223 lines
7.5 KiB
Python
223 lines
7.5 KiB
Python
|
from itertools import combinations_with_replacement
|
||
|
from sympy.core import symbols, Add, Dummy
|
||
|
from sympy.core.numbers import Rational
|
||
|
from sympy.polys import cancel, ComputationFailed, parallel_poly_from_expr, reduced, Poly
|
||
|
from sympy.polys.monomials import Monomial, monomial_div
|
||
|
from sympy.polys.polyerrors import DomainError, PolificationFailed
|
||
|
from sympy.utilities.misc import debug, debugf
|
||
|
|
||
|
def ratsimp(expr):
|
||
|
"""
|
||
|
Put an expression over a common denominator, cancel and reduce.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import ratsimp
|
||
|
>>> from sympy.abc import x, y
|
||
|
>>> ratsimp(1/x + 1/y)
|
||
|
(x + y)/(x*y)
|
||
|
"""
|
||
|
|
||
|
f, g = cancel(expr).as_numer_denom()
|
||
|
try:
|
||
|
Q, r = reduced(f, [g], field=True, expand=False)
|
||
|
except ComputationFailed:
|
||
|
return f/g
|
||
|
|
||
|
return Add(*Q) + cancel(r/g)
|
||
|
|
||
|
|
||
|
def ratsimpmodprime(expr, G, *gens, quick=True, polynomial=False, **args):
|
||
|
"""
|
||
|
Simplifies a rational expression ``expr`` modulo the prime ideal
|
||
|
generated by ``G``. ``G`` should be a Groebner basis of the
|
||
|
ideal.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.simplify.ratsimp import ratsimpmodprime
|
||
|
>>> from sympy.abc import x, y
|
||
|
>>> eq = (x + y**5 + y)/(x - y)
|
||
|
>>> ratsimpmodprime(eq, [x*y**5 - x - y], x, y, order='lex')
|
||
|
(-x**2 - x*y - x - y)/(-x**2 + x*y)
|
||
|
|
||
|
If ``polynomial`` is ``False``, the algorithm computes a rational
|
||
|
simplification which minimizes the sum of the total degrees of
|
||
|
the numerator and the denominator.
|
||
|
|
||
|
If ``polynomial`` is ``True``, this function just brings numerator and
|
||
|
denominator into a canonical form. This is much faster, but has
|
||
|
potentially worse results.
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] M. Monagan, R. Pearce, Rational Simplification Modulo a Polynomial
|
||
|
Ideal, https://dl.acm.org/doi/pdf/10.1145/1145768.1145809
|
||
|
(specifically, the second algorithm)
|
||
|
"""
|
||
|
from sympy.solvers.solvers import solve
|
||
|
|
||
|
debug('ratsimpmodprime', expr)
|
||
|
|
||
|
# usual preparation of polynomials:
|
||
|
|
||
|
num, denom = cancel(expr).as_numer_denom()
|
||
|
|
||
|
try:
|
||
|
polys, opt = parallel_poly_from_expr([num, denom] + G, *gens, **args)
|
||
|
except PolificationFailed:
|
||
|
return expr
|
||
|
|
||
|
domain = opt.domain
|
||
|
|
||
|
if domain.has_assoc_Field:
|
||
|
opt.domain = domain.get_field()
|
||
|
else:
|
||
|
raise DomainError(
|
||
|
"Cannot compute rational simplification over %s" % domain)
|
||
|
|
||
|
# compute only once
|
||
|
leading_monomials = [g.LM(opt.order) for g in polys[2:]]
|
||
|
tested = set()
|
||
|
|
||
|
def staircase(n):
|
||
|
"""
|
||
|
Compute all monomials with degree less than ``n`` that are
|
||
|
not divisible by any element of ``leading_monomials``.
|
||
|
"""
|
||
|
if n == 0:
|
||
|
return [1]
|
||
|
S = []
|
||
|
for mi in combinations_with_replacement(range(len(opt.gens)), n):
|
||
|
m = [0]*len(opt.gens)
|
||
|
for i in mi:
|
||
|
m[i] += 1
|
||
|
if all(monomial_div(m, lmg) is None for lmg in
|
||
|
leading_monomials):
|
||
|
S.append(m)
|
||
|
|
||
|
return [Monomial(s).as_expr(*opt.gens) for s in S] + staircase(n - 1)
|
||
|
|
||
|
def _ratsimpmodprime(a, b, allsol, N=0, D=0):
|
||
|
r"""
|
||
|
Computes a rational simplification of ``a/b`` which minimizes
|
||
|
the sum of the total degrees of the numerator and the denominator.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
The algorithm proceeds by looking at ``a * d - b * c`` modulo
|
||
|
the ideal generated by ``G`` for some ``c`` and ``d`` with degree
|
||
|
less than ``a`` and ``b`` respectively.
|
||
|
The coefficients of ``c`` and ``d`` are indeterminates and thus
|
||
|
the coefficients of the normalform of ``a * d - b * c`` are
|
||
|
linear polynomials in these indeterminates.
|
||
|
If these linear polynomials, considered as system of
|
||
|
equations, have a nontrivial solution, then `\frac{a}{b}
|
||
|
\equiv \frac{c}{d}` modulo the ideal generated by ``G``. So,
|
||
|
by construction, the degree of ``c`` and ``d`` is less than
|
||
|
the degree of ``a`` and ``b``, so a simpler representation
|
||
|
has been found.
|
||
|
After a simpler representation has been found, the algorithm
|
||
|
tries to reduce the degree of the numerator and denominator
|
||
|
and returns the result afterwards.
|
||
|
|
||
|
As an extension, if quick=False, we look at all possible degrees such
|
||
|
that the total degree is less than *or equal to* the best current
|
||
|
solution. We retain a list of all solutions of minimal degree, and try
|
||
|
to find the best one at the end.
|
||
|
"""
|
||
|
c, d = a, b
|
||
|
steps = 0
|
||
|
|
||
|
maxdeg = a.total_degree() + b.total_degree()
|
||
|
if quick:
|
||
|
bound = maxdeg - 1
|
||
|
else:
|
||
|
bound = maxdeg
|
||
|
while N + D <= bound:
|
||
|
if (N, D) in tested:
|
||
|
break
|
||
|
tested.add((N, D))
|
||
|
|
||
|
M1 = staircase(N)
|
||
|
M2 = staircase(D)
|
||
|
debugf('%s / %s: %s, %s', (N, D, M1, M2))
|
||
|
|
||
|
Cs = symbols("c:%d" % len(M1), cls=Dummy)
|
||
|
Ds = symbols("d:%d" % len(M2), cls=Dummy)
|
||
|
ng = Cs + Ds
|
||
|
|
||
|
c_hat = Poly(
|
||
|
sum([Cs[i] * M1[i] for i in range(len(M1))]), opt.gens + ng)
|
||
|
d_hat = Poly(
|
||
|
sum([Ds[i] * M2[i] for i in range(len(M2))]), opt.gens + ng)
|
||
|
|
||
|
r = reduced(a * d_hat - b * c_hat, G, opt.gens + ng,
|
||
|
order=opt.order, polys=True)[1]
|
||
|
|
||
|
S = Poly(r, gens=opt.gens).coeffs()
|
||
|
sol = solve(S, Cs + Ds, particular=True, quick=True)
|
||
|
|
||
|
if sol and not all(s == 0 for s in sol.values()):
|
||
|
c = c_hat.subs(sol)
|
||
|
d = d_hat.subs(sol)
|
||
|
|
||
|
# The "free" variables occurring before as parameters
|
||
|
# might still be in the substituted c, d, so set them
|
||
|
# to the value chosen before:
|
||
|
c = c.subs(dict(list(zip(Cs + Ds, [1] * (len(Cs) + len(Ds))))))
|
||
|
d = d.subs(dict(list(zip(Cs + Ds, [1] * (len(Cs) + len(Ds))))))
|
||
|
|
||
|
c = Poly(c, opt.gens)
|
||
|
d = Poly(d, opt.gens)
|
||
|
if d == 0:
|
||
|
raise ValueError('Ideal not prime?')
|
||
|
|
||
|
allsol.append((c_hat, d_hat, S, Cs + Ds))
|
||
|
if N + D != maxdeg:
|
||
|
allsol = [allsol[-1]]
|
||
|
|
||
|
break
|
||
|
|
||
|
steps += 1
|
||
|
N += 1
|
||
|
D += 1
|
||
|
|
||
|
if steps > 0:
|
||
|
c, d, allsol = _ratsimpmodprime(c, d, allsol, N, D - steps)
|
||
|
c, d, allsol = _ratsimpmodprime(c, d, allsol, N - steps, D)
|
||
|
|
||
|
return c, d, allsol
|
||
|
|
||
|
# preprocessing. this improves performance a bit when deg(num)
|
||
|
# and deg(denom) are large:
|
||
|
num = reduced(num, G, opt.gens, order=opt.order)[1]
|
||
|
denom = reduced(denom, G, opt.gens, order=opt.order)[1]
|
||
|
|
||
|
if polynomial:
|
||
|
return (num/denom).cancel()
|
||
|
|
||
|
c, d, allsol = _ratsimpmodprime(
|
||
|
Poly(num, opt.gens, domain=opt.domain), Poly(denom, opt.gens, domain=opt.domain), [])
|
||
|
if not quick and allsol:
|
||
|
debugf('Looking for best minimal solution. Got: %s', len(allsol))
|
||
|
newsol = []
|
||
|
for c_hat, d_hat, S, ng in allsol:
|
||
|
sol = solve(S, ng, particular=True, quick=False)
|
||
|
# all values of sol should be numbers; if not, solve is broken
|
||
|
newsol.append((c_hat.subs(sol), d_hat.subs(sol)))
|
||
|
c, d = min(newsol, key=lambda x: len(x[0].terms()) + len(x[1].terms()))
|
||
|
|
||
|
if not domain.is_Field:
|
||
|
cn, c = c.clear_denoms(convert=True)
|
||
|
dn, d = d.clear_denoms(convert=True)
|
||
|
r = Rational(cn, dn)
|
||
|
else:
|
||
|
r = Rational(1)
|
||
|
|
||
|
return (c*r.q)/(d*r.p)
|