780 lines
25 KiB
Python
780 lines
25 KiB
Python
|
from sympy.utilities import dict_merge
|
||
|
from sympy.utilities.iterables import iterable
|
||
|
from sympy.physics.vector import (Dyadic, Vector, ReferenceFrame,
|
||
|
Point, dynamicsymbols)
|
||
|
from sympy.physics.vector.printing import (vprint, vsprint, vpprint, vlatex,
|
||
|
init_vprinting)
|
||
|
from sympy.physics.mechanics.particle import Particle
|
||
|
from sympy.physics.mechanics.rigidbody import RigidBody
|
||
|
from sympy.simplify.simplify import simplify
|
||
|
from sympy.core.backend import (Matrix, sympify, Mul, Derivative, sin, cos,
|
||
|
tan, AppliedUndef, S)
|
||
|
|
||
|
__all__ = ['inertia',
|
||
|
'inertia_of_point_mass',
|
||
|
'linear_momentum',
|
||
|
'angular_momentum',
|
||
|
'kinetic_energy',
|
||
|
'potential_energy',
|
||
|
'Lagrangian',
|
||
|
'mechanics_printing',
|
||
|
'mprint',
|
||
|
'msprint',
|
||
|
'mpprint',
|
||
|
'mlatex',
|
||
|
'msubs',
|
||
|
'find_dynamicsymbols']
|
||
|
|
||
|
# These are functions that we've moved and renamed during extracting the
|
||
|
# basic vector calculus code from the mechanics packages.
|
||
|
|
||
|
mprint = vprint
|
||
|
msprint = vsprint
|
||
|
mpprint = vpprint
|
||
|
mlatex = vlatex
|
||
|
|
||
|
|
||
|
def mechanics_printing(**kwargs):
|
||
|
"""
|
||
|
Initializes time derivative printing for all SymPy objects in
|
||
|
mechanics module.
|
||
|
"""
|
||
|
|
||
|
init_vprinting(**kwargs)
|
||
|
|
||
|
mechanics_printing.__doc__ = init_vprinting.__doc__
|
||
|
|
||
|
|
||
|
def inertia(frame, ixx, iyy, izz, ixy=0, iyz=0, izx=0):
|
||
|
"""Simple way to create inertia Dyadic object.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
If you do not know what a Dyadic is, just treat this like the inertia
|
||
|
tensor. Then, do the easy thing and define it in a body-fixed frame.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
frame : ReferenceFrame
|
||
|
The frame the inertia is defined in
|
||
|
ixx : Sympifyable
|
||
|
the xx element in the inertia dyadic
|
||
|
iyy : Sympifyable
|
||
|
the yy element in the inertia dyadic
|
||
|
izz : Sympifyable
|
||
|
the zz element in the inertia dyadic
|
||
|
ixy : Sympifyable
|
||
|
the xy element in the inertia dyadic
|
||
|
iyz : Sympifyable
|
||
|
the yz element in the inertia dyadic
|
||
|
izx : Sympifyable
|
||
|
the zx element in the inertia dyadic
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.physics.mechanics import ReferenceFrame, inertia
|
||
|
>>> N = ReferenceFrame('N')
|
||
|
>>> inertia(N, 1, 2, 3)
|
||
|
(N.x|N.x) + 2*(N.y|N.y) + 3*(N.z|N.z)
|
||
|
|
||
|
"""
|
||
|
|
||
|
if not isinstance(frame, ReferenceFrame):
|
||
|
raise TypeError('Need to define the inertia in a frame')
|
||
|
ixx = sympify(ixx)
|
||
|
ixy = sympify(ixy)
|
||
|
iyy = sympify(iyy)
|
||
|
iyz = sympify(iyz)
|
||
|
izx = sympify(izx)
|
||
|
izz = sympify(izz)
|
||
|
ol = ixx * (frame.x | frame.x)
|
||
|
ol += ixy * (frame.x | frame.y)
|
||
|
ol += izx * (frame.x | frame.z)
|
||
|
ol += ixy * (frame.y | frame.x)
|
||
|
ol += iyy * (frame.y | frame.y)
|
||
|
ol += iyz * (frame.y | frame.z)
|
||
|
ol += izx * (frame.z | frame.x)
|
||
|
ol += iyz * (frame.z | frame.y)
|
||
|
ol += izz * (frame.z | frame.z)
|
||
|
return ol
|
||
|
|
||
|
|
||
|
def inertia_of_point_mass(mass, pos_vec, frame):
|
||
|
"""Inertia dyadic of a point mass relative to point O.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
mass : Sympifyable
|
||
|
Mass of the point mass
|
||
|
pos_vec : Vector
|
||
|
Position from point O to point mass
|
||
|
frame : ReferenceFrame
|
||
|
Reference frame to express the dyadic in
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import symbols
|
||
|
>>> from sympy.physics.mechanics import ReferenceFrame, inertia_of_point_mass
|
||
|
>>> N = ReferenceFrame('N')
|
||
|
>>> r, m = symbols('r m')
|
||
|
>>> px = r * N.x
|
||
|
>>> inertia_of_point_mass(m, px, N)
|
||
|
m*r**2*(N.y|N.y) + m*r**2*(N.z|N.z)
|
||
|
|
||
|
"""
|
||
|
|
||
|
return mass * (((frame.x | frame.x) + (frame.y | frame.y) +
|
||
|
(frame.z | frame.z)) * (pos_vec & pos_vec) -
|
||
|
(pos_vec | pos_vec))
|
||
|
|
||
|
|
||
|
def linear_momentum(frame, *body):
|
||
|
"""Linear momentum of the system.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
This function returns the linear momentum of a system of Particle's and/or
|
||
|
RigidBody's. The linear momentum of a system is equal to the vector sum of
|
||
|
the linear momentum of its constituents. Consider a system, S, comprised of
|
||
|
a rigid body, A, and a particle, P. The linear momentum of the system, L,
|
||
|
is equal to the vector sum of the linear momentum of the particle, L1, and
|
||
|
the linear momentum of the rigid body, L2, i.e.
|
||
|
|
||
|
L = L1 + L2
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
frame : ReferenceFrame
|
||
|
The frame in which linear momentum is desired.
|
||
|
body1, body2, body3... : Particle and/or RigidBody
|
||
|
The body (or bodies) whose linear momentum is required.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.physics.mechanics import Point, Particle, ReferenceFrame
|
||
|
>>> from sympy.physics.mechanics import RigidBody, outer, linear_momentum
|
||
|
>>> N = ReferenceFrame('N')
|
||
|
>>> P = Point('P')
|
||
|
>>> P.set_vel(N, 10 * N.x)
|
||
|
>>> Pa = Particle('Pa', P, 1)
|
||
|
>>> Ac = Point('Ac')
|
||
|
>>> Ac.set_vel(N, 25 * N.y)
|
||
|
>>> I = outer(N.x, N.x)
|
||
|
>>> A = RigidBody('A', Ac, N, 20, (I, Ac))
|
||
|
>>> linear_momentum(N, A, Pa)
|
||
|
10*N.x + 500*N.y
|
||
|
|
||
|
"""
|
||
|
|
||
|
if not isinstance(frame, ReferenceFrame):
|
||
|
raise TypeError('Please specify a valid ReferenceFrame')
|
||
|
else:
|
||
|
linear_momentum_sys = Vector(0)
|
||
|
for e in body:
|
||
|
if isinstance(e, (RigidBody, Particle)):
|
||
|
linear_momentum_sys += e.linear_momentum(frame)
|
||
|
else:
|
||
|
raise TypeError('*body must have only Particle or RigidBody')
|
||
|
return linear_momentum_sys
|
||
|
|
||
|
|
||
|
def angular_momentum(point, frame, *body):
|
||
|
"""Angular momentum of a system.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
This function returns the angular momentum of a system of Particle's and/or
|
||
|
RigidBody's. The angular momentum of such a system is equal to the vector
|
||
|
sum of the angular momentum of its constituents. Consider a system, S,
|
||
|
comprised of a rigid body, A, and a particle, P. The angular momentum of
|
||
|
the system, H, is equal to the vector sum of the angular momentum of the
|
||
|
particle, H1, and the angular momentum of the rigid body, H2, i.e.
|
||
|
|
||
|
H = H1 + H2
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
point : Point
|
||
|
The point about which angular momentum of the system is desired.
|
||
|
frame : ReferenceFrame
|
||
|
The frame in which angular momentum is desired.
|
||
|
body1, body2, body3... : Particle and/or RigidBody
|
||
|
The body (or bodies) whose angular momentum is required.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.physics.mechanics import Point, Particle, ReferenceFrame
|
||
|
>>> from sympy.physics.mechanics import RigidBody, outer, angular_momentum
|
||
|
>>> N = ReferenceFrame('N')
|
||
|
>>> O = Point('O')
|
||
|
>>> O.set_vel(N, 0 * N.x)
|
||
|
>>> P = O.locatenew('P', 1 * N.x)
|
||
|
>>> P.set_vel(N, 10 * N.x)
|
||
|
>>> Pa = Particle('Pa', P, 1)
|
||
|
>>> Ac = O.locatenew('Ac', 2 * N.y)
|
||
|
>>> Ac.set_vel(N, 5 * N.y)
|
||
|
>>> a = ReferenceFrame('a')
|
||
|
>>> a.set_ang_vel(N, 10 * N.z)
|
||
|
>>> I = outer(N.z, N.z)
|
||
|
>>> A = RigidBody('A', Ac, a, 20, (I, Ac))
|
||
|
>>> angular_momentum(O, N, Pa, A)
|
||
|
10*N.z
|
||
|
|
||
|
"""
|
||
|
|
||
|
if not isinstance(frame, ReferenceFrame):
|
||
|
raise TypeError('Please enter a valid ReferenceFrame')
|
||
|
if not isinstance(point, Point):
|
||
|
raise TypeError('Please specify a valid Point')
|
||
|
else:
|
||
|
angular_momentum_sys = Vector(0)
|
||
|
for e in body:
|
||
|
if isinstance(e, (RigidBody, Particle)):
|
||
|
angular_momentum_sys += e.angular_momentum(point, frame)
|
||
|
else:
|
||
|
raise TypeError('*body must have only Particle or RigidBody')
|
||
|
return angular_momentum_sys
|
||
|
|
||
|
|
||
|
def kinetic_energy(frame, *body):
|
||
|
"""Kinetic energy of a multibody system.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
This function returns the kinetic energy of a system of Particle's and/or
|
||
|
RigidBody's. The kinetic energy of such a system is equal to the sum of
|
||
|
the kinetic energies of its constituents. Consider a system, S, comprising
|
||
|
a rigid body, A, and a particle, P. The kinetic energy of the system, T,
|
||
|
is equal to the vector sum of the kinetic energy of the particle, T1, and
|
||
|
the kinetic energy of the rigid body, T2, i.e.
|
||
|
|
||
|
T = T1 + T2
|
||
|
|
||
|
Kinetic energy is a scalar.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
frame : ReferenceFrame
|
||
|
The frame in which the velocity or angular velocity of the body is
|
||
|
defined.
|
||
|
body1, body2, body3... : Particle and/or RigidBody
|
||
|
The body (or bodies) whose kinetic energy is required.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.physics.mechanics import Point, Particle, ReferenceFrame
|
||
|
>>> from sympy.physics.mechanics import RigidBody, outer, kinetic_energy
|
||
|
>>> N = ReferenceFrame('N')
|
||
|
>>> O = Point('O')
|
||
|
>>> O.set_vel(N, 0 * N.x)
|
||
|
>>> P = O.locatenew('P', 1 * N.x)
|
||
|
>>> P.set_vel(N, 10 * N.x)
|
||
|
>>> Pa = Particle('Pa', P, 1)
|
||
|
>>> Ac = O.locatenew('Ac', 2 * N.y)
|
||
|
>>> Ac.set_vel(N, 5 * N.y)
|
||
|
>>> a = ReferenceFrame('a')
|
||
|
>>> a.set_ang_vel(N, 10 * N.z)
|
||
|
>>> I = outer(N.z, N.z)
|
||
|
>>> A = RigidBody('A', Ac, a, 20, (I, Ac))
|
||
|
>>> kinetic_energy(N, Pa, A)
|
||
|
350
|
||
|
|
||
|
"""
|
||
|
|
||
|
if not isinstance(frame, ReferenceFrame):
|
||
|
raise TypeError('Please enter a valid ReferenceFrame')
|
||
|
ke_sys = S.Zero
|
||
|
for e in body:
|
||
|
if isinstance(e, (RigidBody, Particle)):
|
||
|
ke_sys += e.kinetic_energy(frame)
|
||
|
else:
|
||
|
raise TypeError('*body must have only Particle or RigidBody')
|
||
|
return ke_sys
|
||
|
|
||
|
|
||
|
def potential_energy(*body):
|
||
|
"""Potential energy of a multibody system.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
This function returns the potential energy of a system of Particle's and/or
|
||
|
RigidBody's. The potential energy of such a system is equal to the sum of
|
||
|
the potential energy of its constituents. Consider a system, S, comprising
|
||
|
a rigid body, A, and a particle, P. The potential energy of the system, V,
|
||
|
is equal to the vector sum of the potential energy of the particle, V1, and
|
||
|
the potential energy of the rigid body, V2, i.e.
|
||
|
|
||
|
V = V1 + V2
|
||
|
|
||
|
Potential energy is a scalar.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
body1, body2, body3... : Particle and/or RigidBody
|
||
|
The body (or bodies) whose potential energy is required.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.physics.mechanics import Point, Particle, ReferenceFrame
|
||
|
>>> from sympy.physics.mechanics import RigidBody, outer, potential_energy
|
||
|
>>> from sympy import symbols
|
||
|
>>> M, m, g, h = symbols('M m g h')
|
||
|
>>> N = ReferenceFrame('N')
|
||
|
>>> O = Point('O')
|
||
|
>>> O.set_vel(N, 0 * N.x)
|
||
|
>>> P = O.locatenew('P', 1 * N.x)
|
||
|
>>> Pa = Particle('Pa', P, m)
|
||
|
>>> Ac = O.locatenew('Ac', 2 * N.y)
|
||
|
>>> a = ReferenceFrame('a')
|
||
|
>>> I = outer(N.z, N.z)
|
||
|
>>> A = RigidBody('A', Ac, a, M, (I, Ac))
|
||
|
>>> Pa.potential_energy = m * g * h
|
||
|
>>> A.potential_energy = M * g * h
|
||
|
>>> potential_energy(Pa, A)
|
||
|
M*g*h + g*h*m
|
||
|
|
||
|
"""
|
||
|
|
||
|
pe_sys = S.Zero
|
||
|
for e in body:
|
||
|
if isinstance(e, (RigidBody, Particle)):
|
||
|
pe_sys += e.potential_energy
|
||
|
else:
|
||
|
raise TypeError('*body must have only Particle or RigidBody')
|
||
|
return pe_sys
|
||
|
|
||
|
|
||
|
def gravity(acceleration, *bodies):
|
||
|
"""
|
||
|
Returns a list of gravity forces given the acceleration
|
||
|
due to gravity and any number of particles or rigidbodies.
|
||
|
|
||
|
Example
|
||
|
=======
|
||
|
|
||
|
>>> from sympy.physics.mechanics import ReferenceFrame, Point, Particle, outer, RigidBody
|
||
|
>>> from sympy.physics.mechanics.functions import gravity
|
||
|
>>> from sympy import symbols
|
||
|
>>> N = ReferenceFrame('N')
|
||
|
>>> m, M, g = symbols('m M g')
|
||
|
>>> F1, F2 = symbols('F1 F2')
|
||
|
>>> po = Point('po')
|
||
|
>>> pa = Particle('pa', po, m)
|
||
|
>>> A = ReferenceFrame('A')
|
||
|
>>> P = Point('P')
|
||
|
>>> I = outer(A.x, A.x)
|
||
|
>>> B = RigidBody('B', P, A, M, (I, P))
|
||
|
>>> forceList = [(po, F1), (P, F2)]
|
||
|
>>> forceList.extend(gravity(g*N.y, pa, B))
|
||
|
>>> forceList
|
||
|
[(po, F1), (P, F2), (po, g*m*N.y), (P, M*g*N.y)]
|
||
|
|
||
|
"""
|
||
|
|
||
|
gravity_force = []
|
||
|
if not bodies:
|
||
|
raise TypeError("No bodies(instances of Particle or Rigidbody) were passed.")
|
||
|
|
||
|
for e in bodies:
|
||
|
point = getattr(e, 'masscenter', None)
|
||
|
if point is None:
|
||
|
point = e.point
|
||
|
|
||
|
gravity_force.append((point, e.mass*acceleration))
|
||
|
|
||
|
return gravity_force
|
||
|
|
||
|
|
||
|
def center_of_mass(point, *bodies):
|
||
|
"""
|
||
|
Returns the position vector from the given point to the center of mass
|
||
|
of the given bodies(particles or rigidbodies).
|
||
|
|
||
|
Example
|
||
|
=======
|
||
|
|
||
|
>>> from sympy import symbols, S
|
||
|
>>> from sympy.physics.vector import Point
|
||
|
>>> from sympy.physics.mechanics import Particle, ReferenceFrame, RigidBody, outer
|
||
|
>>> from sympy.physics.mechanics.functions import center_of_mass
|
||
|
>>> a = ReferenceFrame('a')
|
||
|
>>> m = symbols('m', real=True)
|
||
|
>>> p1 = Particle('p1', Point('p1_pt'), S(1))
|
||
|
>>> p2 = Particle('p2', Point('p2_pt'), S(2))
|
||
|
>>> p3 = Particle('p3', Point('p3_pt'), S(3))
|
||
|
>>> p4 = Particle('p4', Point('p4_pt'), m)
|
||
|
>>> b_f = ReferenceFrame('b_f')
|
||
|
>>> b_cm = Point('b_cm')
|
||
|
>>> mb = symbols('mb')
|
||
|
>>> b = RigidBody('b', b_cm, b_f, mb, (outer(b_f.x, b_f.x), b_cm))
|
||
|
>>> p2.point.set_pos(p1.point, a.x)
|
||
|
>>> p3.point.set_pos(p1.point, a.x + a.y)
|
||
|
>>> p4.point.set_pos(p1.point, a.y)
|
||
|
>>> b.masscenter.set_pos(p1.point, a.y + a.z)
|
||
|
>>> point_o=Point('o')
|
||
|
>>> point_o.set_pos(p1.point, center_of_mass(p1.point, p1, p2, p3, p4, b))
|
||
|
>>> expr = 5/(m + mb + 6)*a.x + (m + mb + 3)/(m + mb + 6)*a.y + mb/(m + mb + 6)*a.z
|
||
|
>>> point_o.pos_from(p1.point)
|
||
|
5/(m + mb + 6)*a.x + (m + mb + 3)/(m + mb + 6)*a.y + mb/(m + mb + 6)*a.z
|
||
|
|
||
|
"""
|
||
|
if not bodies:
|
||
|
raise TypeError("No bodies(instances of Particle or Rigidbody) were passed.")
|
||
|
|
||
|
total_mass = 0
|
||
|
vec = Vector(0)
|
||
|
for i in bodies:
|
||
|
total_mass += i.mass
|
||
|
|
||
|
masscenter = getattr(i, 'masscenter', None)
|
||
|
if masscenter is None:
|
||
|
masscenter = i.point
|
||
|
vec += i.mass*masscenter.pos_from(point)
|
||
|
|
||
|
return vec/total_mass
|
||
|
|
||
|
|
||
|
def Lagrangian(frame, *body):
|
||
|
"""Lagrangian of a multibody system.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
This function returns the Lagrangian of a system of Particle's and/or
|
||
|
RigidBody's. The Lagrangian of such a system is equal to the difference
|
||
|
between the kinetic energies and potential energies of its constituents. If
|
||
|
T and V are the kinetic and potential energies of a system then it's
|
||
|
Lagrangian, L, is defined as
|
||
|
|
||
|
L = T - V
|
||
|
|
||
|
The Lagrangian is a scalar.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
frame : ReferenceFrame
|
||
|
The frame in which the velocity or angular velocity of the body is
|
||
|
defined to determine the kinetic energy.
|
||
|
|
||
|
body1, body2, body3... : Particle and/or RigidBody
|
||
|
The body (or bodies) whose Lagrangian is required.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.physics.mechanics import Point, Particle, ReferenceFrame
|
||
|
>>> from sympy.physics.mechanics import RigidBody, outer, Lagrangian
|
||
|
>>> from sympy import symbols
|
||
|
>>> M, m, g, h = symbols('M m g h')
|
||
|
>>> N = ReferenceFrame('N')
|
||
|
>>> O = Point('O')
|
||
|
>>> O.set_vel(N, 0 * N.x)
|
||
|
>>> P = O.locatenew('P', 1 * N.x)
|
||
|
>>> P.set_vel(N, 10 * N.x)
|
||
|
>>> Pa = Particle('Pa', P, 1)
|
||
|
>>> Ac = O.locatenew('Ac', 2 * N.y)
|
||
|
>>> Ac.set_vel(N, 5 * N.y)
|
||
|
>>> a = ReferenceFrame('a')
|
||
|
>>> a.set_ang_vel(N, 10 * N.z)
|
||
|
>>> I = outer(N.z, N.z)
|
||
|
>>> A = RigidBody('A', Ac, a, 20, (I, Ac))
|
||
|
>>> Pa.potential_energy = m * g * h
|
||
|
>>> A.potential_energy = M * g * h
|
||
|
>>> Lagrangian(N, Pa, A)
|
||
|
-M*g*h - g*h*m + 350
|
||
|
|
||
|
"""
|
||
|
|
||
|
if not isinstance(frame, ReferenceFrame):
|
||
|
raise TypeError('Please supply a valid ReferenceFrame')
|
||
|
for e in body:
|
||
|
if not isinstance(e, (RigidBody, Particle)):
|
||
|
raise TypeError('*body must have only Particle or RigidBody')
|
||
|
return kinetic_energy(frame, *body) - potential_energy(*body)
|
||
|
|
||
|
|
||
|
def find_dynamicsymbols(expression, exclude=None, reference_frame=None):
|
||
|
"""Find all dynamicsymbols in expression.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
If the optional ``exclude`` kwarg is used, only dynamicsymbols
|
||
|
not in the iterable ``exclude`` are returned.
|
||
|
If we intend to apply this function on a vector, the optional
|
||
|
``reference_frame`` is also used to inform about the corresponding frame
|
||
|
with respect to which the dynamic symbols of the given vector is to be
|
||
|
determined.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
expression : SymPy expression
|
||
|
|
||
|
exclude : iterable of dynamicsymbols, optional
|
||
|
|
||
|
reference_frame : ReferenceFrame, optional
|
||
|
The frame with respect to which the dynamic symbols of the
|
||
|
given vector is to be determined.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.physics.mechanics import dynamicsymbols, find_dynamicsymbols
|
||
|
>>> from sympy.physics.mechanics import ReferenceFrame
|
||
|
>>> x, y = dynamicsymbols('x, y')
|
||
|
>>> expr = x + x.diff()*y
|
||
|
>>> find_dynamicsymbols(expr)
|
||
|
{x(t), y(t), Derivative(x(t), t)}
|
||
|
>>> find_dynamicsymbols(expr, exclude=[x, y])
|
||
|
{Derivative(x(t), t)}
|
||
|
>>> a, b, c = dynamicsymbols('a, b, c')
|
||
|
>>> A = ReferenceFrame('A')
|
||
|
>>> v = a * A.x + b * A.y + c * A.z
|
||
|
>>> find_dynamicsymbols(v, reference_frame=A)
|
||
|
{a(t), b(t), c(t)}
|
||
|
|
||
|
"""
|
||
|
t_set = {dynamicsymbols._t}
|
||
|
if exclude:
|
||
|
if iterable(exclude):
|
||
|
exclude_set = set(exclude)
|
||
|
else:
|
||
|
raise TypeError("exclude kwarg must be iterable")
|
||
|
else:
|
||
|
exclude_set = set()
|
||
|
if isinstance(expression, Vector):
|
||
|
if reference_frame is None:
|
||
|
raise ValueError("You must provide reference_frame when passing a "
|
||
|
"vector expression, got %s." % reference_frame)
|
||
|
else:
|
||
|
expression = expression.to_matrix(reference_frame)
|
||
|
return {i for i in expression.atoms(AppliedUndef, Derivative) if
|
||
|
i.free_symbols == t_set} - exclude_set
|
||
|
|
||
|
|
||
|
def msubs(expr, *sub_dicts, smart=False, **kwargs):
|
||
|
"""A custom subs for use on expressions derived in physics.mechanics.
|
||
|
|
||
|
Traverses the expression tree once, performing the subs found in sub_dicts.
|
||
|
Terms inside ``Derivative`` expressions are ignored:
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.physics.mechanics import dynamicsymbols, msubs
|
||
|
>>> x = dynamicsymbols('x')
|
||
|
>>> msubs(x.diff() + x, {x: 1})
|
||
|
Derivative(x(t), t) + 1
|
||
|
|
||
|
Note that sub_dicts can be a single dictionary, or several dictionaries:
|
||
|
|
||
|
>>> x, y, z = dynamicsymbols('x, y, z')
|
||
|
>>> sub1 = {x: 1, y: 2}
|
||
|
>>> sub2 = {z: 3, x.diff(): 4}
|
||
|
>>> msubs(x.diff() + x + y + z, sub1, sub2)
|
||
|
10
|
||
|
|
||
|
If smart=True (default False), also checks for conditions that may result
|
||
|
in ``nan``, but if simplified would yield a valid expression. For example:
|
||
|
|
||
|
>>> from sympy import sin, tan
|
||
|
>>> (sin(x)/tan(x)).subs(x, 0)
|
||
|
nan
|
||
|
>>> msubs(sin(x)/tan(x), {x: 0}, smart=True)
|
||
|
1
|
||
|
|
||
|
It does this by first replacing all ``tan`` with ``sin/cos``. Then each
|
||
|
node is traversed. If the node is a fraction, subs is first evaluated on
|
||
|
the denominator. If this results in 0, simplification of the entire
|
||
|
fraction is attempted. Using this selective simplification, only
|
||
|
subexpressions that result in 1/0 are targeted, resulting in faster
|
||
|
performance.
|
||
|
|
||
|
"""
|
||
|
|
||
|
sub_dict = dict_merge(*sub_dicts)
|
||
|
if smart:
|
||
|
func = _smart_subs
|
||
|
elif hasattr(expr, 'msubs'):
|
||
|
return expr.msubs(sub_dict)
|
||
|
else:
|
||
|
func = lambda expr, sub_dict: _crawl(expr, _sub_func, sub_dict)
|
||
|
if isinstance(expr, (Matrix, Vector, Dyadic)):
|
||
|
return expr.applyfunc(lambda x: func(x, sub_dict))
|
||
|
else:
|
||
|
return func(expr, sub_dict)
|
||
|
|
||
|
|
||
|
def _crawl(expr, func, *args, **kwargs):
|
||
|
"""Crawl the expression tree, and apply func to every node."""
|
||
|
val = func(expr, *args, **kwargs)
|
||
|
if val is not None:
|
||
|
return val
|
||
|
new_args = (_crawl(arg, func, *args, **kwargs) for arg in expr.args)
|
||
|
return expr.func(*new_args)
|
||
|
|
||
|
|
||
|
def _sub_func(expr, sub_dict):
|
||
|
"""Perform direct matching substitution, ignoring derivatives."""
|
||
|
if expr in sub_dict:
|
||
|
return sub_dict[expr]
|
||
|
elif not expr.args or expr.is_Derivative:
|
||
|
return expr
|
||
|
|
||
|
|
||
|
def _tan_repl_func(expr):
|
||
|
"""Replace tan with sin/cos."""
|
||
|
if isinstance(expr, tan):
|
||
|
return sin(*expr.args) / cos(*expr.args)
|
||
|
elif not expr.args or expr.is_Derivative:
|
||
|
return expr
|
||
|
|
||
|
|
||
|
def _smart_subs(expr, sub_dict):
|
||
|
"""Performs subs, checking for conditions that may result in `nan` or
|
||
|
`oo`, and attempts to simplify them out.
|
||
|
|
||
|
The expression tree is traversed twice, and the following steps are
|
||
|
performed on each expression node:
|
||
|
- First traverse:
|
||
|
Replace all `tan` with `sin/cos`.
|
||
|
- Second traverse:
|
||
|
If node is a fraction, check if the denominator evaluates to 0.
|
||
|
If so, attempt to simplify it out. Then if node is in sub_dict,
|
||
|
sub in the corresponding value.
|
||
|
|
||
|
"""
|
||
|
expr = _crawl(expr, _tan_repl_func)
|
||
|
|
||
|
def _recurser(expr, sub_dict):
|
||
|
# Decompose the expression into num, den
|
||
|
num, den = _fraction_decomp(expr)
|
||
|
if den != 1:
|
||
|
# If there is a non trivial denominator, we need to handle it
|
||
|
denom_subbed = _recurser(den, sub_dict)
|
||
|
if denom_subbed.evalf() == 0:
|
||
|
# If denom is 0 after this, attempt to simplify the bad expr
|
||
|
expr = simplify(expr)
|
||
|
else:
|
||
|
# Expression won't result in nan, find numerator
|
||
|
num_subbed = _recurser(num, sub_dict)
|
||
|
return num_subbed / denom_subbed
|
||
|
# We have to crawl the tree manually, because `expr` may have been
|
||
|
# modified in the simplify step. First, perform subs as normal:
|
||
|
val = _sub_func(expr, sub_dict)
|
||
|
if val is not None:
|
||
|
return val
|
||
|
new_args = (_recurser(arg, sub_dict) for arg in expr.args)
|
||
|
return expr.func(*new_args)
|
||
|
return _recurser(expr, sub_dict)
|
||
|
|
||
|
|
||
|
def _fraction_decomp(expr):
|
||
|
"""Return num, den such that expr = num/den."""
|
||
|
if not isinstance(expr, Mul):
|
||
|
return expr, 1
|
||
|
num = []
|
||
|
den = []
|
||
|
for a in expr.args:
|
||
|
if a.is_Pow and a.args[1] < 0:
|
||
|
den.append(1 / a)
|
||
|
else:
|
||
|
num.append(a)
|
||
|
if not den:
|
||
|
return expr, 1
|
||
|
num = Mul(*num)
|
||
|
den = Mul(*den)
|
||
|
return num, den
|
||
|
|
||
|
|
||
|
def _f_list_parser(fl, ref_frame):
|
||
|
"""Parses the provided forcelist composed of items
|
||
|
of the form (obj, force).
|
||
|
Returns a tuple containing:
|
||
|
vel_list: The velocity (ang_vel for Frames, vel for Points) in
|
||
|
the provided reference frame.
|
||
|
f_list: The forces.
|
||
|
|
||
|
Used internally in the KanesMethod and LagrangesMethod classes.
|
||
|
|
||
|
"""
|
||
|
def flist_iter():
|
||
|
for pair in fl:
|
||
|
obj, force = pair
|
||
|
if isinstance(obj, ReferenceFrame):
|
||
|
yield obj.ang_vel_in(ref_frame), force
|
||
|
elif isinstance(obj, Point):
|
||
|
yield obj.vel(ref_frame), force
|
||
|
else:
|
||
|
raise TypeError('First entry in each forcelist pair must '
|
||
|
'be a point or frame.')
|
||
|
|
||
|
if not fl:
|
||
|
vel_list, f_list = (), ()
|
||
|
else:
|
||
|
unzip = lambda l: list(zip(*l)) if l[0] else [(), ()]
|
||
|
vel_list, f_list = unzip(list(flist_iter()))
|
||
|
return vel_list, f_list
|
||
|
|
||
|
|
||
|
def _validate_coordinates(coordinates=None, speeds=None, check_duplicates=True,
|
||
|
is_dynamicsymbols=True):
|
||
|
t_set = {dynamicsymbols._t}
|
||
|
# Convert input to iterables
|
||
|
if coordinates is None:
|
||
|
coordinates = []
|
||
|
elif not iterable(coordinates):
|
||
|
coordinates = [coordinates]
|
||
|
if speeds is None:
|
||
|
speeds = []
|
||
|
elif not iterable(speeds):
|
||
|
speeds = [speeds]
|
||
|
|
||
|
if check_duplicates: # Check for duplicates
|
||
|
seen = set()
|
||
|
coord_duplicates = {x for x in coordinates if x in seen or seen.add(x)}
|
||
|
seen = set()
|
||
|
speed_duplicates = {x for x in speeds if x in seen or seen.add(x)}
|
||
|
overlap = set(coordinates).intersection(speeds)
|
||
|
if coord_duplicates:
|
||
|
raise ValueError(f'The generalized coordinates {coord_duplicates} '
|
||
|
f'are duplicated, all generalized coordinates '
|
||
|
f'should be unique.')
|
||
|
if speed_duplicates:
|
||
|
raise ValueError(f'The generalized speeds {speed_duplicates} are '
|
||
|
f'duplicated, all generalized speeds should be '
|
||
|
f'unique.')
|
||
|
if overlap:
|
||
|
raise ValueError(f'{overlap} are defined as both generalized '
|
||
|
f'coordinates and generalized speeds.')
|
||
|
if is_dynamicsymbols: # Check whether all coordinates are dynamicsymbols
|
||
|
for coordinate in coordinates:
|
||
|
if not (isinstance(coordinate, (AppliedUndef, Derivative)) and
|
||
|
coordinate.free_symbols == t_set):
|
||
|
raise ValueError(f'Generalized coordinate "{coordinate}" is not'
|
||
|
f' a dynamicsymbol.')
|
||
|
for speed in speeds:
|
||
|
if not (isinstance(speed, (AppliedUndef, Derivative)) and
|
||
|
speed.free_symbols == t_set):
|
||
|
raise ValueError(f'Generalized speed "{speed}" is not a '
|
||
|
f'dynamicsymbol.')
|