266 lines
7.4 KiB
Python
266 lines
7.4 KiB
Python
|
from sympy.core.numbers import Float
|
||
|
from sympy.core.singleton import S
|
||
|
from sympy.functions.combinatorial.factorials import factorial
|
||
|
from sympy.functions.elementary.exponential import exp
|
||
|
from sympy.functions.elementary.miscellaneous import sqrt
|
||
|
from sympy.functions.special.polynomials import assoc_laguerre
|
||
|
from sympy.functions.special.spherical_harmonics import Ynm
|
||
|
|
||
|
|
||
|
def R_nl(n, l, r, Z=1):
|
||
|
"""
|
||
|
Returns the Hydrogen radial wavefunction R_{nl}.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
n : integer
|
||
|
Principal Quantum Number which is
|
||
|
an integer with possible values as 1, 2, 3, 4,...
|
||
|
l : integer
|
||
|
``l`` is the Angular Momentum Quantum Number with
|
||
|
values ranging from 0 to ``n-1``.
|
||
|
r :
|
||
|
Radial coordinate.
|
||
|
Z :
|
||
|
Atomic number (1 for Hydrogen, 2 for Helium, ...)
|
||
|
|
||
|
Everything is in Hartree atomic units.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.physics.hydrogen import R_nl
|
||
|
>>> from sympy.abc import r, Z
|
||
|
>>> R_nl(1, 0, r, Z)
|
||
|
2*sqrt(Z**3)*exp(-Z*r)
|
||
|
>>> R_nl(2, 0, r, Z)
|
||
|
sqrt(2)*(-Z*r + 2)*sqrt(Z**3)*exp(-Z*r/2)/4
|
||
|
>>> R_nl(2, 1, r, Z)
|
||
|
sqrt(6)*Z*r*sqrt(Z**3)*exp(-Z*r/2)/12
|
||
|
|
||
|
For Hydrogen atom, you can just use the default value of Z=1:
|
||
|
|
||
|
>>> R_nl(1, 0, r)
|
||
|
2*exp(-r)
|
||
|
>>> R_nl(2, 0, r)
|
||
|
sqrt(2)*(2 - r)*exp(-r/2)/4
|
||
|
>>> R_nl(3, 0, r)
|
||
|
2*sqrt(3)*(2*r**2/9 - 2*r + 3)*exp(-r/3)/27
|
||
|
|
||
|
For Silver atom, you would use Z=47:
|
||
|
|
||
|
>>> R_nl(1, 0, r, Z=47)
|
||
|
94*sqrt(47)*exp(-47*r)
|
||
|
>>> R_nl(2, 0, r, Z=47)
|
||
|
47*sqrt(94)*(2 - 47*r)*exp(-47*r/2)/4
|
||
|
>>> R_nl(3, 0, r, Z=47)
|
||
|
94*sqrt(141)*(4418*r**2/9 - 94*r + 3)*exp(-47*r/3)/27
|
||
|
|
||
|
The normalization of the radial wavefunction is:
|
||
|
|
||
|
>>> from sympy import integrate, oo
|
||
|
>>> integrate(R_nl(1, 0, r)**2 * r**2, (r, 0, oo))
|
||
|
1
|
||
|
>>> integrate(R_nl(2, 0, r)**2 * r**2, (r, 0, oo))
|
||
|
1
|
||
|
>>> integrate(R_nl(2, 1, r)**2 * r**2, (r, 0, oo))
|
||
|
1
|
||
|
|
||
|
It holds for any atomic number:
|
||
|
|
||
|
>>> integrate(R_nl(1, 0, r, Z=2)**2 * r**2, (r, 0, oo))
|
||
|
1
|
||
|
>>> integrate(R_nl(2, 0, r, Z=3)**2 * r**2, (r, 0, oo))
|
||
|
1
|
||
|
>>> integrate(R_nl(2, 1, r, Z=4)**2 * r**2, (r, 0, oo))
|
||
|
1
|
||
|
|
||
|
"""
|
||
|
# sympify arguments
|
||
|
n, l, r, Z = map(S, [n, l, r, Z])
|
||
|
# radial quantum number
|
||
|
n_r = n - l - 1
|
||
|
# rescaled "r"
|
||
|
a = 1/Z # Bohr radius
|
||
|
r0 = 2 * r / (n * a)
|
||
|
# normalization coefficient
|
||
|
C = sqrt((S(2)/(n*a))**3 * factorial(n_r) / (2*n*factorial(n + l)))
|
||
|
# This is an equivalent normalization coefficient, that can be found in
|
||
|
# some books. Both coefficients seem to be the same fast:
|
||
|
# C = S(2)/n**2 * sqrt(1/a**3 * factorial(n_r) / (factorial(n+l)))
|
||
|
return C * r0**l * assoc_laguerre(n_r, 2*l + 1, r0).expand() * exp(-r0/2)
|
||
|
|
||
|
|
||
|
def Psi_nlm(n, l, m, r, phi, theta, Z=1):
|
||
|
"""
|
||
|
Returns the Hydrogen wave function psi_{nlm}. It's the product of
|
||
|
the radial wavefunction R_{nl} and the spherical harmonic Y_{l}^{m}.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
n : integer
|
||
|
Principal Quantum Number which is
|
||
|
an integer with possible values as 1, 2, 3, 4,...
|
||
|
l : integer
|
||
|
``l`` is the Angular Momentum Quantum Number with
|
||
|
values ranging from 0 to ``n-1``.
|
||
|
m : integer
|
||
|
``m`` is the Magnetic Quantum Number with values
|
||
|
ranging from ``-l`` to ``l``.
|
||
|
r :
|
||
|
radial coordinate
|
||
|
phi :
|
||
|
azimuthal angle
|
||
|
theta :
|
||
|
polar angle
|
||
|
Z :
|
||
|
atomic number (1 for Hydrogen, 2 for Helium, ...)
|
||
|
|
||
|
Everything is in Hartree atomic units.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.physics.hydrogen import Psi_nlm
|
||
|
>>> from sympy import Symbol
|
||
|
>>> r=Symbol("r", positive=True)
|
||
|
>>> phi=Symbol("phi", real=True)
|
||
|
>>> theta=Symbol("theta", real=True)
|
||
|
>>> Z=Symbol("Z", positive=True, integer=True, nonzero=True)
|
||
|
>>> Psi_nlm(1,0,0,r,phi,theta,Z)
|
||
|
Z**(3/2)*exp(-Z*r)/sqrt(pi)
|
||
|
>>> Psi_nlm(2,1,1,r,phi,theta,Z)
|
||
|
-Z**(5/2)*r*exp(I*phi)*exp(-Z*r/2)*sin(theta)/(8*sqrt(pi))
|
||
|
|
||
|
Integrating the absolute square of a hydrogen wavefunction psi_{nlm}
|
||
|
over the whole space leads 1.
|
||
|
|
||
|
The normalization of the hydrogen wavefunctions Psi_nlm is:
|
||
|
|
||
|
>>> from sympy import integrate, conjugate, pi, oo, sin
|
||
|
>>> wf=Psi_nlm(2,1,1,r,phi,theta,Z)
|
||
|
>>> abs_sqrd=wf*conjugate(wf)
|
||
|
>>> jacobi=r**2*sin(theta)
|
||
|
>>> integrate(abs_sqrd*jacobi, (r,0,oo), (phi,0,2*pi), (theta,0,pi))
|
||
|
1
|
||
|
"""
|
||
|
|
||
|
# sympify arguments
|
||
|
n, l, m, r, phi, theta, Z = map(S, [n, l, m, r, phi, theta, Z])
|
||
|
# check if values for n,l,m make physically sense
|
||
|
if n.is_integer and n < 1:
|
||
|
raise ValueError("'n' must be positive integer")
|
||
|
if l.is_integer and not (n > l):
|
||
|
raise ValueError("'n' must be greater than 'l'")
|
||
|
if m.is_integer and not (abs(m) <= l):
|
||
|
raise ValueError("|'m'| must be less or equal 'l'")
|
||
|
# return the hydrogen wave function
|
||
|
return R_nl(n, l, r, Z)*Ynm(l, m, theta, phi).expand(func=True)
|
||
|
|
||
|
|
||
|
def E_nl(n, Z=1):
|
||
|
"""
|
||
|
Returns the energy of the state (n, l) in Hartree atomic units.
|
||
|
|
||
|
The energy does not depend on "l".
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
n : integer
|
||
|
Principal Quantum Number which is
|
||
|
an integer with possible values as 1, 2, 3, 4,...
|
||
|
Z :
|
||
|
Atomic number (1 for Hydrogen, 2 for Helium, ...)
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.physics.hydrogen import E_nl
|
||
|
>>> from sympy.abc import n, Z
|
||
|
>>> E_nl(n, Z)
|
||
|
-Z**2/(2*n**2)
|
||
|
>>> E_nl(1)
|
||
|
-1/2
|
||
|
>>> E_nl(2)
|
||
|
-1/8
|
||
|
>>> E_nl(3)
|
||
|
-1/18
|
||
|
>>> E_nl(3, 47)
|
||
|
-2209/18
|
||
|
|
||
|
"""
|
||
|
n, Z = S(n), S(Z)
|
||
|
if n.is_integer and (n < 1):
|
||
|
raise ValueError("'n' must be positive integer")
|
||
|
return -Z**2/(2*n**2)
|
||
|
|
||
|
|
||
|
def E_nl_dirac(n, l, spin_up=True, Z=1, c=Float("137.035999037")):
|
||
|
"""
|
||
|
Returns the relativistic energy of the state (n, l, spin) in Hartree atomic
|
||
|
units.
|
||
|
|
||
|
The energy is calculated from the Dirac equation. The rest mass energy is
|
||
|
*not* included.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
n : integer
|
||
|
Principal Quantum Number which is
|
||
|
an integer with possible values as 1, 2, 3, 4,...
|
||
|
l : integer
|
||
|
``l`` is the Angular Momentum Quantum Number with
|
||
|
values ranging from 0 to ``n-1``.
|
||
|
spin_up :
|
||
|
True if the electron spin is up (default), otherwise down
|
||
|
Z :
|
||
|
Atomic number (1 for Hydrogen, 2 for Helium, ...)
|
||
|
c :
|
||
|
Speed of light in atomic units. Default value is 137.035999037,
|
||
|
taken from https://arxiv.org/abs/1012.3627
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.physics.hydrogen import E_nl_dirac
|
||
|
>>> E_nl_dirac(1, 0)
|
||
|
-0.500006656595360
|
||
|
|
||
|
>>> E_nl_dirac(2, 0)
|
||
|
-0.125002080189006
|
||
|
>>> E_nl_dirac(2, 1)
|
||
|
-0.125000416028342
|
||
|
>>> E_nl_dirac(2, 1, False)
|
||
|
-0.125002080189006
|
||
|
|
||
|
>>> E_nl_dirac(3, 0)
|
||
|
-0.0555562951740285
|
||
|
>>> E_nl_dirac(3, 1)
|
||
|
-0.0555558020932949
|
||
|
>>> E_nl_dirac(3, 1, False)
|
||
|
-0.0555562951740285
|
||
|
>>> E_nl_dirac(3, 2)
|
||
|
-0.0555556377366884
|
||
|
>>> E_nl_dirac(3, 2, False)
|
||
|
-0.0555558020932949
|
||
|
|
||
|
"""
|
||
|
n, l, Z, c = map(S, [n, l, Z, c])
|
||
|
if not (l >= 0):
|
||
|
raise ValueError("'l' must be positive or zero")
|
||
|
if not (n > l):
|
||
|
raise ValueError("'n' must be greater than 'l'")
|
||
|
if (l == 0 and spin_up is False):
|
||
|
raise ValueError("Spin must be up for l==0.")
|
||
|
# skappa is sign*kappa, where sign contains the correct sign
|
||
|
if spin_up:
|
||
|
skappa = -l - 1
|
||
|
else:
|
||
|
skappa = -l
|
||
|
beta = sqrt(skappa**2 - Z**2/c**2)
|
||
|
return c**2/sqrt(1 + Z**2/(n + skappa + beta)**2/c**2) - c**2
|