return exp(2*n*pi*nu*I)*besselj(nu, newz)
|
||
|
nnu = unpolarify(nu)
|
||
|
if nu != nnu:
|
||
|
return besselj(nnu, z)
|
||
|
|
||
|
def _eval_rewrite_as_besseli(self, nu, z, **kwargs):
|
||
|
return exp(I*pi*nu/2)*besseli(nu, polar_lift(-I)*z)
|
||
|
|
||
|
def _eval_rewrite_as_bessely(self, nu, z, **kwargs):
|
||
|
if nu.is_integer is False:
|
||
|
return csc(pi*nu)*bessely(-nu, z) - cot(pi*nu)*bessely(nu, z)
|
||
|
|
||
|
def _eval_rewrite_as_jn(self, nu, z, **kwargs):
|
||
|
return sqrt(2*z/pi)*jn(nu - S.Half, self.argument)
|
||
|
|
||
|
def _eval_as_leading_term(self, x, logx=None, cdir=0):
|
||
|
nu, z = self.args
|
||
|
try:
|
||
|
arg = z.as_leading_term(x)
|
||
|
except NotImplementedError:
|
||
|
return self
|
||
|
c, e = arg.as_coeff_exponent(x)
|
||
|
|
||
|
if e.is_positive:
|
||
|
return arg**nu/(2**nu*gamma(nu + 1))
|
||
|
elif e.is_negative:
|
||
|
cdir = 1 if cdir == 0 else cdir
|
||
|
sign = c*cdir**e
|
||
|
if not sign.is_negative:
|
||
|
# Refer Abramowitz and Stegun 1965, p. 364 for more information on
|
||
|
# asymptotic approximation of besselj function.
|
||
|
return sqrt(2)*cos(z - pi*(2*nu + 1)/4)/sqrt(pi*z)
|
||
|
return self
|
||
|
|
||
|
return super(besselj, self)._eval_as_leading_term(x, logx, cdir)
|
||
|
|
||
|
def _eval_is_extended_real(self):
|
||
|
nu, z = self.args
|
||
|
if nu.is_integer and z.is_extended_real:
|
||
|
return True
|
||
|
|
||
|
def _eval_nseries(self, x, n, logx, cdir=0):
|
||
|
# Refer https://functions.wolfram.com/Bessel-TypeFunctions/BesselJ/06/01/04/01/01/0003/
|
||
|
# for more information on nseries expansion of besselj function.
|
||
|
from sympy.series.order import Order
|
||
|
nu, z = self.args
|
||
|
|
||
|
# In case of powers less than 1, number of terms need to be computed
|
||
|
# separately to avoid repeated callings of _eval_nseries with wrong n
|
||
|
try:
|
||
|
_, exp = z.leadterm(x)
|
||
|
except (ValueError, NotImplementedError):
|
||
|
return self
|
||
|
|
||
|
if exp.is_positive:
|
||
|
newn = ceiling(n/exp)
|
||
|
o = Order(x**n, x)
|
||
|
r = (z/2)._eval_nseries(x, n, logx, cdir).removeO()
|
||
|
if r is S.Zero:
|
||
|
return o
|
||
|
t = (_mexpand(r**2) + o).removeO()
|
||
|
|
||
|
term = r**nu/gamma(nu + 1)
|
||
|
s = [term]
|
||
|
for k in range(1, (newn + 1)//2):
|
||
|
term *= -t/(k*(nu + k))
|
||
|
term = (_mexpand(term) + o).removeO()
|
||
|
s.append(term)
|
||
|
return Add(*s) + o
|
||
|
|
||
|
return super(besselj, self)._eval_nseries(x, n, logx, cdir)
|
||
|
|
||
|
|
||
|
class bessely(BesselBase):
|
||
|
r"""
|
||
|
Bessel function of the second kind.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
The Bessel $Y$ function of order $\nu$ is defined as
|
||
|
|
||
|
.. math ::
|
||
|
Y_\nu(z) = \lim_{\mu \to \nu} \frac{J_\mu(z) \cos(\pi \mu)
|
||
|
- J_{-\mu}(z)}{\sin(\pi \mu)},
|
||
|
|
||
|
where $J_\mu(z)$ is the Bessel function of the first kind.
|
||
|
|
||
|
It is a solution to Bessel's equation, and linearly independent from
|
||
|
$J_\nu$.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import bessely, yn
|
||
|
>>> from sympy.abc import z, n
|
||
|
>>> b = bessely(n, z)
|
||
|
>>> b.diff(z)
|
||
|
bessely(n - 1, z)/2 - bessely(n + 1, z)/2
|
||
|
>>> b.rewrite(yn)
|
||
|
sqrt(2)*sqrt(z)*yn(n - 1/2, z)/sqrt(pi)
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
besselj, besseli, besselk
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://functions.wolfram.com/Bessel-TypeFunctions/BesselY/
|
||
|
|
||
|
"""
|
||
|
|
||
|
_a = S.One
|
||
|
_b = S.One
|
||
|
|
||
|
@classmethod
|
||
|
def eval(cls, nu, z):
|
||
|
if z.is_zero:
|
||
|
if nu.is_zero:
|
||
|
return S.NegativeInfinity
|
||
|
elif re(nu).is_zero is False:
|
||
|
return S.ComplexInfinity
|
||
|
elif re(nu).is_zero:
|
||
|
return S.NaN
|
||
|
if z in (S.Infinity, S.NegativeInfinity):
|
||
|
return S.Zero
|
||
|
if z == I*S.Infinity:
|
||
|
return exp(I*pi*(nu + 1)/2) * S.Infinity
|
||
|
if z == I*S.NegativeInfinity:
|
||
|
return exp(-I*pi*(nu + 1)/2) * S.Infinity
|
||
|
|
||
|
if nu.is_integer:
|
||
|
if nu.could_extract_minus_sign():
|
||
|
return S.NegativeOne**(-nu)*bessely(-nu, z)
|
||
|
|
||
|
def _eval_rewrite_as_besselj(self, nu, z, **kwargs):
|
||
|
if nu.is_integer is False:
|
||
|
return csc(pi*nu)*(cos(pi*nu)*besselj(nu, z) - besselj(-nu, z))
|
||
|
|
||
|
def _eval_rewrite_as_besseli(self, nu, z, **kwargs):
|
||
|
aj = self._eval_rewrite_as_besselj(*self.args)
|
||
|
if aj:
|
||
|
return aj.rewrite(besseli)
|
||
|
|
||
|
def _eval_rewrite_as_yn(self, nu, z, **kwargs):
|
||
|
return sqrt(2*z/pi) * yn(nu - S.Half, self.argument)
|
||
|
|
||
|
def _eval_as_leading_term(self, x, logx=None, cdir=0):
|
||
|
nu, z = self.args
|
||
|
try:
|
||
|
arg = z.as_leading_term(x)
|
||
|
except NotImplementedError:
|
||
|
return self
|
||
|
c, e = arg.as_coeff_exponent(x)
|
||
|
|
||
|
if e.is_positive:
|
||
|
term_one = ((2/pi)*log(z/2)*besselj(nu, z))
|
||
|
term_two = -(z/2)**(-nu)*factorial(nu - 1)/pi if (nu).is_positive else S.Zero
|
||
|
term_three = -(z/2)**nu/(pi*factorial(nu))*(digamma(nu + 1) - S.EulerGamma)
|
||
|
arg = Add(*[term_one, term_two, term_three]).as_leading_term(x, logx=logx)
|
||
|
return arg
|
||
|
elif e.is_negative:
|
||
|
cdir = 1 if cdir == 0 else cdir
|
||
|
sign = c*cdir**e
|
||
|
if not sign.is_negative:
|
||
|
# Refer Abramowitz and Stegun 1965, p. 364 for more information on
|
||
|
# asymptotic approximation of bessely function.
|
||
|
return sqrt(2)*(-sin(pi*nu/2 - z + pi/4) + 3*cos(pi*nu/2 - z + pi/4)/(8*z))*sqrt(1/z)/sqrt(pi)
|
||
|
return self
|
||
|
|
||
|
return super(bessely, self)._eval_as_leading_term(x, logx, cdir)
|
||
|
|
||
|
def _eval_is_extended_real(self):
|
||
|
nu, z = self.args
|
||
|
if nu.is_integer and z.is_positive:
|
||
|
return True
|
||
|
|
||
|
def _eval_nseries(self, x, n, logx, cdir=0):
|
||
|
# Refer https://functions.wolfram.com/Bessel-TypeFunctions/BesselY/06/01/04/01/02/0008/
|
||
|
# for more information on nseries expansion of bessely function.
|
||
|
from sympy.series.order import Order
|
||
|
nu, z = self.args
|
||
|
|
||
|
# In case of powers less than 1, number of terms need to be computed
|
||
|
# separately to avoid repeated callings of _eval_nseries with wrong n
|
||
|
try:
|
||
|
_, exp = z.leadterm(x)
|
||
|
except (ValueError, NotImplementedError):
|
||
|
return self
|
||
|
|
||
|
if exp.is_positive and nu.is_integer:
|
||
|
newn = ceiling(n/exp)
|
||
|
bn = besselj(nu, z)
|
||
|
a = ((2/pi)*log(z/2)*bn)._eval_nseries(x, n, logx, cdir)
|
||
|
|
||
|
b, c = [], []
|
||
|
o = Order(x**n, x)
|
||
|
r = (z/2)._eval_nseries(x, n, logx, cdir).removeO()
|
||
|
if r is S.Zero:
|
||
|
return o
|
||
|
t = (_mexpand(r**2) + o).removeO()
|
||
|
|
||
|
if nu > S.Zero:
|
||
|
term = r**(-nu)*factorial(nu - 1)/pi
|
||
|
b.append(term)
|
||
|
for k in range(1, nu):
|
||
|
denom = (nu - k)*k
|
||
|
if denom == S.Zero:
|
||
|
term *= t/k
|
||
|
else:
|
||
|
term *= t/denom
|
||
|
term = (_mexpand(term) + o).removeO()
|
||
|
b.append(term)
|
||
|
|
||
|
p = r**nu/(pi*factorial(nu))
|
||
|
term = p*(digamma(nu + 1) - S.EulerGamma)
|
||
|
c.append(term)
|
||
|
for k in range(1, (newn + 1)//2):
|
||
|
p *= -t/(k*(k + nu))
|
||
|
p = (_mexpand(p) + o).removeO()
|
||
|
term = p*(digamma(k + nu + 1) + digamma(k + 1))
|
||
|
c.append(term)
|
||
|
return a - Add(*b) - Add(*c) # Order term comes from a
|
||
|
|
||
|
return super(bessely, self)._eval_nseries(x, n, logx, cdir)
|
||
|
|
||
|
|
||
|
class besseli(BesselBase):
|
||
|
r"""
|
||
|
Modified Bessel function of the first kind.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
The Bessel $I$ function is a solution to the modified Bessel equation
|
||
|
|
||
|
.. math ::
|
||
|
z^2 \frac{\mathrm{d}^2 w}{\mathrm{d}z^2}
|
||
|
+ z \frac{\mathrm{d}w}{\mathrm{d}z} + (z^2 + \nu^2)^2 w = 0.
|
||
|
|
||
|
It can be defined as
|
||
|
|
||
|
.. math ::
|
||
|
I_\nu(z) = i^{-\nu} J_\nu(iz),
|
||
|
|
||
|
where $J_\nu(z)$ is the Bessel function of the first kind.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import besseli
|
||
|
>>> from sympy.abc import z, n
|
||
|
>>> besseli(n, z).diff(z)
|
||
|
besseli(n - 1, z)/2 + besseli(n + 1, z)/2
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
besselj, bessely, besselk
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://functions.wolfram.com/Bessel-TypeFunctions/BesselI/
|
||
|
|
||
|
"""
|
||
|
|
||
|
_a = -S.One
|
||
|
_b = S.One
|
||
|
|
||
|
@classmethod
|
||
|
def eval(cls, nu, z):
|
||
|
if z.is_zero:
|
||
|
if nu.is_zero:
|
||
|
return S.One
|
||
|
elif (nu.is_integer and nu.is_zero is False) or re(nu).is_positive:
|
||
|
return S.Zero
|
||
|
elif re(nu).is_negative and not (nu.is_integer is True):
|
||
|
return S.ComplexInfinity
|
||
|
elif nu.is_imaginary:
|
||
|
return S.NaN
|
||
|
if im(z) in (S.Infinity, S.NegativeInfinity):
|
||
|
return S.Zero
|
||
|
if z is S.Infinity:
|
||
|
return S.Infinity
|
||
|
if z is S.NegativeInfinity:
|
||
|
return (-1)**nu*S.Infinity
|
||
|
|
||
|
if z.could_extract_minus_sign():
|
||
|
return (z)**nu*(-z)**(-nu)*besseli(nu, -z)
|
||
|
if nu.is_integer:
|
||
|
if nu.could_extract_minus_sign():
|
||
|
return besseli(-nu, z)
|
||
|
newz = z.extract_multiplicatively(I)
|
||
|
if newz: # NOTE we don't want to change the function if z==0
|
||
|
return I**(-nu)*besselj(nu, -newz)
|
||
|
|
||
|
# branch handling:
|
||
|
if nu.is_integer:
|
||
|
newz = unpolarify(z)
|
||
|
if newz != z:
|
||
|
return besseli(nu, newz)
|
||
|
else:
|
||
|
newz, n = z.extract_branch_factor()
|
||
|
if n != 0:
|
||
|
return exp(2*n*pi*nu*I)*besseli(nu, newz)
|
||
|
nnu = unpolarify(nu)
|
||
|
if nu != nnu:
|
||
|
return besseli(nnu, z)
|
||
|
|
||
|
def _eval_rewrite_as_besselj(self, nu, z, **kwargs):
|
||
|
return exp(-I*pi*nu/2)*besselj(nu, polar_lift(I)*z)
|
||
|
|
||
|
def _eval_rewrite_as_bessely(self, nu, z, **kwargs):
|
||
|
aj = self._eval_rewrite_as_besselj(*self.args)
|
||
|
if aj:
|
||
|
return aj.rewrite(bessely)
|
||
|
|
||
|
def _eval_rewrite_as_jn(self, nu, z, **kwargs):
|
||
|
return self._eval_rewrite_as_besselj(*self.args).rewrite(jn)
|
||
|
|
||
|
def _eval_is_extended_real(self):
|
||
|
nu, z = self.args
|
||
|
if nu.is_integer and z.is_extended_real:
|
||
|
return True
|
||
|
|
||
|
def _eval_as_leading_term(self, x, logx=None, cdir=0):
|
||
|
nu, z = self.args
|
||
|
try:
|
||
|
arg = z.as_leading_term(x)
|
||
|
except NotImplementedError:
|
||
|
return self
|
||
|
c, e = arg.as_coeff_exponent(x)
|
||
|
|
||
|
if e.is_positive:
|
||
|
return arg**nu/(2**nu*gamma(nu + 1))
|
||
|
elif e.is_negative:
|
||
|
cdir = 1 if cdir == 0 else cdir
|
||
|
sign = c*cdir**e
|
||
|
if not sign.is_negative:
|
||
|
# Refer Abramowitz and Stegun 1965, p. 377 for more information on
|
||
|
# asymptotic approximation of besseli function.
|
||
|
return exp(z)/sqrt(2*pi*z)
|
||
|
return self
|
||
|
|
||
|
return super(besseli, self)._eval_as_leading_term(x, logx, cdir)
|
||
|
|
||
|
def _eval_nseries(self, x, n, logx, cdir=0):
|
||
|
# Refer https://functions.wolfram.com/Bessel-TypeFunctions/BesselI/06/01/04/01/01/0003/
|
||
|
# for more information on nseries expansion of besseli function.
|
||
|
from sympy.series.order import Order
|
||
|
nu, z = self.args
|
||
|
|
||
|
# In case of powers less than 1, number of terms need to be computed
|
||
|
# separately to avoid repeated callings of _eval_nseries with wrong n
|
||
|
try:
|
||
|
_, exp = z.leadterm(x)
|
||
|
except (ValueError, NotImplementedError):
|
||
|
return self
|
||
|
|
||
|
if exp.is_positive:
|
||
|
newn = ceiling(n/exp)
|
||
|
o = Order(x**n, x)
|
||
|
r = (z/2)._eval_nseries(x, n, logx, cdir).removeO()
|
||
|
if r is S.Zero:
|
||
|
return o
|
||
|
t = (_mexpand(r**2) + o).removeO()
|
||
|
|
||
|
term = r**nu/gamma(nu + 1)
|
||
|
s = [term]
|
||
|
for k in range(1, (newn + 1)//2):
|
||
|
term *= t/(k*(nu + k))
|
||
|
term = (_mexpand(term) + o).removeO()
|
||
|
s.append(term)
|
||
|
return Add(*s) + o
|
||
|
|
||
|
return super(besseli, self)._eval_nseries(x, n, logx, cdir)
|
||
|
|
||
|
|
||
|
class besselk(BesselBase):
|
||
|
r"""
|
||
|
Modified Bessel function of the second kind.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
The Bessel $K$ function of order $\nu$ is defined as
|
||
|
|
||
|
.. math ::
|
||
|
K_\nu(z) = \lim_{\mu \to \nu} \frac{\pi}{2}
|
||
|
\frac{I_{-\mu}(z) -I_\mu(z)}{\sin(\pi \mu)},
|
||
|
|
||
|
where $I_\mu(z)$ is the modified Bessel function of the first kind.
|
||
|
|
||
|
It is a solution of the modified Bessel equation, and linearly independent
|
||
|
from $Y_\nu$.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import besselk
|
||
|
>>> from sympy.abc import z, n
|
||
|
>>> besselk(n, z).diff(z)
|
||
|
-besselk(n - 1, z)/2 - besselk(n + 1, z)/2
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
besselj, besseli, bessely
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://functions.wolfram.com/Bessel-TypeFunctions/BesselK/
|
||
|
|
||
|
"""
|
||
|
|
||
|
_a = S.One
|
||
|
_b = -S.One
|
||
|
|
||
|
@classmethod
|
||
|
def eval(cls, nu, z):
|
||
|
if z.is_zero:
|
||
|
if nu.is_zero:
|
||
|
return S.Infinity
|
||
|
elif re(nu).is_zero is False:
|
||
|
return S.ComplexInfinity
|
||
|
elif re(nu).is_zero:
|
||
|
return S.NaN
|
||
|
if z in (S.Infinity, I*S.Infinity, I*S.NegativeInfinity):
|
||
|
return S.Zero
|
||
|
|
||
|
if nu.is_integer:
|
||
|
if nu.could_extract_minus_sign():
|
||
|
return besselk(-nu, z)
|
||
|
|
||
|
def _eval_rewrite_as_besseli(self, nu, z, **kwargs):
|
||
|
if nu.is_integer is False:
|
||
|
return pi*csc(pi*nu)*(besseli(-nu, z) - besseli(nu, z))/2
|
||
|
|
||
|
def _eval_rewrite_as_besselj(self, nu, z, **kwargs):
|
||
|
ai = self._eval_rewrite_as_besseli(*self.args)
|
||
|
if ai:
|
||
|
return ai.rewrite(besselj)
|
||
|
|
||
|
def _eval_rewrite_as_bessely(self, nu, z, **kwargs):
|
||
|
aj = self._eval_rewrite_as_besselj(*self.args)
|
||
|
if aj:
|
||
|
return aj.rewrite(bessely)
|
||
|
|
||
|
def _eval_rewrite_as_yn(self, nu, z, **kwargs):
|
||
|
ay = self._eval_rewrite_as_bessely(*self.args)
|
||
|
if ay:
|
||
|
return ay.rewrite(yn)
|
||
|
|
||
|
def _eval_is_extended_real(self):
|
||
|
nu, z = self.args
|
||
|
if nu.is_integer and z.is_positive:
|
||
|
return True
|
||
|
|
||
|
def _eval_as_leading_term(self, x, logx=None, cdir=0):
|
||
|
nu, z = self.args
|
||
|
try:
|
||
|
arg = z.as_leading_term(x)
|
||
|
except NotImplementedError:
|
||
|
return self
|
||
|
_, e = arg.as_coeff_exponent(x)
|
||
|
|
||
|
if e.is_positive:
|
||
|
term_one = ((-1)**(nu -1)*log(z/2)*besseli(nu, z))
|
||
|
term_two = (z/2)**(-nu)*factorial(nu - 1)/2 if (nu).is_positive else S.Zero
|
||
|
term_three = (-1)**nu*(z/2)**nu/(2*factorial(nu))*(digamma(nu + 1) - S.EulerGamma)
|
||
|
arg = Add(*[term_one, term_two, term_three]).as_leading_term(x, logx=logx)
|
||
|
return arg
|
||
|
elif e.is_negative:
|
||
|
# Refer Abramowitz and Stegun 1965, p. 378 for more information on
|
||
|
# asymptotic approximation of besselk function.
|
||
|
return sqrt(pi)*exp(-z)/sqrt(2*z)
|
||
|
|
||
|
return super(besselk, self)._eval_as_leading_term(x, logx, cdir)
|
||
|
|
||
|
def _eval_nseries(self, x, n, logx, cdir=0):
|
||
|
# Refer https://functions.wolfram.com/Bessel-TypeFunctions/BesselK/06/01/04/01/02/0008/
|
||
|
# for more information on nseries expansion of besselk function.
|
||
|
from sympy.series.order import Order
|
||
|
nu, z = self.args
|
||
|
|
||
|
# In case of powers less than 1, number of terms need to be computed
|
||
|
# separately to avoid repeated callings of _eval_nseries with wrong n
|
||
|
try:
|
||
|
_, exp = z.leadterm(x)
|
||
|
except (ValueError, NotImplementedError):
|
||
|
return self
|
||
|
|
||
|
if exp.is_positive and nu.is_integer:
|
||
|
newn = ceiling(n/exp)
|
||
|
bn = besseli(nu, z)
|
||
|
a = ((-1)**(nu - 1)*log(z/2)*bn)._eval_nseries(x, n, logx, cdir)
|
||
|
|
||
|
b, c = [], []
|
||
|
o = Order(x**n, x)
|
||
|
r = (z/2)._eval_nseries(x, n, logx, cdir).removeO()
|
||
|
if r is S.Zero:
|
||
|
return o
|
||
|
t = (_mexpand(r**2) + o).removeO()
|
||
|
|
||
|
if nu > S.Zero:
|
||
|
term = r**(-nu)*factorial(nu - 1)/2
|
||
|
b.append(term)
|
||
|
for k in range(1, nu):
|
||
|
denom = (k - nu)*k
|
||
|
if denom == S.Zero:
|
||
|
term *= t/k
|
||
|
else:
|
||
|
term *= t/denom
|
||
|
term = (_mexpand(term) + o).removeO()
|
||
|
b.append(term)
|
||
|
|
||
|
p = r**nu*(-1)**nu/(2*factorial(nu))
|
||
|
term = p*(digamma(nu + 1) - S.EulerGamma)
|
||
|
c.append(term)
|
||
|
for k in range(1, (newn + 1)//2):
|
||
|
p *= t/(k*(k + nu))
|
||
|
p = (_mexpand(p) + o).removeO()
|
||
|
term = p*(digamma(k + nu + 1) + digamma(k + 1))
|
||
|
c.append(term)
|
||
|
return a + Add(*b) + Add(*c) # Order term comes from a
|
||
|
|
||
|
return super(besselk, self)._eval_nseries(x, n, logx, cdir)
|
||
|
|
||
|
|
||
|
class hankel1(BesselBase):
|
||
|
r"""
|
||
|
Hankel function of the first kind.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
This function is defined as
|
||
|
|
||
|
.. math ::
|
||
|
H_\nu^{(1)} = J_\nu(z) + iY_\nu(z),
|
||
|
|
||
|
where $J_\nu(z)$ is the Bessel function of the first kind, and
|
||
|
$Y_\nu(z)$ is the Bessel function of the second kind.
|
||
|
|
||
|
It is a solution to Bessel's equation.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import hankel1
|
||
|
>>> from sympy.abc import z, n
|
||
|
>>> hankel1(n, z).diff(z)
|
||
|
hankel1(n - 1, z)/2 - hankel1(n + 1, z)/2
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
hankel2, besselj, bessely
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://functions.wolfram.com/Bessel-TypeFunctions/HankelH1/
|
||
|
|
||
|
"""
|
||
|
|
||
|
_a = S.One
|
||
|
_b = S.One
|
||
|
|
||
|
def _eval_conjugate(self):
|
||
|
z = self.argument
|
||
|
if z.is_extended_negative is False:
|
||
|
return hankel2(self.order.conjugate(), z.conjugate())
|
||
|
|
||
|
|
||
|
class hankel2(BesselBase):
|
||
|
r"""
|
||
|
Hankel function of the second kind.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
This function is defined as
|
||
|
|
||
|
.. math ::
|
||
|
H_\nu^{(2)} = J_\nu(z) - iY_\nu(z),
|
||
|
|
||
|
where $J_\nu(z)$ is the Bessel function of the first kind, and
|
||
|
$Y_\nu(z)$ is the Bessel function of the second kind.
|
||
|
|
||
|
It is a solution to Bessel's equation, and linearly independent from
|
||
|
$H_\nu^{(1)}$.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import hankel2
|
||
|
>>> from sympy.abc import z, n
|
||
|
>>> hankel2(n, z).diff(z)
|
||
|
hankel2(n - 1, z)/2 - hankel2(n + 1, z)/2
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
hankel1, besselj, bessely
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://functions.wolfram.com/Bessel-TypeFunctions/HankelH2/
|
||
|
|
||
|
"""
|
||
|
|
||
|
_a = S.One
|
||
|
_b = S.One
|
||
|
|
||
|
def _eval_conjugate(self):
|
||
|
z = self.argument
|
||
|
if z.is_extended_negative is False:
|
||
|
return hankel1(self.order.conjugate(), z.conjugate())
|
||
|
|
||
|
|
||
|
def assume_integer_order(fn):
|
||
|
@wraps(fn)
|
||
|
def g(self, nu, z):
|
||
|
if nu.is_integer:
|
||
|
return fn(self, nu, z)
|
||
|
return g
|
||
|
|
||
|
|
||
|
class SphericalBesselBase(BesselBase):
|
||
|
"""
|
||
|
Base class for spherical Bessel functions.
|
||
|
|
||
|
These are thin wrappers around ordinary Bessel functions,
|
||
|
since spherical Bessel functions differ from the ordinary
|
||
|
ones just by a slight change in order.
|
||
|
|
||
|
To use this class, define the ``_eval_evalf()`` and ``_expand()`` methods.
|
||
|
|
||
|
"""
|
||
|
|
||
|
def _expand(self, **hints):
|
||
|
""" Expand self into a polynomial. Nu is guaranteed to be Integer. """
|
||
|
raise NotImplementedError('expansion')
|
||
|
|
||
|
def _eval_expand_func(self, **hints):
|
||
|
if self.order.is_Integer:
|
||
|
return self._expand(**hints)
|
||
|
return self
|
||
|
|
||
|
def fdiff(self, argindex=2):
|
||
|
if argindex != 2:
|
||
|
raise ArgumentIndexError(self, argindex)
|
||
|
return self.__class__(self.order - 1, self.argument) - \
|
||
|
self * (self.order + 1)/self.argument
|
||
|
|
||
|
|
||
|
def _jn(n, z):
|
||
|
return (spherical_bessel_fn(n, z)*sin(z) +
|
||
|
S.NegativeOne**(n + 1)*spherical_bessel_fn(-n - 1, z)*cos(z))
|
||
|
|
||
|
|
||
|
def _yn(n, z):
|
||
|
# (-1)**(n + 1) * _jn(-n - 1, z)
|
||
|
return (S.NegativeOne**(n + 1) * spherical_bessel_fn(-n - 1, z)*sin(z) -
|
||
|
spherical_bessel_fn(n, z)*cos(z))
|
||
|
|
||
|
|
||
|
class jn(SphericalBesselBase):
|
||
|
r"""
|
||
|
Spherical Bessel function of the first kind.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
This function is a solution to the spherical Bessel equation
|
||
|
|
||
|
.. math ::
|
||
|
z^2 \frac{\mathrm{d}^2 w}{\mathrm{d}z^2}
|
||
|
+ 2z \frac{\mathrm{d}w}{\mathrm{d}z} + (z^2 - \nu(\nu + 1)) w = 0.
|
||
|
|
||
|
It can be defined as
|
||
|
|
||
|
.. math ::
|
||
|
j_\nu(z) = \sqrt{\frac{\pi}{2z}} J_{\nu + \frac{1}{2}}(z),
|
||
|
|
||
|
where $J_\nu(z)$ is the Bessel function of the first kind.
|
||
|
|
||
|
The spherical Bessel functions of integral order are
|
||
|
calculated using the formula:
|
||
|
|
||
|
.. math:: j_n(z) = f_n(z) \sin{z} + (-1)^{n+1} f_{-n-1}(z) \cos{z},
|
||
|
|
||
|
where the coefficients $f_n(z)$ are available as
|
||
|
:func:`sympy.polys.orthopolys.spherical_bessel_fn`.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Symbol, jn, sin, cos, expand_func, besselj, bessely
|
||
|
>>> z = Symbol("z")
|
||
|
>>> nu = Symbol("nu", integer=True)
|
||
|
>>> print(expand_func(jn(0, z)))
|
||
|
sin(z)/z
|
||
|
>>> expand_func(jn(1, z)) == sin(z)/z**2 - cos(z)/z
|
||
|
True
|
||
|
>>> expand_func(jn(3, z))
|
||
|
(-6/z**2 + 15/z**4)*sin(z) + (1/z - 15/z**3)*cos(z)
|
||
|
>>> jn(nu, z).rewrite(besselj)
|
||
|
sqrt(2)*sqrt(pi)*sqrt(1/z)*besselj(nu + 1/2, z)/2
|
||
|
>>> jn(nu, z).rewrite(bessely)
|
||
|
(-1)**nu*sqrt(2)*sqrt(pi)*sqrt(1/z)*bessely(-nu - 1/2, z)/2
|
||
|
>>> jn(2, 5.2+0.3j).evalf(20)
|
||
|
0.099419756723640344491 - 0.054525080242173562897*I
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
besselj, bessely, besselk, yn
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://dlmf.nist.gov/10.47
|
||
|
|
||
|
"""
|
||
|
@classmethod
|
||
|
def eval(cls, nu, z):
|
||
|
if z.is_zero:
|
||
|
if nu.is_zero:
|
||
|
return S.One
|
||
|
elif nu.is_integer:
|
||
|
if nu.is_positive:
|
||
|
return S.Zero
|
||
|
else:
|
||
|
return S.ComplexInfinity
|
||
|
if z in (S.NegativeInfinity, S.Infinity):
|
||
|
return S.Zero
|
||
|
|
||
|
def _eval_rewrite_as_besselj(self, nu, z, **kwargs):
|
||
|
return sqrt(pi/(2*z)) * besselj(nu + S.Half, z)
|
||
|
|
||
|
def _eval_rewrite_as_bessely(self, nu, z, **kwargs):
|
||
|
return S.NegativeOne**nu * sqrt(pi/(2*z)) * bessely(-nu - S.Half, z)
|
||
|
|
||
|
def _eval_rewrite_as_yn(self, nu, z, **kwargs):
|
||
|
return S.NegativeOne**(nu) * yn(-nu - 1, z)
|
||
|
|
||
|
def _expand(self, **hints):
|
||
|
return _jn(self.order, self.argument)
|
||
|
|
||
|
def _eval_evalf(self, prec):
|
||
|
if self.order.is_Integer:
|
||
|
return self.rewrite(besselj)._eval_evalf(prec)
|
||
|
|
||
|
|
||
|
class yn(SphericalBesselBase):
|
||
|
r"""
|
||
|
Spherical Bessel function of the second kind.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
This function is another solution to the spherical Bessel equation, and
|
||
|
linearly independent from $j_n$. It can be defined as
|
||
|
|
||
|
.. math ::
|
||
|
y_\nu(z) = \sqrt{\frac{\pi}{2z}} Y_{\nu + \frac{1}{2}}(z),
|
||
|
|
||
|
where $Y_\nu(z)$ is the Bessel function of the second kind.
|
||
|
|
||
|
For integral orders $n$, $y_n$ is calculated using the formula:
|
||
|
|
||
|
.. math:: y_n(z) = (-1)^{n+1} j_{-n-1}(z)
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Symbol, yn, sin, cos, expand_func, besselj, bessely
|
||
|
>>> z = Symbol("z")
|
||
|
>>> nu = Symbol("nu", integer=True)
|
||
|
>>> print(expand_func(yn(0, z)))
|
||
|
-cos(z)/z
|
||
|
>>> expand_func(yn(1, z)) == -cos(z)/z**2-sin(z)/z
|
||
|
True
|
||
|
>>> yn(nu, z).rewrite(besselj)
|
||
|
(-1)**(nu + 1)*sqrt(2)*sqrt(pi)*sqrt(1/z)*besselj(-nu - 1/2, z)/2
|
||
|
>>> yn(nu, z).rewrite(bessely)
|
||
|
sqrt(2)*sqrt(pi)*sqrt(1/z)*bessely(nu + 1/2, z)/2
|
||
|
>>> yn(2, 5.2+0.3j).evalf(20)
|
||
|
0.18525034196069722536 + 0.014895573969924817587*I
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
besselj, bessely, besselk, jn
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://dlmf.nist.gov/10.47
|
||
|
|
||
|
"""
|
||
|
@assume_integer_order
|
||
|
def _eval_rewrite_as_besselj(self, nu, z, **kwargs):
|
||
|
return S.NegativeOne**(nu+1) * sqrt(pi/(2*z)) * besselj(-nu - S.Half, z)
|
||
|
|
||
|
@assume_integer_order
|
||
|
def _eval_rewrite_as_bessely(self, nu, z, **kwargs):
|
||
|
return sqrt(pi/(2*z)) * bessely(nu + S.Half, z)
|
||
|
|
||
|
def _eval_rewrite_as_jn(self, nu, z, **kwargs):
|
||
|
return S.NegativeOne**(nu + 1) * jn(-nu - 1, z)
|
||
|
|
||
|
def _expand(self, **hints):
|
||
|
return _yn(self.order, self.argument)
|
||
|
|
||
|
def _eval_evalf(self, prec):
|
||
|
if self.order.is_Integer:
|
||
|
return self.rewrite(bessely)._eval_evalf(prec)
|
||
|
|
||
|
|
||
|
class SphericalHankelBase(SphericalBesselBase):
|
||
|
|
||
|
@assume_integer_order
|
||
|
def _eval_rewrite_as_besselj(self, nu, z, **kwargs):
|
||
|
# jn +- I*yn
|
||
|
# jn as beeselj: sqrt(pi/(2*z)) * besselj(nu + S.Half, z)
|
||
|
# yn as besselj: (-1)**(nu+1) * sqrt(pi/(2*z)) * besselj(-nu - S.Half, z)
|
||
|
hks = self._hankel_kind_sign
|
||
|
return sqrt(pi/(2*z))*(besselj(nu + S.Half, z) +
|
||
|
hks*I*S.NegativeOne**(nu+1)*besselj(-nu - S.Half, z))
|
||
|
|
||
|
@assume_integer_order
|
||
|
def _eval_rewrite_as_bessely(self, nu, z, **kwargs):
|
||
|
# jn +- I*yn
|
||
|
# jn as bessely: (-1)**nu * sqrt(pi/(2*z)) * bessely(-nu - S.Half, z)
|
||
|
# yn as bessely: sqrt(pi/(2*z)) * bessely(nu + S.Half, z)
|
||
|
hks = self._hankel_kind_sign
|
||
|
return sqrt(pi/(2*z))*(S.NegativeOne**nu*bessely(-nu - S.Half, z) +
|
||
|
hks*I*bessely(nu + S.Half, z))
|
||
|
|
||
|
def _eval_rewrite_as_yn(self, nu, z, **kwargs):
|
||
|
hks = self._hankel_kind_sign
|
||
|
return jn(nu, z).rewrite(yn) + hks*I*yn(nu, z)
|
||
|
|
||
|
def _eval_rewrite_as_jn(self, nu, z, **kwargs):
|
||
|
hks = self._hankel_kind_sign
|
||
|
return jn(nu, z) + hks*I*yn(nu, z).rewrite(jn)
|
||
|
|
||
|
def _eval_expand_func(self, **hints):
|
||
|
if self.order.is_Integer:
|
||
|
return self._expand(**hints)
|
||
|
else:
|
||
|
nu = self.order
|
||
|
z = self.argument
|
||
|
hks = self._hankel_kind_sign
|
||
|
return jn(nu, z) + hks*I*yn(nu, z)
|
||
|
|
||
|
def _expand(self, **hints):
|
||
|
n = self.order
|
||
|
z = self.argument
|
||
|
hks = self._hankel_kind_sign
|
||
|
|
||
|
# fully expanded version
|
||
|
# return ((fn(n, z) * sin(z) +
|
||
|
# (-1)**(n + 1) * fn(-n - 1, z) * cos(z)) + # jn
|
||
|
# (hks * I * (-1)**(n + 1) *
|
||
|
# (fn(-n - 1, z) * hk * I * sin(z) +
|
||
|
# (-1)**(-n) * fn(n, z) * I * cos(z))) # +-I*yn
|
||
|
# )
|
||
|
|
||
|
return (_jn(n, z) + hks*I*_yn(n, z)).expand()
|
||
|
|
||
|
def _eval_evalf(self, prec):
|
||
|
if self.order.is_Integer:
|
||
|
return self.rewrite(besselj)._eval_evalf(prec)
|
||
|
|
||
|
|
||
|
class hn1(SphericalHankelBase):
|
||
|
r"""
|
||
|
Spherical Hankel function of the first kind.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
This function is defined as
|
||
|
|
||
|
.. math:: h_\nu^(1)(z) = j_\nu(z) + i y_\nu(z),
|
||
|
|
||
|
where $j_\nu(z)$ and $y_\nu(z)$ are the spherical
|
||
|
Bessel function of the first and second kinds.
|
||
|
|
||
|
For integral orders $n$, $h_n^(1)$ is calculated using the formula:
|
||
|
|
||
|
.. math:: h_n^(1)(z) = j_{n}(z) + i (-1)^{n+1} j_{-n-1}(z)
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Symbol, hn1, hankel1, expand_func, yn, jn
|
||
|
>>> z = Symbol("z")
|
||
|
>>> nu = Symbol("nu", integer=True)
|
||
|
>>> print(expand_func(hn1(nu, z)))
|
||
|
jn(nu, z) + I*yn(nu, z)
|
||
|
>>> print(expand_func(hn1(0, z)))
|
||
|
sin(z)/z - I*cos(z)/z
|
||
|
>>> print(expand_func(hn1(1, z)))
|
||
|
-I*sin(z)/z - cos(z)/z + sin(z)/z**2 - I*cos(z)/z**2
|
||
|
>>> hn1(nu, z).rewrite(jn)
|
||
|
(-1)**(nu + 1)*I*jn(-nu - 1, z) + jn(nu, z)
|
||
|
>>> hn1(nu, z).rewrite(yn)
|
||
|
(-1)**nu*yn(-nu - 1, z) + I*yn(nu, z)
|
||
|
>>> hn1(nu, z).rewrite(hankel1)
|
||
|
sqrt(2)*sqrt(pi)*sqrt(1/z)*hankel1(nu, z)/2
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
hn2, jn, yn, hankel1, hankel2
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://dlmf.nist.gov/10.47
|
||
|
|
||
|
"""
|
||
|
|
||
|
_hankel_kind_sign = S.One
|
||
|
|
||
|
@assume_integer_order
|
||
|
def _eval_rewrite_as_hankel1(self, nu, z, **kwargs):
|
||
|
return sqrt(pi/(2*z))*hankel1(nu, z)
|
||
|
|
||
|
|
||
|
class hn2(SphericalHankelBase):
|
||
|
r"""
|
||
|
Spherical Hankel function of the second kind.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
This function is defined as
|
||
|
|
||
|
.. math:: h_\nu^(2)(z) = j_\nu(z) - i y_\nu(z),
|
||
|
|
||
|
where $j_\nu(z)$ and $y_\nu(z)$ are the spherical
|
||
|
Bessel function of the first and second kinds.
|
||
|
|
||
|
For integral orders $n$, $h_n^(2)$ is calculated using the formula:
|
||
|
|
||
|
.. math:: h_n^(2)(z) = j_{n} - i (-1)^{n+1} j_{-n-1}(z)
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Symbol, hn2, hankel2, expand_func, jn, yn
|
||
|
>>> z = Symbol("z")
|
||
|
>>> nu = Symbol("nu", integer=True)
|
||
|
>>> print(expand_func(hn2(nu, z)))
|
||
|
jn(nu, z) - I*yn(nu, z)
|
||
|
>>> print(expand_func(hn2(0, z)))
|
||
|
sin(z)/z + I*cos(z)/z
|
||
|
>>> print(expand_func(hn2(1, z)))
|
||
|
I*sin(z)/z - cos(z)/z + sin(z)/z**2 + I*cos(z)/z**2
|
||
|
>>> hn2(nu, z).rewrite(hankel2)
|
||
|
sqrt(2)*sqrt(pi)*sqrt(1/z)*hankel2(nu, z)/2
|
||
|
>>> hn2(nu, z).rewrite(jn)
|
||
|
-(-1)**(nu + 1)*I*jn(-nu - 1, z) + jn(nu, z)
|
||
|
>>> hn2(nu, z).rewrite(yn)
|
||
|
(-1)**nu*yn(-nu - 1, z) - I*yn(nu, z)
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
hn1, jn, yn, hankel1, hankel2
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://dlmf.nist.gov/10.47
|
||
|
|
||
|
"""
|
||
|
|
||
|
_hankel_kind_sign = -S.One
|
||
|
|
||
|
@assume_integer_order
|
||
|
def _eval_rewrite_as_hankel2(self, nu, z, **kwargs):
|
||
|
return sqrt(pi/(2*z))*hankel2(nu, z)
|
||
|
|
||
|
|
||
|
def jn_zeros(n, k, method="sympy", dps=15):
|
||
|
"""
|
||
|
Zeros of the spherical Bessel function of the first kind.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
This returns an array of zeros of $jn$ up to the $k$-th zero.
|
||
|
|
||
|
* method = "sympy": uses `mpmath.besseljzero
|
||
|
<https://mpmath.org/doc/current/functions/bessel.html#mpmath.besseljzero>`_
|
||
|
* method = "scipy": uses the
|
||
|
`SciPy's sph_jn <https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.jn_zeros.html>`_
|
||
|
and
|
||
|
`newton <https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.newton.html>`_
|
||
|
to find all
|
||
|
roots, which is faster than computing the zeros using a general
|
||
|
numerical solver, but it requires SciPy and only works with low
|
||
|
precision floating point numbers. (The function used with
|
||
|
method="sympy" is a recent addition to mpmath; before that a general
|
||
|
solver was used.)
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import jn_zeros
|
||
|
>>> jn_zeros(2, 4, dps=5)
|
||
|
[5.7635, 9.095, 12.323, 15.515]
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
jn, yn, besselj, besselk, bessely
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
n : integer
|
||
|
order of Bessel function
|
||
|
|
||
|
k : integer
|
||
|
number of zeros to return
|
||
|
|
||
|
|
||
|
"""
|
||
|
from math import pi as math_pi
|
||
|
|
||
|
if method == "sympy":
|
||
|
from mpmath import besseljzero
|
||
|
from mpmath.libmp.libmpf import dps_to_prec
|
||
|
prec = dps_to_prec(dps)
|
||
|
return [Expr._from_mpmath(besseljzero(S(n + 0.5)._to_mpmath(prec),
|
||
|
int(l)), prec)
|
||
|
for l in range(1, k + 1)]
|
||
|
elif method == "scipy":
|
||
|
from scipy.optimize import newton
|
||
|
try:
|
||
|
from scipy.special import spherical_jn
|
||
|
f = lambda x: spherical_jn(n, x)
|
||
|
except ImportError:
|
||
|
from scipy.special import sph_jn
|
||
|
f = lambda x: sph_jn(n, x)[0][-1]
|
||
|
else:
|
||
|
raise NotImplementedError("Unknown method.")
|
||
|
|
||
|
def solver(f, x):
|
||
|
if method == "scipy":
|
||
|
root = newton(f, x)
|
||
|
else:
|
||
|
raise NotImplementedError("Unknown method.")
|
||
|
return root
|
||
|
|
||
|
# we need to approximate the position of the first root:
|
||
|
root = n + math_pi
|
||
|
# determine the first root exactly:
|
||
|
root = solver(f, root)
|
||
|
roots = [root]
|
||
|
for i in range(k - 1):
|
||
|
# estimate the position of the next root using the last root + pi:
|
||
|
root = solver(f, root + math_pi)
|
||
|
roots.append(root)
|
||
|
return roots
|
||
|
|
||
|
|
||
|
class AiryBase(Function):
|
||
|
"""
|
||
|
Abstract base class for Airy functions.
|
||
|
|
||
|
This class is meant to reduce code duplication.
|
||
|
|
||
|
"""
|
||
|
|
||
|
def _eval_conjugate(self):
|
||
|
return self.func(self.args[0].conjugate())
|
||
|
|
||
|
def _eval_is_extended_real(self):
|
||
|
return self.args[0].is_extended_real
|
||
|
|
||
|
def as_real_imag(self, deep=True, **hints):
|
||
|
z = self.args[0]
|
||
|
zc = z.conjugate()
|
||
|
f = self.func
|
||
|
u = (f(z)+f(zc))/2
|
||
|
v = I*(f(zc)-f(z))/2
|
||
|
return u, v
|
||
|
|
||
|
def _eval_expand_complex(self, deep=True, **hints):
|
||
|
re_part, im_part = self.as_real_imag(deep=deep, **hints)
|
||
|
return re_part + im_part*I
|
||
|
|
||
|
|
||
|
class airyai(AiryBase):
|
||
|
r"""
|
||
|
The Airy function $\operatorname{Ai}$ of the first kind.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
The Airy function $\operatorname{Ai}(z)$ is defined to be the function
|
||
|
satisfying Airy's differential equation
|
||
|
|
||
|
.. math::
|
||
|
\frac{\mathrm{d}^2 w(z)}{\mathrm{d}z^2} - z w(z) = 0.
|
||
|
|
||
|
Equivalently, for real $z$
|
||
|
|
||
|
.. math::
|
||
|
\operatorname{Ai}(z) := \frac{1}{\pi}
|
||
|
\int_0^\infty \cos\left(\frac{t^3}{3} + z t\right) \mathrm{d}t.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
Create an Airy function object:
|
||
|
|
||
|
>>> from sympy import airyai
|
||
|
>>> from sympy.abc import z
|
||
|
|
||
|
>>> airyai(z)
|
||
|
airyai(z)
|
||
|
|
||
|
Several special values are known:
|
||
|
|
||
|
>>> airyai(0)
|
||
|
3**(1/3)/(3*gamma(2/3))
|
||
|
>>> from sympy import oo
|
||
|
>>> airyai(oo)
|
||
|
0
|
||
|
>>> airyai(-oo)
|
||
|
0
|
||
|
|
||
|
The Airy function obeys the mirror symmetry:
|
||
|
|
||
|
>>> from sympy import conjugate
|
||
|
>>> conjugate(airyai(z))
|
||
|
airyai(conjugate(z))
|
||
|
|
||
|
Differentiation with respect to $z$ is supported:
|
||
|
|
||
|
>>> from sympy import diff
|
||
|
>>> diff(airyai(z), z)
|
||
|
airyaiprime(z)
|
||
|
>>> diff(airyai(z), z, 2)
|
||
|
z*airyai(z)
|
||
|
|
||
|
Series expansion is also supported:
|
||
|
|
||
|
>>> from sympy import series
|
||
|
>>> series(airyai(z), z, 0, 3)
|
||
|
3**(5/6)*gamma(1/3)/(6*pi) - 3**(1/6)*z*gamma(2/3)/(2*pi) + O(z**3)
|
||
|
|
||
|
We can numerically evaluate the Airy function to arbitrary precision
|
||
|
on the whole complex plane:
|
||
|
|
||
|
>>> airyai(-2).evalf(50)
|
||
|
0.22740742820168557599192443603787379946077222541710
|
||
|
|
||
|
Rewrite $\operatorname{Ai}(z)$ in terms of hypergeometric functions:
|
||
|
|
||
|
>>> from sympy import hyper
|
||
|
>>> airyai(z).rewrite(hyper)
|
||
|
-3**(2/3)*z*hyper((), (4/3,), z**3/9)/(3*gamma(1/3)) + 3**(1/3)*hyper((), (2/3,), z**3/9)/(3*gamma(2/3))
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
airybi: Airy function of the second kind.
|
||
|
airyaiprime: Derivative of the Airy function of the first kind.
|
||
|
airybiprime: Derivative of the Airy function of the second kind.
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://en.wikipedia.org/wiki/Airy_function
|
||
|
.. [2] https://dlmf.nist.gov/9
|
||
|
.. [3] https://encyclopediaofmath.org/wiki/Airy_functions
|
||
|
.. [4] https://mathworld.wolfram.com/AiryFunctions.html
|
||
|
|
||
|
"""
|
||
|
|
||
|
nargs = 1
|
||
|
unbranched = True
|
||
|
|
||
|
@classmethod
|
||
|
def eval(cls, arg):
|
||
|
if arg.is_Number:
|
||
|
if arg is S.NaN:
|
||
|
return S.NaN
|
||
|
elif arg is S.Infinity:
|
||
|
return S.Zero
|
||
|
elif arg is S.NegativeInfinity:
|
||
|
return S.Zero
|
||
|
elif arg.is_zero:
|
||
|
return S.One / (3**Rational(2, 3) * gamma(Rational(2, 3)))
|
||
|
if arg.is_zero:
|
||
|
return S.One / (3**Rational(2, 3) * gamma(Rational(2, 3)))
|
||
|
|
||
|
def fdiff(self, argindex=1):
|
||
|
if argindex == 1:
|
||
|
return airyaiprime(self.args[0])
|
||
|
else:
|
||
|
raise ArgumentIndexError(self, argindex)
|
||
|
|
||
|
@staticmethod
|
||
|
@cacheit
|
||
|
def taylor_term(n, x, *previous_terms):
|
||
|
if n < 0:
|
||
|
return S.Zero
|
||
|
else:
|
||
|
x = sympify(x)
|
||
|
if len(previous_terms) > 1:
|
||
|
p = previous_terms[-1]
|
||
|
return ((cbrt(3)*x)**(-n)*(cbrt(3)*x)**(n + 1)*sin(pi*(n*Rational(2, 3) + Rational(4, 3)))*factorial(n) *
|
||
|
gamma(n/3 + Rational(2, 3))/(sin(pi*(n*Rational(2, 3) + Rational(2, 3)))*factorial(n + 1)*gamma(n/3 + Rational(1, 3))) * p)
|
||
|
else:
|
||
|
return (S.One/(3**Rational(2, 3)*pi) * gamma((n+S.One)/S(3)) * sin(Rational(2, 3)*pi*(n+S.One)) /
|
||
|
factorial(n) * (cbrt(3)*x)**n)
|
||
|
|
||
|
def _eval_rewrite_as_besselj(self, z, **kwargs):
|
||
|
ot = Rational(1, 3)
|
||
|
tt = Rational(2, 3)
|
||
|
a = Pow(-z, Rational(3, 2))
|
||
|
if re(z).is_negative:
|
||
|
return ot*sqrt(-z) * (besselj(-ot, tt*a) + besselj(ot, tt*a))
|
||
|
|
||
|
def _eval_rewrite_as_besseli(self, z, **kwargs):
|
||
|
ot = Rational(1, 3)
|
||
|
tt = Rational(2, 3)
|
||
|
a = Pow(z, Rational(3, 2))
|
||
|
if re(z).is_positive:
|
||
|
return ot*sqrt(z) * (besseli(-ot, tt*a) - besseli(ot, tt*a))
|
||
|
else:
|
||
|
return ot*(Pow(a, ot)*besseli(-ot, tt*a) - z*Pow(a, -ot)*besseli(ot, tt*a))
|
||
|
|
||
|
def _eval_rewrite_as_hyper(self, z, **kwargs):
|
||
|
pf1 = S.One / (3**Rational(2, 3)*gamma(Rational(2, 3)))
|
||
|
pf2 = z / (root(3, 3)*gamma(Rational(1, 3)))
|
||
|
return pf1 * hyper([], [Rational(2, 3)], z**3/9) - pf2 * hyper([], [Rational(4, 3)], z**3/9)
|
||
|
|
||
|
def _eval_expand_func(self, **hints):
|
||
|
arg = self.args[0]
|
||
|
symbs = arg.free_symbols
|
||
|
|
||
|
if len(symbs) == 1:
|
||
|
z = symbs.pop()
|
||
|
c = Wild("c", exclude=[z])
|
||
|
d = Wild("d", exclude=[z])
|
||
|
m = Wild("m", exclude=[z])
|
||
|
n = Wild("n", exclude=[z])
|
||
|
M = arg.match(c*(d*z**n)**m)
|
||
|
if M is not None:
|
||
|
m = M[m]
|
||
|
# The transformation is given by 03.05.16.0001.01
|
||
|
# https://functions.wolfram.com/Bessel-TypeFunctions/AiryAi/16/01/01/0001/
|
||
|
if (3*m).is_integer:
|
||
|
c = M[c]
|
||
|
d = M[d]
|
||
|
n = M[n]
|
||
|
pf = (d * z**n)**m / (d**m * z**(m*n))
|
||
|
newarg = c * d**m * z**(m*n)
|
||
|
return S.Half * ((pf + S.One)*airyai(newarg) - (pf - S.One)/sqrt(3)*airybi(newarg))
|
||
|
|
||
|
|
||
|
class airybi(AiryBase):
|
||
|
r"""
|
||
|
The Airy function $\operatorname{Bi}$ of the second kind.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
The Airy function $\operatorname{Bi}(z)$ is defined to be the function
|
||
|
satisfying Airy's differential equation
|
||
|
|
||
|
.. math::
|
||
|
\frac{\mathrm{d}^2 w(z)}{\mathrm{d}z^2} - z w(z) = 0.
|
||
|
|
||
|
Equivalently, for real $z$
|
||
|
|
||
|
.. math::
|
||
|
\operatorname{Bi}(z) := \frac{1}{\pi}
|
||
|
\int_0^\infty
|
||
|
\exp\left(-\frac{t^3}{3} + z t\right)
|
||
|
+ \sin\left(\frac{t^3}{3} + z t\right) \mathrm{d}t.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
Create an Airy function object:
|
||
|
|
||
|
>>> from sympy import airybi
|
||
|
>>> from sympy.abc import z
|
||
|
|
||
|
>>> airybi(z)
|
||
|
airybi(z)
|
||
|
|
||
|
Several special values are known:
|
||
|
|
||
|
>>> airybi(0)
|
||
|
3**(5/6)/(3*gamma(2/3))
|
||
|
>>> from sympy import oo
|
||
|
>>> airybi(oo)
|
||
|
oo
|
||
|
>>> airybi(-oo)
|
||
|
0
|
||
|
|
||
|
The Airy function obeys the mirror symmetry:
|
||
|
|
||
|
>>> from sympy import conjugate
|
||
|
>>> conjugate(airybi(z))
|
||
|
airybi(conjugate(z))
|
||
|
|
||
|
Differentiation with respect to $z$ is supported:
|
||
|
|
||
|
>>> from sympy import diff
|
||
|
>>> diff(airybi(z), z)
|
||
|
airybiprime(z)
|
||
|
>>> diff(airybi(z), z, 2)
|
||
|
z*airybi(z)
|
||
|
|
||
|
Series expansion is also supported:
|
||
|
|
||
|
>>> from sympy import series
|
||
|
>>> series(airybi(z), z, 0, 3)
|
||
|
3**(1/3)*gamma(1/3)/(2*pi) + 3**(2/3)*z*gamma(2/3)/(2*pi) + O(z**3)
|
||
|
|
||
|
We can numerically evaluate the Airy function to arbitrary precision
|
||
|
on the whole complex plane:
|
||
|
|
||
|
>>> airybi(-2).evalf(50)
|
||
|
-0.41230258795639848808323405461146104203453483447240
|
||
|
|
||
|
Rewrite $\operatorname{Bi}(z)$ in terms of hypergeometric functions:
|
||
|
|
||
|
>>> from sympy import hyper
|
||
|
>>> airybi(z).rewrite(hyper)
|
||
|
3**(1/6)*z*hyper((), (4/3,), z**3/9)/gamma(1/3) + 3**(5/6)*hyper((), (2/3,), z**3/9)/(3*gamma(2/3))
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
airyai: Airy function of the first kind.
|
||
|
airyaiprime: Derivative of the Airy function of the first kind.
|
||
|
airybiprime: Derivative of the Airy function of the second kind.
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://en.wikipedia.org/wiki/Airy_function
|
||
|
.. [2] https://dlmf.nist.gov/9
|
||
|
.. [3] https://encyclopediaofmath.org/wiki/Airy_functions
|
||
|
.. [4] https://mathworld.wolfram.com/AiryFunctions.html
|
||
|
|
||
|
"""
|
||
|
|
||
|
nargs = 1
|
||
|
unbranched = True
|
||
|
|
||
|
@classmethod
|
||
|
def eval(cls, arg):
|
||
|
if arg.is_Number:
|
||
|
if arg is S.NaN:
|
||
|
return S.NaN
|
||
|
elif arg is S.Infinity:
|
||
|
return S.Infinity
|
||
|
elif arg is S.NegativeInfinity:
|
||
|
return S.Zero
|
||
|
elif arg.is_zero:
|
||
|
return S.One / (3**Rational(1, 6) * gamma(Rational(2, 3)))
|
||
|
|
||
|
if arg.is_zero:
|
||
|
return S.One / (3**Rational(1, 6) * gamma(Rational(2, 3)))
|
||
|
|
||
|
def fdiff(self, argindex=1):
|
||
|
if argindex == 1:
|
||
|
return airybiprime(self.args[0])
|
||
|
else:
|
||
|
raise ArgumentIndexError(self, argindex)
|
||
|
|
||
|
@staticmethod
|
||
|
@cacheit
|
||
|
def taylor_term(n, x, *previous_terms):
|
||
|
if n < 0:
|
||
|
return S.Zero
|
||
|
else:
|
||
|
x = sympify(x)
|
||
|
if len(previous_terms) > 1:
|
||
|
p = previous_terms[-1]
|
||
|
return (cbrt(3)*x * Abs(sin(Rational(2, 3)*pi*(n + S.One))) * factorial((n - S.One)/S(3)) /
|
||
|
((n + S.One) * Abs(cos(Rational(2, 3)*pi*(n + S.Half))) * factorial((n - 2)/S(3))) * p)
|
||
|
else:
|
||
|
return (S.One/(root(3, 6)*pi) * gamma((n + S.One)/S(3)) * Abs(sin(Rational(2, 3)*pi*(n + S.One))) /
|
||
|
factorial(n) * (cbrt(3)*x)**n)
|
||
|
|
||
|
def _eval_rewrite_as_besselj(self, z, **kwargs):
|
||
|
ot = Rational(1, 3)
|
||
|
tt = Rational(2, 3)
|
||
|
a = Pow(-z, Rational(3, 2))
|
||
|
if re(z).is_negative:
|
||
|
return sqrt(-z/3) * (besselj(-ot, tt*a) - besselj(ot, tt*a))
|
||
|
|
||
|
def _eval_rewrite_as_besseli(self, z, **kwargs):
|
||
|
ot = Rational(1, 3)
|
||
|
tt = Rational(2, 3)
|
||
|
a = Pow(z, Rational(3, 2))
|
||
|
if re(z).is_positive:
|
||
|
return sqrt(z)/sqrt(3) * (besseli(-ot, tt*a) + besseli(ot, tt*a))
|
||
|
else:
|
||
|
b = Pow(a, ot)
|
||
|
c = Pow(a, -ot)
|
||
|
return sqrt(ot)*(b*besseli(-ot, tt*a) + z*c*besseli(ot, tt*a))
|
||
|
|
||
|
def _eval_rewrite_as_hyper(self, z, **kwargs):
|
||
|
pf1 = S.One / (root(3, 6)*gamma(Rational(2, 3)))
|
||
|
pf2 = z*root(3, 6) / gamma(Rational(1, 3))
|
||
|
return pf1 * hyper([], [Rational(2, 3)], z**3/9) + pf2 * hyper([], [Rational(4, 3)], z**3/9)
|
||
|
|
||
|
def _eval_expand_func(self, **hints):
|
||
|
arg = self.args[0]
|
||
|
symbs = arg.free_symbols
|
||
|
|
||
|
if len(symbs) == 1:
|
||
|
z = symbs.pop()
|
||
|
c = Wild("c", exclude=[z])
|
||
|
d = Wild("d", exclude=[z])
|
||
|
m = Wild("m", exclude=[z])
|
||
|
n = Wild("n", exclude=[z])
|
||
|
M = arg.match(c*(d*z**n)**m)
|
||
|
if M is not None:
|
||
|
m = M[m]
|
||
|
# The transformation is given by 03.06.16.0001.01
|
||
|
# https://functions.wolfram.com/Bessel-TypeFunctions/AiryBi/16/01/01/0001/
|
||
|
if (3*m).is_integer:
|
||
|
c = M[c]
|
||
|
d = M[d]
|
||
|
n = M[n]
|
||
|
pf = (d * z**n)**m / (d**m * z**(m*n))
|
||
|
newarg = c * d**m * z**(m*n)
|
||
|
return S.Half * (sqrt(3)*(S.One - pf)*airyai(newarg) + (S.One + pf)*airybi(newarg))
|
||
|
|
||
|
|
||
|
class airyaiprime(AiryBase):
|
||
|
r"""
|
||
|
The derivative $\operatorname{Ai}^\prime$ of the Airy function of the first
|
||
|
kind.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
The Airy function $\operatorname{Ai}^\prime(z)$ is defined to be the
|
||
|
function
|
||
|
|
||
|
.. math::
|
||
|
\operatorname{Ai}^\prime(z) := \frac{\mathrm{d} \operatorname{Ai}(z)}{\mathrm{d} z}.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
Create an Airy function object:
|
||
|
|
||
|
>>> from sympy import airyaiprime
|
||
|
>>> from sympy.abc import z
|
||
|
|
||
|
>>> airyaiprime(z)
|
||
|
airyaiprime(z)
|
||
|
|
||
|
Several special values are known:
|
||
|
|
||
|
>>> airyaiprime(0)
|
||
|
-3**(2/3)/(3*gamma(1/3))
|
||
|
>>> from sympy import oo
|
||
|
>>> airyaiprime(oo)
|
||
|
0
|
||
|
|
||
|
The Airy function obeys the mirror symmetry:
|
||
|
|
||
|
>>> from sympy import conjugate
|
||
|
>>> conjugate(airyaiprime(z))
|
||
|
airyaiprime(conjugate(z))
|
||
|
|
||
|
Differentiation with respect to $z$ is supported:
|
||
|
|
||
|
>>> from sympy import diff
|
||
|
>>> diff(airyaiprime(z), z)
|
||
|
z*airyai(z)
|
||
|
>>> diff(airyaiprime(z), z, 2)
|
||
|
z*airyaiprime(z) + airyai(z)
|
||
|
|
||
|
Series expansion is also supported:
|
||
|
|
||
|
>>> from sympy import series
|
||
|
>>> series(airyaiprime(z), z, 0, 3)
|
||
|
-3**(2/3)/(3*gamma(1/3)) + 3**(1/3)*z**2/(6*gamma(2/3)) + O(z**3)
|
||
|
|
||
|
We can numerically evaluate the Airy function to arbitrary precision
|
||
|
on the whole complex plane:
|
||
|
|
||
|
>>> airyaiprime(-2).evalf(50)
|
||
|
0.61825902074169104140626429133247528291577794512415
|
||
|
|
||
|
Rewrite $\operatorname{Ai}^\prime(z)$ in terms of hypergeometric functions:
|
||
|
|
||
|
>>> from sympy import hyper
|
||
|
>>> airyaiprime(z).rewrite(hyper)
|
||
|
3**(1/3)*z**2*hyper((), (5/3,), z**3/9)/(6*gamma(2/3)) - 3**(2/3)*hyper((), (1/3,), z**3/9)/(3*gamma(1/3))
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
airyai: Airy function of the first kind.
|
||
|
airybi: Airy function of the second kind.
|
||
|
airybiprime: Derivative of the Airy function of the second kind.
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://en.wikipedia.org/wiki/Airy_function
|
||
|
.. [2] https://dlmf.nist.gov/9
|
||
|
.. [3] https://encyclopediaofmath.org/wiki/Airy_functions
|
||
|
.. [4] https://mathworld.wolfram.com/AiryFunctions.html
|
||
|
|
||
|
"""
|
||
|
|
||
|
nargs = 1
|
||
|
unbranched = True
|
||
|
|
||
|
@classmethod
|
||
|
def eval(cls, arg):
|
||
|
if arg.is_Number:
|
||
|
if arg is S.NaN:
|
||
|
return S.NaN
|
||
|
elif arg is S.Infinity:
|
||
|
return S.Zero
|
||
|
|
||
|
if arg.is_zero:
|
||
|
return S.NegativeOne / (3**Rational(1, 3) * gamma(Rational(1, 3)))
|
||
|
|
||
|
def fdiff(self, argindex=1):
|
||
|
if argindex == 1:
|
||
|
return self.args[0]*airyai(self.args[0])
|
||
|
else:
|
||
|
raise ArgumentIndexError(self, argindex)
|
||
|
|
||
|
def _eval_evalf(self, prec):
|
||
|
z = self.args[0]._to_mpmath(prec)
|
||
|
with workprec(prec):
|
||
|
res = mp.airyai(z, derivative=1)
|
||
|
return Expr._from_mpmath(res, prec)
|
||
|
|
||
|
def _eval_rewrite_as_besselj(self, z, **kwargs):
|
||
|
tt = Rational(2, 3)
|
||
|
a = Pow(-z, Rational(3, 2))
|
||
|
if re(z).is_negative:
|
||
|
return z/3 * (besselj(-tt, tt*a) - besselj(tt, tt*a))
|
||
|
|
||
|
def _eval_rewrite_as_besseli(self, z, **kwargs):
|
||
|
ot = Rational(1, 3)
|
||
|
tt = Rational(2, 3)
|
||
|
a = tt * Pow(z, Rational(3, 2))
|
||
|
if re(z).is_positive:
|
||
|
return z/3 * (besseli(tt, a) - besseli(-tt, a))
|
||
|
else:
|
||
|
a = Pow(z, Rational(3, 2))
|
||
|
b = Pow(a, tt)
|
||
|
c = Pow(a, -tt)
|
||
|
return ot * (z**2*c*besseli(tt, tt*a) - b*besseli(-ot, tt*a))
|
||
|
|
||
|
def _eval_rewrite_as_hyper(self, z, **kwargs):
|
||
|
pf1 = z**2 / (2*3**Rational(2, 3)*gamma(Rational(2, 3)))
|
||
|
pf2 = 1 / (root(3, 3)*gamma(Rational(1, 3)))
|
||
|
return pf1 * hyper([], [Rational(5, 3)], z**3/9) - pf2 * hyper([], [Rational(1, 3)], z**3/9)
|
||
|
|
||
|
def _eval_expand_func(self, **hints):
|
||
|
arg = self.args[0]
|
||
|
symbs = arg.free_symbols
|
||
|
|
||
|
if len(symbs) == 1:
|
||
|
z = symbs.pop()
|
||
|
c = Wild("c", exclude=[z])
|
||
|
d = Wild("d", exclude=[z])
|
||
|
m = Wild("m", exclude=[z])
|
||
|
n = Wild("n", exclude=[z])
|
||
|
M = arg.match(c*(d*z**n)**m)
|
||
|
if M is not None:
|
||
|
m = M[m]
|
||
|
# The transformation is in principle
|
||
|
# given by 03.07.16.0001.01 but note
|
||
|
# that there is an error in this formula.
|
||
|
# https://functions.wolfram.com/Bessel-TypeFunctions/AiryAiPrime/16/01/01/0001/
|
||
|
if (3*m).is_integer:
|
||
|
c = M[c]
|
||
|
d = M[d]
|
||
|
n = M[n]
|
||
|
pf = (d**m * z**(n*m)) / (d * z**n)**m
|
||
|
newarg = c * d**m * z**(n*m)
|
||
|
return S.Half * ((pf + S.One)*airyaiprime(newarg) + (pf - S.One)/sqrt(3)*airybiprime(newarg))
|
||
|
|
||
|
|
||
|
class airybiprime(AiryBase):
|
||
|
r"""
|
||
|
The derivative $\operatorname{Bi}^\prime$ of the Airy function of the first
|
||
|
kind.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
The Airy function $\operatorname{Bi}^\prime(z)$ is defined to be the
|
||
|
function
|
||
|
|
||
|
.. math::
|
||
|
\operatorname{Bi}^\prime(z) := \frac{\mathrm{d} \operatorname{Bi}(z)}{\mathrm{d} z}.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
Create an Airy function object:
|
||
|
|
||
|
>>> from sympy import airybiprime
|
||
|
>>> from sympy.abc import z
|
||
|
|
||
|
>>> airybiprime(z)
|
||
|
airybiprime(z)
|
||
|
|
||
|
Several special values are known:
|
||
|
|
||
|
>>> airybiprime(0)
|
||
|
3**(1/6)/gamma(1/3)
|
||
|
>>> from sympy import oo
|
||
|
>>> airybiprime(oo)
|
||
|
oo
|
||
|
>>> airybiprime(-oo)
|
||
|
0
|
||
|
|
||
|
The Airy function obeys the mirror symmetry:
|
||
|
|
||
|
>>> from sympy import conjugate
|
||
|
>>> conjugate(airybiprime(z))
|
||
|
airybiprime(conjugate(z))
|
||
|
|
||
|
Differentiation with respect to $z$ is supported:
|
||
|
|
||
|
>>> from sympy import diff
|
||
|
>>> diff(airybiprime(z), z)
|
||
|
z*airybi(z)
|
||
|
>>> diff(airybiprime(z), z, 2)
|
||
|
z*airybiprime(z) + airybi(z)
|
||
|
|
||
|
Series expansion is also supported:
|
||
|
|
||
|
>>> from sympy import series
|
||
|
>>> series(airybiprime(z), z, 0, 3)
|
||
|
3**(1/6)/gamma(1/3) + 3**(5/6)*z**2/(6*gamma(2/3)) + O(z**3)
|
||
|
|
||
|
We can numerically evaluate the Airy function to arbitrary precision
|
||
|
on the whole complex plane:
|
||
|
|
||
|
>>> airybiprime(-2).evalf(50)
|
||
|
0.27879516692116952268509756941098324140300059345163
|
||
|
|
||
|
Rewrite $\operatorname{Bi}^\prime(z)$ in terms of hypergeometric functions:
|
||
|
|
||
|
>>> from sympy import hyper
|
||
|
>>> airybiprime(z).rewrite(hyper)
|
||
|
3**(5/6)*z**2*hyper((), (5/3,), z**3/9)/(6*gamma(2/3)) + 3**(1/6)*hyper((), (1/3,), z**3/9)/gamma(1/3)
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
airyai: Airy function of the first kind.
|
||
|
airybi: Airy function of the second kind.
|
||
|
airyaiprime: Derivative of the Airy function of the first kind.
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://en.wikipedia.org/wiki/Airy_function
|
||
|
.. [2] https://dlmf.nist.gov/9
|
||
|
.. [3] https://encyclopediaofmath.org/wiki/Airy_functions
|
||
|
.. [4] https://mathworld.wolfram.com/AiryFunctions.html
|
||
|
|
||
|
"""
|
||
|
|
||
|
nargs = 1
|
||
|
unbranched = True
|
||
|
|
||
|
@classmethod
|
||
|
def eval(cls, arg):
|
||
|
if arg.is_Number:
|
||
|
if arg is S.NaN:
|
||
|
return S.NaN
|
||
|
elif arg is S.Infinity:
|
||
|
return S.Infinity
|
||
|
elif arg is S.NegativeInfinity:
|
||
|
return S.Zero
|
||
|
elif arg.is_zero:
|
||
|
return 3**Rational(1, 6) / gamma(Rational(1, 3))
|
||
|
|
||
|
if arg.is_zero:
|
||
|
return 3**Rational(1, 6) / gamma(Rational(1, 3))
|
||
|
|
||
|
|
||
|
def fdiff(self, argindex=1):
|
||
|
if argindex == 1:
|
||
|
return self.args[0]*airybi(self.args[0])
|
||
|
else:
|
||
|
raise ArgumentIndexError(self, argindex)
|
||
|
|
||
|
def _eval_evalf(self, prec):
|
||
|
z = self.args[0]._to_mpmath(prec)
|
||
|
with workprec(prec):
|
||
|
res = mp.airybi(z, derivative=1)
|
||
|
return Expr._from_mpmath(res, prec)
|
||
|
|
||
|
def _eval_rewrite_as_besselj(self, z, **kwargs):
|
||
|
tt = Rational(2, 3)
|
||
|
a = tt * Pow(-z, Rational(3, 2))
|
||
|
if re(z).is_negative:
|
||
|
return -z/sqrt(3) * (besselj(-tt, a) + besselj(tt, a))
|
||
|
|
||
|
def _eval_rewrite_as_besseli(self, z, **kwargs):
|
||
|
ot = Rational(1, 3)
|
||
|
tt = Rational(2, 3)
|
||
|
a = tt * Pow(z, Rational(3, 2))
|
||
|
if re(z).is_positive:
|
||
|
return z/sqrt(3) * (besseli(-tt, a) + besseli(tt, a))
|
||
|
else:
|
||
|
a = Pow(z, Rational(3, 2))
|
||
|
b = Pow(a, tt)
|
||
|
c = Pow(a, -tt)
|
||
|
return sqrt(ot) * (b*besseli(-tt, tt*a) + z**2*c*besseli(tt, tt*a))
|
||
|
|
||
|
def _eval_rewrite_as_hyper(self, z, **kwargs):
|
||
|
pf1 = z**2 / (2*root(3, 6)*gamma(Rational(2, 3)))
|
||
|
pf2 = root(3, 6) / gamma(Rational(1, 3))
|
||
|
return pf1 * hyper([], [Rational(5, 3)], z**3/9) + pf2 * hyper([], [Rational(1, 3)], z**3/9)
|
||
|
|
||
|
def _eval_expand_func(self, **hints):
|
||
|
arg = self.args[0]
|
||
|
symbs = arg.free_symbols
|
||
|
|
||
|
if len(symbs) == 1:
|
||
|
z = symbs.pop()
|
||
|
c = Wild("c", exclude=[z])
|
||
|
d = Wild("d", exclude=[z])
|
||
|
m = Wild("m", exclude=[z])
|
||
|
n = Wild("n", exclude=[z])
|
||
|
M = arg.match(c*(d*z**n)**m)
|
||
|
if M is not None:
|
||
|
m = M[m]
|
||
|
# The transformation is in principle
|
||
|
# given by 03.08.16.0001.01 but note
|
||
|
# that there is an error in this formula.
|
||
|
# https://functions.wolfram.com/Bessel-TypeFunctions/AiryBiPrime/16/01/01/0001/
|
||
|
if (3*m).is_integer:
|
||
|
c = M[c]
|
||
|
d = M[d]
|
||
|
n = M[n]
|
||
|
pf = (d**m * z**(n*m)) / (d * z**n)**m
|
||
|
newarg = c * d**m * z**(n*m)
|
||
|
return S.Half * (sqrt(3)*(pf - S.One)*airyaiprime(newarg) + (pf + S.One)*airybiprime(newarg))
|
||
|
|
||
|
|
||
|
class marcumq(Function):
|
||
|
r"""
|
||
|
The Marcum Q-function.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
The Marcum Q-function is defined by the meromorphic continuation of
|
||
|
|
||
|
.. math::
|
||
|
Q_m(a, b) = a^{- m + 1} \int_{b}^{\infty} x^{m} e^{- \frac{a^{2}}{2} - \frac{x^{2}}{2}} I_{m - 1}\left(a x\right)\, dx
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import marcumq
|
||
|
>>> from sympy.abc import m, a, b
|
||
|
>>> marcumq(m, a, b)
|
||
|
marcumq(m, a, b)
|
||
|
|
||
|
Special values:
|
||
|
|
||
|
>>> marcumq(m, 0, b)
|
||
|
uppergamma(m, b**2/2)/gamma(m)
|
||
|
>>> marcumq(0, 0, 0)
|
||
|
0
|
||
|
>>> marcumq(0, a, 0)
|
||
|
1 - exp(-a**2/2)
|
||
|
>>> marcumq(1, a, a)
|
||
|
1/2 + exp(-a**2)*besseli(0, a**2)/2
|
||
|
>>> marcumq(2, a, a)
|
||
|
1/2 + exp(-a**2)*besseli(0, a**2)/2 + exp(-a**2)*besseli(1, a**2)
|
||
|
|
||
|
Differentiation with respect to $a$ and $b$ is supported:
|
||
|
|
||
|
>>> from sympy import diff
|
||
|
>>> diff(marcumq(m, a, b), a)
|
||
|
a*(-marcumq(m, a, b) + marcumq(m + 1, a, b))
|
||
|
>>> diff(marcumq(m, a, b), b)
|
||
|
-a**(1 - m)*b**m*exp(-a**2/2 - b**2/2)*besseli(m - 1, a*b)
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://en.wikipedia.org/wiki/Marcum_Q-function
|
||
|
.. [2] https://mathworld.wolfram.com/MarcumQ-Function.html
|
||
|
|
||
|
"""
|
||
|
|
||
|
@classmethod
|
||
|
def eval(cls, m, a, b):
|
||
|
if a is S.Zero:
|
||
|
if m is S.Zero and b is S.Zero:
|
||
|
return S.Zero
|
||
|
return uppergamma(m, b**2 * S.Half) / gamma(m)
|
||
|
|
||
|
if m is S.Zero and b is S.Zero:
|
||
|
return 1 - 1 / exp(a**2 * S.Half)
|
||
|
|
||
|
if a == b:
|
||
|
if m is S.One:
|
||
|
return (1 + exp(-a**2) * besseli(0, a**2))*S.Half
|
||
|
if m == 2:
|
||
|
return S.Half + S.Half * exp(-a**2) * besseli(0, a**2) + exp(-a**2) * besseli(1, a**2)
|
||
|
|
||
|
if a.is_zero:
|
||
|
if m.is_zero and b.is_zero:
|
||
|
return S.Zero
|
||
|
return uppergamma(m, b**2*S.Half) / gamma(m)
|
||
|
|
||
|
if m.is_zero and b.is_zero:
|
||
|
return 1 - 1 / exp(a**2*S.Half)
|
||
|
|
||
|
def fdiff(self, argindex=2):
|
||
|
m, a, b = self.args
|
||
|
if argindex == 2:
|
||
|
return a * (-marcumq(m, a, b) + marcumq(1+m, a, b))
|
||
|
elif argindex == 3:
|
||
|
return (-b**m / a**(m-1)) * exp(-(a**2 + b**2)/2) * besseli(m-1, a*b)
|
||
|
else:
|
||
|
raise ArgumentIndexError(self, argindex)
|
||
|
|
||
|
def _eval_rewrite_as_Integral(self, m, a, b, **kwargs):
|
||
|
from sympy.integrals.integrals import Integral
|
||
|
x = kwargs.get('x', Dummy('x'))
|
||
|
return a ** (1 - m) * \
|
||
|
Integral(x**m * exp(-(x**2 + a**2)/2) * besseli(m-1, a*x), [x, b, S.Infinity])
|
||
|
|
||
|
def _eval_rewrite_as_Sum(self, m, a, b, **kwargs):
|
||
|
from sympy.concrete.summations import Sum
|
||
|
k = kwargs.get('k', Dummy('k'))
|
||
|
return exp(-(a**2 + b**2) / 2) * Sum((a/b)**k * besseli(k, a*b), [k, 1-m, S.Infinity])
|
||
|
|
||
|
def _eval_rewrite_as_besseli(self, m, a, b, **kwargs):
|
||
|
if a == b:
|
||
|
if m == 1:
|
||
|
return (1 + exp(-a**2) * besseli(0, a**2)) / 2
|
||
|
if m.is_Integer and m >= 2:
|
||
|
s = sum([besseli(i, a**2) for i in range(1, m)])
|
||
|
return S.Half + exp(-a**2) * besseli(0, a**2) / 2 + exp(-a**2) * s
|
||
|
|
||
|
def _eval_is_zero(self):
|
||
|
if all(arg.is_zero for arg in self.args):
|
||
|
return True
|