Traktor/myenv/Lib/site-packages/sympy/ntheory/digits.py

144 lines
3.6 KiB
Python
Raw Normal View History

2024-05-23 01:57:24 +02:00
from collections import defaultdict
from sympy.utilities.iterables import multiset, is_palindromic as _palindromic
from sympy.utilities.misc import as_int
def digits(n, b=10, digits=None):
"""
Return a list of the digits of ``n`` in base ``b``. The first
element in the list is ``b`` (or ``-b`` if ``n`` is negative).
Examples
========
>>> from sympy.ntheory.digits import digits
>>> digits(35)
[10, 3, 5]
If the number is negative, the negative sign will be placed on the
base (which is the first element in the returned list):
>>> digits(-35)
[-10, 3, 5]
Bases other than 10 (and greater than 1) can be selected with ``b``:
>>> digits(27, b=2)
[2, 1, 1, 0, 1, 1]
Use the ``digits`` keyword if a certain number of digits is desired:
>>> digits(35, digits=4)
[10, 0, 0, 3, 5]
Parameters
==========
n: integer
The number whose digits are returned.
b: integer
The base in which digits are computed.
digits: integer (or None for all digits)
The number of digits to be returned (padded with zeros, if
necessary).
"""
b = as_int(b)
n = as_int(n)
if b < 2:
raise ValueError("b must be greater than 1")
else:
x, y = abs(n), []
while x >= b:
x, r = divmod(x, b)
y.append(r)
y.append(x)
y.append(-b if n < 0 else b)
y.reverse()
ndig = len(y) - 1
if digits is not None:
if ndig > digits:
raise ValueError(
"For %s, at least %s digits are needed." % (n, ndig))
elif ndig < digits:
y[1:1] = [0]*(digits - ndig)
return y
def count_digits(n, b=10):
"""
Return a dictionary whose keys are the digits of ``n`` in the
given base, ``b``, with keys indicating the digits appearing in the
number and values indicating how many times that digit appeared.
Examples
========
>>> from sympy.ntheory import count_digits
>>> count_digits(1111339)
{1: 4, 3: 2, 9: 1}
The digits returned are always represented in base-10
but the number itself can be entered in any format that is
understood by Python; the base of the number can also be
given if it is different than 10:
>>> n = 0xFA; n
250
>>> count_digits(_)
{0: 1, 2: 1, 5: 1}
>>> count_digits(n, 16)
{10: 1, 15: 1}
The default dictionary will return a 0 for any digit that did
not appear in the number. For example, which digits appear 7
times in ``77!``:
>>> from sympy import factorial
>>> c77 = count_digits(factorial(77))
>>> [i for i in range(10) if c77[i] == 7]
[1, 3, 7, 9]
"""
rv = defaultdict(int, multiset(digits(n, b)).items())
rv.pop(b) if b in rv else rv.pop(-b) # b or -b is there
return rv
def is_palindromic(n, b=10):
"""return True if ``n`` is the same when read from left to right
or right to left in the given base, ``b``.
Examples
========
>>> from sympy.ntheory import is_palindromic
>>> all(is_palindromic(i) for i in (-11, 1, 22, 121))
True
The second argument allows you to test numbers in other
bases. For example, 88 is palindromic in base-10 but not
in base-8:
>>> is_palindromic(88, 8)
False
On the other hand, a number can be palindromic in base-8 but
not in base-10:
>>> 0o121, is_palindromic(0o121)
(81, False)
Or it might be palindromic in both bases:
>>> oct(121), is_palindromic(121, 8) and is_palindromic(121)
('0o171', True)
"""
return _palindromic(digits(n, b), 1)