736 lines
28 KiB
Python
736 lines
28 KiB
Python
|
"""
|
||
|
This module can be used to solve problems related
|
||
|
to 2D Trusses.
|
||
|
"""
|
||
|
|
||
|
from cmath import inf
|
||
|
from sympy.core.add import Add
|
||
|
from sympy.core.mul import Mul
|
||
|
from sympy.core.symbol import Symbol
|
||
|
from sympy.core.sympify import sympify
|
||
|
from sympy import Matrix, pi
|
||
|
from sympy.functions.elementary.miscellaneous import sqrt
|
||
|
from sympy.matrices.dense import zeros
|
||
|
from sympy import sin, cos
|
||
|
|
||
|
|
||
|
|
||
|
class Truss:
|
||
|
"""
|
||
|
A Truss is an assembly of members such as beams,
|
||
|
connected by nodes, that create a rigid structure.
|
||
|
In engineering, a truss is a structure that
|
||
|
consists of two-force members only.
|
||
|
|
||
|
Trusses are extremely important in engineering applications
|
||
|
and can be seen in numerous real-world applications like bridges.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
There is a Truss consisting of four nodes and five
|
||
|
members connecting the nodes. A force P acts
|
||
|
downward on the node D and there also exist pinned
|
||
|
and roller joints on the nodes A and B respectively.
|
||
|
|
||
|
.. image:: truss_example.png
|
||
|
|
||
|
>>> from sympy.physics.continuum_mechanics.truss import Truss
|
||
|
>>> t = Truss()
|
||
|
>>> t.add_node("node_1", 0, 0)
|
||
|
>>> t.add_node("node_2", 6, 0)
|
||
|
>>> t.add_node("node_3", 2, 2)
|
||
|
>>> t.add_node("node_4", 2, 0)
|
||
|
>>> t.add_member("member_1", "node_1", "node_4")
|
||
|
>>> t.add_member("member_2", "node_2", "node_4")
|
||
|
>>> t.add_member("member_3", "node_1", "node_3")
|
||
|
>>> t.add_member("member_4", "node_2", "node_3")
|
||
|
>>> t.add_member("member_5", "node_3", "node_4")
|
||
|
>>> t.apply_load("node_4", magnitude=10, direction=270)
|
||
|
>>> t.apply_support("node_1", type="fixed")
|
||
|
>>> t.apply_support("node_2", type="roller")
|
||
|
"""
|
||
|
|
||
|
def __init__(self):
|
||
|
"""
|
||
|
Initializes the class
|
||
|
"""
|
||
|
self._nodes = []
|
||
|
self._members = {}
|
||
|
self._loads = {}
|
||
|
self._supports = {}
|
||
|
self._node_labels = []
|
||
|
self._node_positions = []
|
||
|
self._node_position_x = []
|
||
|
self._node_position_y = []
|
||
|
self._nodes_occupied = {}
|
||
|
self._reaction_loads = {}
|
||
|
self._internal_forces = {}
|
||
|
self._node_coordinates = {}
|
||
|
|
||
|
@property
|
||
|
def nodes(self):
|
||
|
"""
|
||
|
Returns the nodes of the truss along with their positions.
|
||
|
"""
|
||
|
return self._nodes
|
||
|
|
||
|
@property
|
||
|
def node_labels(self):
|
||
|
"""
|
||
|
Returns the node labels of the truss.
|
||
|
"""
|
||
|
return self._node_labels
|
||
|
|
||
|
@property
|
||
|
def node_positions(self):
|
||
|
"""
|
||
|
Returns the positions of the nodes of the truss.
|
||
|
"""
|
||
|
return self._node_positions
|
||
|
|
||
|
@property
|
||
|
def members(self):
|
||
|
"""
|
||
|
Returns the members of the truss along with the start and end points.
|
||
|
"""
|
||
|
return self._members
|
||
|
|
||
|
@property
|
||
|
def member_labels(self):
|
||
|
"""
|
||
|
Returns the members of the truss along with the start and end points.
|
||
|
"""
|
||
|
return self._member_labels
|
||
|
|
||
|
@property
|
||
|
def supports(self):
|
||
|
"""
|
||
|
Returns the nodes with provided supports along with the kind of support provided i.e.
|
||
|
pinned or roller.
|
||
|
"""
|
||
|
return self._supports
|
||
|
|
||
|
@property
|
||
|
def loads(self):
|
||
|
"""
|
||
|
Returns the loads acting on the truss.
|
||
|
"""
|
||
|
return self._loads
|
||
|
|
||
|
@property
|
||
|
def reaction_loads(self):
|
||
|
"""
|
||
|
Returns the reaction forces for all supports which are all initialized to 0.
|
||
|
"""
|
||
|
return self._reaction_loads
|
||
|
|
||
|
@property
|
||
|
def internal_forces(self):
|
||
|
"""
|
||
|
Returns the internal forces for all members which are all initialized to 0.
|
||
|
"""
|
||
|
return self._internal_forces
|
||
|
|
||
|
def add_node(self, label, x, y):
|
||
|
"""
|
||
|
This method adds a node to the truss along with its name/label and its location.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
label: String or a Symbol
|
||
|
The label for a node. It is the only way to identify a particular node.
|
||
|
|
||
|
x: Sympifyable
|
||
|
The x-coordinate of the position of the node.
|
||
|
|
||
|
y: Sympifyable
|
||
|
The y-coordinate of the position of the node.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.physics.continuum_mechanics.truss import Truss
|
||
|
>>> t = Truss()
|
||
|
>>> t.add_node('A', 0, 0)
|
||
|
>>> t.nodes
|
||
|
[('A', 0, 0)]
|
||
|
>>> t.add_node('B', 3, 0)
|
||
|
>>> t.nodes
|
||
|
[('A', 0, 0), ('B', 3, 0)]
|
||
|
"""
|
||
|
x = sympify(x)
|
||
|
y = sympify(y)
|
||
|
|
||
|
if label in self._node_labels:
|
||
|
raise ValueError("Node needs to have a unique label")
|
||
|
|
||
|
elif x in self._node_position_x and y in self._node_position_y and self._node_position_x.index(x)==self._node_position_y.index(y):
|
||
|
raise ValueError("A node already exists at the given position")
|
||
|
|
||
|
else :
|
||
|
self._nodes.append((label, x, y))
|
||
|
self._node_labels.append(label)
|
||
|
self._node_positions.append((x, y))
|
||
|
self._node_position_x.append(x)
|
||
|
self._node_position_y.append(y)
|
||
|
self._node_coordinates[label] = [x, y]
|
||
|
|
||
|
def remove_node(self, label):
|
||
|
"""
|
||
|
This method removes a node from the truss.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
label: String or Symbol
|
||
|
The label of the node to be removed.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.physics.continuum_mechanics.truss import Truss
|
||
|
>>> t = Truss()
|
||
|
>>> t.add_node('A', 0, 0)
|
||
|
>>> t.nodes
|
||
|
[('A', 0, 0)]
|
||
|
>>> t.add_node('B', 3, 0)
|
||
|
>>> t.nodes
|
||
|
[('A', 0, 0), ('B', 3, 0)]
|
||
|
>>> t.remove_node('A')
|
||
|
>>> t.nodes
|
||
|
[('B', 3, 0)]
|
||
|
"""
|
||
|
for i in range(len(self.nodes)):
|
||
|
if self._node_labels[i] == label:
|
||
|
x = self._node_position_x[i]
|
||
|
y = self._node_position_y[i]
|
||
|
|
||
|
if label not in self._node_labels:
|
||
|
raise ValueError("No such node exists in the truss")
|
||
|
|
||
|
else:
|
||
|
members_duplicate = self._members.copy()
|
||
|
for member in members_duplicate:
|
||
|
if label == self._members[member][0] or label == self._members[member][1]:
|
||
|
raise ValueError("The node given has members already attached to it")
|
||
|
self._nodes.remove((label, x, y))
|
||
|
self._node_labels.remove(label)
|
||
|
self._node_positions.remove((x, y))
|
||
|
self._node_position_x.remove(x)
|
||
|
self._node_position_y.remove(y)
|
||
|
if label in list(self._loads):
|
||
|
self._loads.pop(label)
|
||
|
if label in list(self._supports):
|
||
|
self._supports.pop(label)
|
||
|
self._node_coordinates.pop(label)
|
||
|
|
||
|
def add_member(self, label, start, end):
|
||
|
"""
|
||
|
This method adds a member between any two nodes in the given truss.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
label: String or Symbol
|
||
|
The label for a member. It is the only way to identify a particular member.
|
||
|
|
||
|
start: String or Symbol
|
||
|
The label of the starting point/node of the member.
|
||
|
|
||
|
end: String or Symbol
|
||
|
The label of the ending point/node of the member.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.physics.continuum_mechanics.truss import Truss
|
||
|
>>> t = Truss()
|
||
|
>>> t.add_node('A', 0, 0)
|
||
|
>>> t.add_node('B', 3, 0)
|
||
|
>>> t.add_node('C', 2, 2)
|
||
|
>>> t.add_member('AB', 'A', 'B')
|
||
|
>>> t.members
|
||
|
{'AB': ['A', 'B']}
|
||
|
"""
|
||
|
|
||
|
if start not in self._node_labels or end not in self._node_labels or start==end:
|
||
|
raise ValueError("The start and end points of the member must be unique nodes")
|
||
|
|
||
|
elif label in list(self._members):
|
||
|
raise ValueError("A member with the same label already exists for the truss")
|
||
|
|
||
|
elif self._nodes_occupied.get((start, end)):
|
||
|
raise ValueError("A member already exists between the two nodes")
|
||
|
|
||
|
else:
|
||
|
self._members[label] = [start, end]
|
||
|
self._nodes_occupied[start, end] = True
|
||
|
self._nodes_occupied[end, start] = True
|
||
|
self._internal_forces[label] = 0
|
||
|
|
||
|
def remove_member(self, label):
|
||
|
"""
|
||
|
This method removes a member from the given truss.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
label: String or Symbol
|
||
|
The label for the member to be removed.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.physics.continuum_mechanics.truss import Truss
|
||
|
>>> t = Truss()
|
||
|
>>> t.add_node('A', 0, 0)
|
||
|
>>> t.add_node('B', 3, 0)
|
||
|
>>> t.add_node('C', 2, 2)
|
||
|
>>> t.add_member('AB', 'A', 'B')
|
||
|
>>> t.add_member('AC', 'A', 'C')
|
||
|
>>> t.add_member('BC', 'B', 'C')
|
||
|
>>> t.members
|
||
|
{'AB': ['A', 'B'], 'AC': ['A', 'C'], 'BC': ['B', 'C']}
|
||
|
>>> t.remove_member('AC')
|
||
|
>>> t.members
|
||
|
{'AB': ['A', 'B'], 'BC': ['B', 'C']}
|
||
|
"""
|
||
|
if label not in list(self._members):
|
||
|
raise ValueError("No such member exists in the Truss")
|
||
|
|
||
|
else:
|
||
|
self._nodes_occupied.pop((self._members[label][0], self._members[label][1]))
|
||
|
self._nodes_occupied.pop((self._members[label][1], self._members[label][0]))
|
||
|
self._members.pop(label)
|
||
|
self._internal_forces.pop(label)
|
||
|
|
||
|
def change_node_label(self, label, new_label):
|
||
|
"""
|
||
|
This method changes the label of a node.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
label: String or Symbol
|
||
|
The label of the node for which the label has
|
||
|
to be changed.
|
||
|
|
||
|
new_label: String or Symbol
|
||
|
The new label of the node.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.physics.continuum_mechanics.truss import Truss
|
||
|
>>> t = Truss()
|
||
|
>>> t.add_node('A', 0, 0)
|
||
|
>>> t.add_node('B', 3, 0)
|
||
|
>>> t.nodes
|
||
|
[('A', 0, 0), ('B', 3, 0)]
|
||
|
>>> t.change_node_label('A', 'C')
|
||
|
>>> t.nodes
|
||
|
[('C', 0, 0), ('B', 3, 0)]
|
||
|
"""
|
||
|
if label not in self._node_labels:
|
||
|
raise ValueError("No such node exists for the Truss")
|
||
|
elif new_label in self._node_labels:
|
||
|
raise ValueError("A node with the given label already exists")
|
||
|
else:
|
||
|
for node in self._nodes:
|
||
|
if node[0] == label:
|
||
|
self._nodes[self._nodes.index((label, node[1], node[2]))] = (new_label, node[1], node[2])
|
||
|
self._node_labels[self._node_labels.index(node[0])] = new_label
|
||
|
self._node_coordinates[new_label] = self._node_coordinates[label]
|
||
|
self._node_coordinates.pop(label)
|
||
|
if node[0] in list(self._supports):
|
||
|
self._supports[new_label] = self._supports[node[0]]
|
||
|
self._supports.pop(node[0])
|
||
|
if new_label in list(self._supports):
|
||
|
if self._supports[new_label] == 'pinned':
|
||
|
if 'R_'+str(label)+'_x' in list(self._reaction_loads) and 'R_'+str(label)+'_y' in list(self._reaction_loads):
|
||
|
self._reaction_loads['R_'+str(new_label)+'_x'] = self._reaction_loads['R_'+str(label)+'_x']
|
||
|
self._reaction_loads['R_'+str(new_label)+'_y'] = self._reaction_loads['R_'+str(label)+'_y']
|
||
|
self._reaction_loads.pop('R_'+str(label)+'_x')
|
||
|
self._reaction_loads.pop('R_'+str(label)+'_y')
|
||
|
self._loads[new_label] = self._loads[label]
|
||
|
for load in self._loads[new_label]:
|
||
|
if load[1] == 90:
|
||
|
load[0] -= Symbol('R_'+str(label)+'_y')
|
||
|
if load[0] == 0:
|
||
|
self._loads[label].remove(load)
|
||
|
break
|
||
|
for load in self._loads[new_label]:
|
||
|
if load[1] == 0:
|
||
|
load[0] -= Symbol('R_'+str(label)+'_x')
|
||
|
if load[0] == 0:
|
||
|
self._loads[label].remove(load)
|
||
|
break
|
||
|
self.apply_load(new_label, Symbol('R_'+str(new_label)+'_x'), 0)
|
||
|
self.apply_load(new_label, Symbol('R_'+str(new_label)+'_y'), 90)
|
||
|
self._loads.pop(label)
|
||
|
elif self._supports[new_label] == 'roller':
|
||
|
self._loads[new_label] = self._loads[label]
|
||
|
for load in self._loads[label]:
|
||
|
if load[1] == 90:
|
||
|
load[0] -= Symbol('R_'+str(label)+'_y')
|
||
|
if load[0] == 0:
|
||
|
self._loads[label].remove(load)
|
||
|
break
|
||
|
self.apply_load(new_label, Symbol('R_'+str(new_label)+'_y'), 90)
|
||
|
self._loads.pop(label)
|
||
|
else:
|
||
|
if label in list(self._loads):
|
||
|
self._loads[new_label] = self._loads[label]
|
||
|
self._loads.pop(label)
|
||
|
for member in list(self._members):
|
||
|
if self._members[member][0] == node[0]:
|
||
|
self._members[member][0] = new_label
|
||
|
self._nodes_occupied[(new_label, self._members[member][1])] = True
|
||
|
self._nodes_occupied[(self._members[member][1], new_label)] = True
|
||
|
self._nodes_occupied.pop((label, self._members[member][1]))
|
||
|
self._nodes_occupied.pop((self._members[member][1], label))
|
||
|
elif self._members[member][1] == node[0]:
|
||
|
self._members[member][1] = new_label
|
||
|
self._nodes_occupied[(self._members[member][0], new_label)] = True
|
||
|
self._nodes_occupied[(new_label, self._members[member][0])] = True
|
||
|
self._nodes_occupied.pop((self._members[member][0], label))
|
||
|
self._nodes_occupied.pop((label, self._members[member][0]))
|
||
|
|
||
|
def change_member_label(self, label, new_label):
|
||
|
"""
|
||
|
This method changes the label of a member.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
label: String or Symbol
|
||
|
The label of the member for which the label has
|
||
|
to be changed.
|
||
|
|
||
|
new_label: String or Symbol
|
||
|
The new label of the member.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.physics.continuum_mechanics.truss import Truss
|
||
|
>>> t = Truss()
|
||
|
>>> t.add_node('A', 0, 0)
|
||
|
>>> t.add_node('B', 3, 0)
|
||
|
>>> t.nodes
|
||
|
[('A', 0, 0), ('B', 3, 0)]
|
||
|
>>> t.change_node_label('A', 'C')
|
||
|
>>> t.nodes
|
||
|
[('C', 0, 0), ('B', 3, 0)]
|
||
|
>>> t.add_member('BC', 'B', 'C')
|
||
|
>>> t.members
|
||
|
{'BC': ['B', 'C']}
|
||
|
>>> t.change_member_label('BC', 'BC_new')
|
||
|
>>> t.members
|
||
|
{'BC_new': ['B', 'C']}
|
||
|
"""
|
||
|
if label not in list(self._members):
|
||
|
raise ValueError("No such member exists for the Truss")
|
||
|
|
||
|
else:
|
||
|
members_duplicate = list(self._members).copy()
|
||
|
for member in members_duplicate:
|
||
|
if member == label:
|
||
|
self._members[new_label] = [self._members[member][0], self._members[member][1]]
|
||
|
self._members.pop(label)
|
||
|
self._internal_forces[new_label] = self._internal_forces[label]
|
||
|
self._internal_forces.pop(label)
|
||
|
|
||
|
def apply_load(self, location, magnitude, direction):
|
||
|
"""
|
||
|
This method applies an external load at a particular node
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
location: String or Symbol
|
||
|
Label of the Node at which load is applied.
|
||
|
|
||
|
magnitude: Sympifyable
|
||
|
Magnitude of the load applied. It must always be positive and any changes in
|
||
|
the direction of the load are not reflected here.
|
||
|
|
||
|
direction: Sympifyable
|
||
|
The angle, in degrees, that the load vector makes with the horizontal
|
||
|
in the counter-clockwise direction. It takes the values 0 to 360,
|
||
|
inclusive.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.physics.continuum_mechanics.truss import Truss
|
||
|
>>> from sympy import symbols
|
||
|
>>> t = Truss()
|
||
|
>>> t.add_node('A', 0, 0)
|
||
|
>>> t.add_node('B', 3, 0)
|
||
|
>>> P = symbols('P')
|
||
|
>>> t.apply_load('A', P, 90)
|
||
|
>>> t.apply_load('A', P/2, 45)
|
||
|
>>> t.apply_load('A', P/4, 90)
|
||
|
>>> t.loads
|
||
|
{'A': [[P, 90], [P/2, 45], [P/4, 90]]}
|
||
|
"""
|
||
|
magnitude = sympify(magnitude)
|
||
|
direction = sympify(direction)
|
||
|
|
||
|
if location not in self.node_labels:
|
||
|
raise ValueError("Load must be applied at a known node")
|
||
|
|
||
|
else:
|
||
|
if location in list(self._loads):
|
||
|
self._loads[location].append([magnitude, direction])
|
||
|
else:
|
||
|
self._loads[location] = [[magnitude, direction]]
|
||
|
|
||
|
def remove_load(self, location, magnitude, direction):
|
||
|
"""
|
||
|
This method removes an already
|
||
|
present external load at a particular node
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
location: String or Symbol
|
||
|
Label of the Node at which load is applied and is to be removed.
|
||
|
|
||
|
magnitude: Sympifyable
|
||
|
Magnitude of the load applied.
|
||
|
|
||
|
direction: Sympifyable
|
||
|
The angle, in degrees, that the load vector makes with the horizontal
|
||
|
in the counter-clockwise direction. It takes the values 0 to 360,
|
||
|
inclusive.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.physics.continuum_mechanics.truss import Truss
|
||
|
>>> from sympy import symbols
|
||
|
>>> t = Truss()
|
||
|
>>> t.add_node('A', 0, 0)
|
||
|
>>> t.add_node('B', 3, 0)
|
||
|
>>> P = symbols('P')
|
||
|
>>> t.apply_load('A', P, 90)
|
||
|
>>> t.apply_load('A', P/2, 45)
|
||
|
>>> t.apply_load('A', P/4, 90)
|
||
|
>>> t.loads
|
||
|
{'A': [[P, 90], [P/2, 45], [P/4, 90]]}
|
||
|
>>> t.remove_load('A', P/4, 90)
|
||
|
>>> t.loads
|
||
|
{'A': [[P, 90], [P/2, 45]]}
|
||
|
"""
|
||
|
magnitude = sympify(magnitude)
|
||
|
direction = sympify(direction)
|
||
|
|
||
|
if location not in self.node_labels:
|
||
|
raise ValueError("Load must be removed from a known node")
|
||
|
|
||
|
else:
|
||
|
if [magnitude, direction] not in self._loads[location]:
|
||
|
raise ValueError("No load of this magnitude and direction has been applied at this node")
|
||
|
else:
|
||
|
self._loads[location].remove([magnitude, direction])
|
||
|
if self._loads[location] == []:
|
||
|
self._loads.pop(location)
|
||
|
|
||
|
def apply_support(self, location, type):
|
||
|
"""
|
||
|
This method adds a pinned or roller support at a particular node
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
location: String or Symbol
|
||
|
Label of the Node at which support is added.
|
||
|
|
||
|
type: String
|
||
|
Type of the support being provided at the node.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.physics.continuum_mechanics.truss import Truss
|
||
|
>>> t = Truss()
|
||
|
>>> t.add_node('A', 0, 0)
|
||
|
>>> t.add_node('B', 3, 0)
|
||
|
>>> t.apply_support('A', 'pinned')
|
||
|
>>> t.supports
|
||
|
{'A': 'pinned'}
|
||
|
"""
|
||
|
if location not in self._node_labels:
|
||
|
raise ValueError("Support must be added on a known node")
|
||
|
|
||
|
else:
|
||
|
if location not in list(self._supports):
|
||
|
if type == 'pinned':
|
||
|
self.apply_load(location, Symbol('R_'+str(location)+'_x'), 0)
|
||
|
self.apply_load(location, Symbol('R_'+str(location)+'_y'), 90)
|
||
|
elif type == 'roller':
|
||
|
self.apply_load(location, Symbol('R_'+str(location)+'_y'), 90)
|
||
|
elif self._supports[location] == 'pinned':
|
||
|
if type == 'roller':
|
||
|
self.remove_load(location, Symbol('R_'+str(location)+'_x'), 0)
|
||
|
elif self._supports[location] == 'roller':
|
||
|
if type == 'pinned':
|
||
|
self.apply_load(location, Symbol('R_'+str(location)+'_x'), 0)
|
||
|
self._supports[location] = type
|
||
|
|
||
|
def remove_support(self, location):
|
||
|
"""
|
||
|
This method removes support from a particular node
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
location: String or Symbol
|
||
|
Label of the Node at which support is to be removed.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.physics.continuum_mechanics.truss import Truss
|
||
|
>>> t = Truss()
|
||
|
>>> t.add_node('A', 0, 0)
|
||
|
>>> t.add_node('B', 3, 0)
|
||
|
>>> t.apply_support('A', 'pinned')
|
||
|
>>> t.supports
|
||
|
{'A': 'pinned'}
|
||
|
>>> t.remove_support('A')
|
||
|
>>> t.supports
|
||
|
{}
|
||
|
"""
|
||
|
if location not in self._node_labels:
|
||
|
raise ValueError("No such node exists in the Truss")
|
||
|
|
||
|
elif location not in list(self._supports):
|
||
|
raise ValueError("No support has been added to the given node")
|
||
|
|
||
|
else:
|
||
|
if self._supports[location] == 'pinned':
|
||
|
self.remove_load(location, Symbol('R_'+str(location)+'_x'), 0)
|
||
|
self.remove_load(location, Symbol('R_'+str(location)+'_y'), 90)
|
||
|
elif self._supports[location] == 'roller':
|
||
|
self.remove_load(location, Symbol('R_'+str(location)+'_y'), 90)
|
||
|
self._supports.pop(location)
|
||
|
|
||
|
def solve(self):
|
||
|
"""
|
||
|
This method solves for all reaction forces of all supports and all internal forces
|
||
|
of all the members in the truss, provided the Truss is solvable.
|
||
|
|
||
|
A Truss is solvable if the following condition is met,
|
||
|
|
||
|
2n >= r + m
|
||
|
|
||
|
Where n is the number of nodes, r is the number of reaction forces, where each pinned
|
||
|
support has 2 reaction forces and each roller has 1, and m is the number of members.
|
||
|
|
||
|
The given condition is derived from the fact that a system of equations is solvable
|
||
|
only when the number of variables is lesser than or equal to the number of equations.
|
||
|
Equilibrium Equations in x and y directions give two equations per node giving 2n number
|
||
|
equations. However, the truss needs to be stable as well and may be unstable if 2n > r + m.
|
||
|
The number of variables is simply the sum of the number of reaction forces and member
|
||
|
forces.
|
||
|
|
||
|
.. note::
|
||
|
The sign convention for the internal forces present in a member revolves around whether each
|
||
|
force is compressive or tensile. While forming equations for each node, internal force due
|
||
|
to a member on the node is assumed to be away from the node i.e. each force is assumed to
|
||
|
be compressive by default. Hence, a positive value for an internal force implies the
|
||
|
presence of compressive force in the member and a negative value implies a tensile force.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.physics.continuum_mechanics.truss import Truss
|
||
|
>>> t = Truss()
|
||
|
>>> t.add_node("node_1", 0, 0)
|
||
|
>>> t.add_node("node_2", 6, 0)
|
||
|
>>> t.add_node("node_3", 2, 2)
|
||
|
>>> t.add_node("node_4", 2, 0)
|
||
|
>>> t.add_member("member_1", "node_1", "node_4")
|
||
|
>>> t.add_member("member_2", "node_2", "node_4")
|
||
|
>>> t.add_member("member_3", "node_1", "node_3")
|
||
|
>>> t.add_member("member_4", "node_2", "node_3")
|
||
|
>>> t.add_member("member_5", "node_3", "node_4")
|
||
|
>>> t.apply_load("node_4", magnitude=10, direction=270)
|
||
|
>>> t.apply_support("node_1", type="pinned")
|
||
|
>>> t.apply_support("node_2", type="roller")
|
||
|
>>> t.solve()
|
||
|
>>> t.reaction_loads
|
||
|
{'R_node_1_x': 0, 'R_node_1_y': 20/3, 'R_node_2_y': 10/3}
|
||
|
>>> t.internal_forces
|
||
|
{'member_1': 20/3, 'member_2': 20/3, 'member_3': -20*sqrt(2)/3, 'member_4': -10*sqrt(5)/3, 'member_5': 10}
|
||
|
"""
|
||
|
count_reaction_loads = 0
|
||
|
for node in self._nodes:
|
||
|
if node[0] in list(self._supports):
|
||
|
if self._supports[node[0]]=='pinned':
|
||
|
count_reaction_loads += 2
|
||
|
elif self._supports[node[0]]=='roller':
|
||
|
count_reaction_loads += 1
|
||
|
if 2*len(self._nodes) != len(self._members) + count_reaction_loads:
|
||
|
raise ValueError("The given truss cannot be solved")
|
||
|
coefficients_matrix = [[0 for i in range(2*len(self._nodes))] for j in range(2*len(self._nodes))]
|
||
|
load_matrix = zeros(2*len(self.nodes), 1)
|
||
|
load_matrix_row = 0
|
||
|
for node in self._nodes:
|
||
|
if node[0] in list(self._loads):
|
||
|
for load in self._loads[node[0]]:
|
||
|
if load[0]!=Symbol('R_'+str(node[0])+'_x') and load[0]!=Symbol('R_'+str(node[0])+'_y'):
|
||
|
load_matrix[load_matrix_row] -= load[0]*cos(pi*load[1]/180)
|
||
|
load_matrix[load_matrix_row + 1] -= load[0]*sin(pi*load[1]/180)
|
||
|
load_matrix_row += 2
|
||
|
cols = 0
|
||
|
row = 0
|
||
|
for node in self._nodes:
|
||
|
if node[0] in list(self._supports):
|
||
|
if self._supports[node[0]]=='pinned':
|
||
|
coefficients_matrix[row][cols] += 1
|
||
|
coefficients_matrix[row+1][cols+1] += 1
|
||
|
cols += 2
|
||
|
elif self._supports[node[0]]=='roller':
|
||
|
coefficients_matrix[row+1][cols] += 1
|
||
|
cols += 1
|
||
|
row += 2
|
||
|
for member in list(self._members):
|
||
|
start = self._members[member][0]
|
||
|
end = self._members[member][1]
|
||
|
length = sqrt((self._node_coordinates[start][0]-self._node_coordinates[end][0])**2 + (self._node_coordinates[start][1]-self._node_coordinates[end][1])**2)
|
||
|
start_index = self._node_labels.index(start)
|
||
|
end_index = self._node_labels.index(end)
|
||
|
horizontal_component_start = (self._node_coordinates[end][0]-self._node_coordinates[start][0])/length
|
||
|
vertical_component_start = (self._node_coordinates[end][1]-self._node_coordinates[start][1])/length
|
||
|
horizontal_component_end = (self._node_coordinates[start][0]-self._node_coordinates[end][0])/length
|
||
|
vertical_component_end = (self._node_coordinates[start][1]-self._node_coordinates[end][1])/length
|
||
|
coefficients_matrix[start_index*2][cols] += horizontal_component_start
|
||
|
coefficients_matrix[start_index*2+1][cols] += vertical_component_start
|
||
|
coefficients_matrix[end_index*2][cols] += horizontal_component_end
|
||
|
coefficients_matrix[end_index*2+1][cols] += vertical_component_end
|
||
|
cols += 1
|
||
|
forces_matrix = (Matrix(coefficients_matrix)**-1)*load_matrix
|
||
|
self._reaction_loads = {}
|
||
|
i = 0
|
||
|
min_load = inf
|
||
|
for node in self._nodes:
|
||
|
if node[0] in list(self._loads):
|
||
|
for load in self._loads[node[0]]:
|
||
|
if type(load[0]) not in [Symbol, Mul, Add]:
|
||
|
min_load = min(min_load, load[0])
|
||
|
for j in range(len(forces_matrix)):
|
||
|
if type(forces_matrix[j]) not in [Symbol, Mul, Add]:
|
||
|
if abs(forces_matrix[j]/min_load) <1E-10:
|
||
|
forces_matrix[j] = 0
|
||
|
for node in self._nodes:
|
||
|
if node[0] in list(self._supports):
|
||
|
if self._supports[node[0]]=='pinned':
|
||
|
self._reaction_loads['R_'+str(node[0])+'_x'] = forces_matrix[i]
|
||
|
self._reaction_loads['R_'+str(node[0])+'_y'] = forces_matrix[i+1]
|
||
|
i += 2
|
||
|
elif self._supports[node[0]]=='roller':
|
||
|
self._reaction_loads['R_'+str(node[0])+'_y'] = forces_matrix[i]
|
||
|
i += 1
|
||
|
for member in list(self._members):
|
||
|
self._internal_forces[member] = forces_matrix[i]
|
||
|
i += 1
|
||
|
return
|