985 lines
32 KiB
Python
985 lines
32 KiB
Python
|
"""Tools for solving inequalities and systems of inequalities. """
|
||
|
import itertools
|
||
|
|
||
|
from sympy.calculus.util import (continuous_domain, periodicity,
|
||
|
function_range)
|
||
|
from sympy.core import Symbol, Dummy, sympify
|
||
|
from sympy.core.exprtools import factor_terms
|
||
|
from sympy.core.relational import Relational, Eq, Ge, Lt
|
||
|
from sympy.sets.sets import Interval, FiniteSet, Union, Intersection
|
||
|
from sympy.core.singleton import S
|
||
|
from sympy.core.function import expand_mul
|
||
|
from sympy.functions.elementary.complexes import im, Abs
|
||
|
from sympy.logic import And
|
||
|
from sympy.polys import Poly, PolynomialError, parallel_poly_from_expr
|
||
|
from sympy.polys.polyutils import _nsort
|
||
|
from sympy.solvers.solveset import solvify, solveset
|
||
|
from sympy.utilities.iterables import sift, iterable
|
||
|
from sympy.utilities.misc import filldedent
|
||
|
|
||
|
|
||
|
def solve_poly_inequality(poly, rel):
|
||
|
"""Solve a polynomial inequality with rational coefficients.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import solve_poly_inequality, Poly
|
||
|
>>> from sympy.abc import x
|
||
|
|
||
|
>>> solve_poly_inequality(Poly(x, x, domain='ZZ'), '==')
|
||
|
[{0}]
|
||
|
|
||
|
>>> solve_poly_inequality(Poly(x**2 - 1, x, domain='ZZ'), '!=')
|
||
|
[Interval.open(-oo, -1), Interval.open(-1, 1), Interval.open(1, oo)]
|
||
|
|
||
|
>>> solve_poly_inequality(Poly(x**2 - 1, x, domain='ZZ'), '==')
|
||
|
[{-1}, {1}]
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
solve_poly_inequalities
|
||
|
"""
|
||
|
if not isinstance(poly, Poly):
|
||
|
raise ValueError(
|
||
|
'For efficiency reasons, `poly` should be a Poly instance')
|
||
|
if poly.as_expr().is_number:
|
||
|
t = Relational(poly.as_expr(), 0, rel)
|
||
|
if t is S.true:
|
||
|
return [S.Reals]
|
||
|
elif t is S.false:
|
||
|
return [S.EmptySet]
|
||
|
else:
|
||
|
raise NotImplementedError(
|
||
|
"could not determine truth value of %s" % t)
|
||
|
|
||
|
reals, intervals = poly.real_roots(multiple=False), []
|
||
|
|
||
|
if rel == '==':
|
||
|
for root, _ in reals:
|
||
|
interval = Interval(root, root)
|
||
|
intervals.append(interval)
|
||
|
elif rel == '!=':
|
||
|
left = S.NegativeInfinity
|
||
|
|
||
|
for right, _ in reals + [(S.Infinity, 1)]:
|
||
|
interval = Interval(left, right, True, True)
|
||
|
intervals.append(interval)
|
||
|
left = right
|
||
|
else:
|
||
|
if poly.LC() > 0:
|
||
|
sign = +1
|
||
|
else:
|
||
|
sign = -1
|
||
|
|
||
|
eq_sign, equal = None, False
|
||
|
|
||
|
if rel == '>':
|
||
|
eq_sign = +1
|
||
|
elif rel == '<':
|
||
|
eq_sign = -1
|
||
|
elif rel == '>=':
|
||
|
eq_sign, equal = +1, True
|
||
|
elif rel == '<=':
|
||
|
eq_sign, equal = -1, True
|
||
|
else:
|
||
|
raise ValueError("'%s' is not a valid relation" % rel)
|
||
|
|
||
|
right, right_open = S.Infinity, True
|
||
|
|
||
|
for left, multiplicity in reversed(reals):
|
||
|
if multiplicity % 2:
|
||
|
if sign == eq_sign:
|
||
|
intervals.insert(
|
||
|
0, Interval(left, right, not equal, right_open))
|
||
|
|
||
|
sign, right, right_open = -sign, left, not equal
|
||
|
else:
|
||
|
if sign == eq_sign and not equal:
|
||
|
intervals.insert(
|
||
|
0, Interval(left, right, True, right_open))
|
||
|
right, right_open = left, True
|
||
|
elif sign != eq_sign and equal:
|
||
|
intervals.insert(0, Interval(left, left))
|
||
|
|
||
|
if sign == eq_sign:
|
||
|
intervals.insert(
|
||
|
0, Interval(S.NegativeInfinity, right, True, right_open))
|
||
|
|
||
|
return intervals
|
||
|
|
||
|
|
||
|
def solve_poly_inequalities(polys):
|
||
|
"""Solve polynomial inequalities with rational coefficients.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Poly
|
||
|
>>> from sympy.solvers.inequalities import solve_poly_inequalities
|
||
|
>>> from sympy.abc import x
|
||
|
>>> solve_poly_inequalities(((
|
||
|
... Poly(x**2 - 3), ">"), (
|
||
|
... Poly(-x**2 + 1), ">")))
|
||
|
Union(Interval.open(-oo, -sqrt(3)), Interval.open(-1, 1), Interval.open(sqrt(3), oo))
|
||
|
"""
|
||
|
return Union(*[s for p in polys for s in solve_poly_inequality(*p)])
|
||
|
|
||
|
|
||
|
def solve_rational_inequalities(eqs):
|
||
|
"""Solve a system of rational inequalities with rational coefficients.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.abc import x
|
||
|
>>> from sympy import solve_rational_inequalities, Poly
|
||
|
|
||
|
>>> solve_rational_inequalities([[
|
||
|
... ((Poly(-x + 1), Poly(1, x)), '>='),
|
||
|
... ((Poly(-x + 1), Poly(1, x)), '<=')]])
|
||
|
{1}
|
||
|
|
||
|
>>> solve_rational_inequalities([[
|
||
|
... ((Poly(x), Poly(1, x)), '!='),
|
||
|
... ((Poly(-x + 1), Poly(1, x)), '>=')]])
|
||
|
Union(Interval.open(-oo, 0), Interval.Lopen(0, 1))
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
solve_poly_inequality
|
||
|
"""
|
||
|
result = S.EmptySet
|
||
|
|
||
|
for _eqs in eqs:
|
||
|
if not _eqs:
|
||
|
continue
|
||
|
|
||
|
global_intervals = [Interval(S.NegativeInfinity, S.Infinity)]
|
||
|
|
||
|
for (numer, denom), rel in _eqs:
|
||
|
numer_intervals = solve_poly_inequality(numer*denom, rel)
|
||
|
denom_intervals = solve_poly_inequality(denom, '==')
|
||
|
|
||
|
intervals = []
|
||
|
|
||
|
for numer_interval, global_interval in itertools.product(
|
||
|
numer_intervals, global_intervals):
|
||
|
interval = numer_interval.intersect(global_interval)
|
||
|
|
||
|
if interval is not S.EmptySet:
|
||
|
intervals.append(interval)
|
||
|
|
||
|
global_intervals = intervals
|
||
|
|
||
|
intervals = []
|
||
|
|
||
|
for global_interval in global_intervals:
|
||
|
for denom_interval in denom_intervals:
|
||
|
global_interval -= denom_interval
|
||
|
|
||
|
if global_interval is not S.EmptySet:
|
||
|
intervals.append(global_interval)
|
||
|
|
||
|
global_intervals = intervals
|
||
|
|
||
|
if not global_intervals:
|
||
|
break
|
||
|
|
||
|
for interval in global_intervals:
|
||
|
result = result.union(interval)
|
||
|
|
||
|
return result
|
||
|
|
||
|
|
||
|
def reduce_rational_inequalities(exprs, gen, relational=True):
|
||
|
"""Reduce a system of rational inequalities with rational coefficients.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Symbol
|
||
|
>>> from sympy.solvers.inequalities import reduce_rational_inequalities
|
||
|
|
||
|
>>> x = Symbol('x', real=True)
|
||
|
|
||
|
>>> reduce_rational_inequalities([[x**2 <= 0]], x)
|
||
|
Eq(x, 0)
|
||
|
|
||
|
>>> reduce_rational_inequalities([[x + 2 > 0]], x)
|
||
|
-2 < x
|
||
|
>>> reduce_rational_inequalities([[(x + 2, ">")]], x)
|
||
|
-2 < x
|
||
|
>>> reduce_rational_inequalities([[x + 2]], x)
|
||
|
Eq(x, -2)
|
||
|
|
||
|
This function find the non-infinite solution set so if the unknown symbol
|
||
|
is declared as extended real rather than real then the result may include
|
||
|
finiteness conditions:
|
||
|
|
||
|
>>> y = Symbol('y', extended_real=True)
|
||
|
>>> reduce_rational_inequalities([[y + 2 > 0]], y)
|
||
|
(-2 < y) & (y < oo)
|
||
|
"""
|
||
|
exact = True
|
||
|
eqs = []
|
||
|
solution = S.Reals if exprs else S.EmptySet
|
||
|
for _exprs in exprs:
|
||
|
_eqs = []
|
||
|
|
||
|
for expr in _exprs:
|
||
|
if isinstance(expr, tuple):
|
||
|
expr, rel = expr
|
||
|
else:
|
||
|
if expr.is_Relational:
|
||
|
expr, rel = expr.lhs - expr.rhs, expr.rel_op
|
||
|
else:
|
||
|
expr, rel = expr, '=='
|
||
|
|
||
|
if expr is S.true:
|
||
|
numer, denom, rel = S.Zero, S.One, '=='
|
||
|
elif expr is S.false:
|
||
|
numer, denom, rel = S.One, S.One, '=='
|
||
|
else:
|
||
|
numer, denom = expr.together().as_numer_denom()
|
||
|
|
||
|
try:
|
||
|
(numer, denom), opt = parallel_poly_from_expr(
|
||
|
(numer, denom), gen)
|
||
|
except PolynomialError:
|
||
|
raise PolynomialError(filldedent('''
|
||
|
only polynomials and rational functions are
|
||
|
supported in this context.
|
||
|
'''))
|
||
|
|
||
|
if not opt.domain.is_Exact:
|
||
|
numer, denom, exact = numer.to_exact(), denom.to_exact(), False
|
||
|
|
||
|
domain = opt.domain.get_exact()
|
||
|
|
||
|
if not (domain.is_ZZ or domain.is_QQ):
|
||
|
expr = numer/denom
|
||
|
expr = Relational(expr, 0, rel)
|
||
|
solution &= solve_univariate_inequality(expr, gen, relational=False)
|
||
|
else:
|
||
|
_eqs.append(((numer, denom), rel))
|
||
|
|
||
|
if _eqs:
|
||
|
eqs.append(_eqs)
|
||
|
|
||
|
if eqs:
|
||
|
solution &= solve_rational_inequalities(eqs)
|
||
|
exclude = solve_rational_inequalities([[((d, d.one), '==')
|
||
|
for i in eqs for ((n, d), _) in i if d.has(gen)]])
|
||
|
solution -= exclude
|
||
|
|
||
|
if not exact and solution:
|
||
|
solution = solution.evalf()
|
||
|
|
||
|
if relational:
|
||
|
solution = solution.as_relational(gen)
|
||
|
|
||
|
return solution
|
||
|
|
||
|
|
||
|
def reduce_abs_inequality(expr, rel, gen):
|
||
|
"""Reduce an inequality with nested absolute values.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import reduce_abs_inequality, Abs, Symbol
|
||
|
>>> x = Symbol('x', real=True)
|
||
|
|
||
|
>>> reduce_abs_inequality(Abs(x - 5) - 3, '<', x)
|
||
|
(2 < x) & (x < 8)
|
||
|
|
||
|
>>> reduce_abs_inequality(Abs(x + 2)*3 - 13, '<', x)
|
||
|
(-19/3 < x) & (x < 7/3)
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
reduce_abs_inequalities
|
||
|
"""
|
||
|
if gen.is_extended_real is False:
|
||
|
raise TypeError(filldedent('''
|
||
|
Cannot solve inequalities with absolute values containing
|
||
|
non-real variables.
|
||
|
'''))
|
||
|
|
||
|
def _bottom_up_scan(expr):
|
||
|
exprs = []
|
||
|
|
||
|
if expr.is_Add or expr.is_Mul:
|
||
|
op = expr.func
|
||
|
|
||
|
for arg in expr.args:
|
||
|
_exprs = _bottom_up_scan(arg)
|
||
|
|
||
|
if not exprs:
|
||
|
exprs = _exprs
|
||
|
else:
|
||
|
exprs = [(op(expr, _expr), conds + _conds) for (expr, conds), (_expr, _conds) in
|
||
|
itertools.product(exprs, _exprs)]
|
||
|
elif expr.is_Pow:
|
||
|
n = expr.exp
|
||
|
if not n.is_Integer:
|
||
|
raise ValueError("Only Integer Powers are allowed on Abs.")
|
||
|
|
||
|
exprs.extend((expr**n, conds) for expr, conds in _bottom_up_scan(expr.base))
|
||
|
elif isinstance(expr, Abs):
|
||
|
_exprs = _bottom_up_scan(expr.args[0])
|
||
|
|
||
|
for expr, conds in _exprs:
|
||
|
exprs.append(( expr, conds + [Ge(expr, 0)]))
|
||
|
exprs.append((-expr, conds + [Lt(expr, 0)]))
|
||
|
else:
|
||
|
exprs = [(expr, [])]
|
||
|
|
||
|
return exprs
|
||
|
|
||
|
mapping = {'<': '>', '<=': '>='}
|
||
|
inequalities = []
|
||
|
|
||
|
for expr, conds in _bottom_up_scan(expr):
|
||
|
if rel not in mapping.keys():
|
||
|
expr = Relational( expr, 0, rel)
|
||
|
else:
|
||
|
expr = Relational(-expr, 0, mapping[rel])
|
||
|
|
||
|
inequalities.append([expr] + conds)
|
||
|
|
||
|
return reduce_rational_inequalities(inequalities, gen)
|
||
|
|
||
|
|
||
|
def reduce_abs_inequalities(exprs, gen):
|
||
|
"""Reduce a system of inequalities with nested absolute values.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import reduce_abs_inequalities, Abs, Symbol
|
||
|
>>> x = Symbol('x', extended_real=True)
|
||
|
|
||
|
>>> reduce_abs_inequalities([(Abs(3*x - 5) - 7, '<'),
|
||
|
... (Abs(x + 25) - 13, '>')], x)
|
||
|
(-2/3 < x) & (x < 4) & (((-oo < x) & (x < -38)) | ((-12 < x) & (x < oo)))
|
||
|
|
||
|
>>> reduce_abs_inequalities([(Abs(x - 4) + Abs(3*x - 5) - 7, '<')], x)
|
||
|
(1/2 < x) & (x < 4)
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
reduce_abs_inequality
|
||
|
"""
|
||
|
return And(*[ reduce_abs_inequality(expr, rel, gen)
|
||
|
for expr, rel in exprs ])
|
||
|
|
||
|
|
||
|
def solve_univariate_inequality(expr, gen, relational=True, domain=S.Reals, continuous=False):
|
||
|
"""Solves a real univariate inequality.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
expr : Relational
|
||
|
The target inequality
|
||
|
gen : Symbol
|
||
|
The variable for which the inequality is solved
|
||
|
relational : bool
|
||
|
A Relational type output is expected or not
|
||
|
domain : Set
|
||
|
The domain over which the equation is solved
|
||
|
continuous: bool
|
||
|
True if expr is known to be continuous over the given domain
|
||
|
(and so continuous_domain() does not need to be called on it)
|
||
|
|
||
|
Raises
|
||
|
======
|
||
|
|
||
|
NotImplementedError
|
||
|
The solution of the inequality cannot be determined due to limitation
|
||
|
in :func:`sympy.solvers.solveset.solvify`.
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
Currently, we cannot solve all the inequalities due to limitations in
|
||
|
:func:`sympy.solvers.solveset.solvify`. Also, the solution returned for trigonometric inequalities
|
||
|
are restricted in its periodic interval.
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
sympy.solvers.solveset.solvify: solver returning solveset solutions with solve's output API
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import solve_univariate_inequality, Symbol, sin, Interval, S
|
||
|
>>> x = Symbol('x')
|
||
|
|
||
|
>>> solve_univariate_inequality(x**2 >= 4, x)
|
||
|
((2 <= x) & (x < oo)) | ((-oo < x) & (x <= -2))
|
||
|
|
||
|
>>> solve_univariate_inequality(x**2 >= 4, x, relational=False)
|
||
|
Union(Interval(-oo, -2), Interval(2, oo))
|
||
|
|
||
|
>>> domain = Interval(0, S.Infinity)
|
||
|
>>> solve_univariate_inequality(x**2 >= 4, x, False, domain)
|
||
|
Interval(2, oo)
|
||
|
|
||
|
>>> solve_univariate_inequality(sin(x) > 0, x, relational=False)
|
||
|
Interval.open(0, pi)
|
||
|
|
||
|
"""
|
||
|
from sympy.solvers.solvers import denoms
|
||
|
|
||
|
if domain.is_subset(S.Reals) is False:
|
||
|
raise NotImplementedError(filldedent('''
|
||
|
Inequalities in the complex domain are
|
||
|
not supported. Try the real domain by
|
||
|
setting domain=S.Reals'''))
|
||
|
elif domain is not S.Reals:
|
||
|
rv = solve_univariate_inequality(
|
||
|
expr, gen, relational=False, continuous=continuous).intersection(domain)
|
||
|
if relational:
|
||
|
rv = rv.as_relational(gen)
|
||
|
return rv
|
||
|
else:
|
||
|
pass # continue with attempt to solve in Real domain
|
||
|
|
||
|
# This keeps the function independent of the assumptions about `gen`.
|
||
|
# `solveset` makes sure this function is called only when the domain is
|
||
|
# real.
|
||
|
_gen = gen
|
||
|
_domain = domain
|
||
|
if gen.is_extended_real is False:
|
||
|
rv = S.EmptySet
|
||
|
return rv if not relational else rv.as_relational(_gen)
|
||
|
elif gen.is_extended_real is None:
|
||
|
gen = Dummy('gen', extended_real=True)
|
||
|
try:
|
||
|
expr = expr.xreplace({_gen: gen})
|
||
|
except TypeError:
|
||
|
raise TypeError(filldedent('''
|
||
|
When gen is real, the relational has a complex part
|
||
|
which leads to an invalid comparison like I < 0.
|
||
|
'''))
|
||
|
|
||
|
rv = None
|
||
|
|
||
|
if expr is S.true:
|
||
|
rv = domain
|
||
|
|
||
|
elif expr is S.false:
|
||
|
rv = S.EmptySet
|
||
|
|
||
|
else:
|
||
|
e = expr.lhs - expr.rhs
|
||
|
period = periodicity(e, gen)
|
||
|
if period == S.Zero:
|
||
|
e = expand_mul(e)
|
||
|
const = expr.func(e, 0)
|
||
|
if const is S.true:
|
||
|
rv = domain
|
||
|
elif const is S.false:
|
||
|
rv = S.EmptySet
|
||
|
elif period is not None:
|
||
|
frange = function_range(e, gen, domain)
|
||
|
|
||
|
rel = expr.rel_op
|
||
|
if rel in ('<', '<='):
|
||
|
if expr.func(frange.sup, 0):
|
||
|
rv = domain
|
||
|
elif not expr.func(frange.inf, 0):
|
||
|
rv = S.EmptySet
|
||
|
|
||
|
elif rel in ('>', '>='):
|
||
|
if expr.func(frange.inf, 0):
|
||
|
rv = domain
|
||
|
elif not expr.func(frange.sup, 0):
|
||
|
rv = S.EmptySet
|
||
|
|
||
|
inf, sup = domain.inf, domain.sup
|
||
|
if sup - inf is S.Infinity:
|
||
|
domain = Interval(0, period, False, True).intersect(_domain)
|
||
|
_domain = domain
|
||
|
|
||
|
if rv is None:
|
||
|
n, d = e.as_numer_denom()
|
||
|
try:
|
||
|
if gen not in n.free_symbols and len(e.free_symbols) > 1:
|
||
|
raise ValueError
|
||
|
# this might raise ValueError on its own
|
||
|
# or it might give None...
|
||
|
solns = solvify(e, gen, domain)
|
||
|
if solns is None:
|
||
|
# in which case we raise ValueError
|
||
|
raise ValueError
|
||
|
except (ValueError, NotImplementedError):
|
||
|
# replace gen with generic x since it's
|
||
|
# univariate anyway
|
||
|
raise NotImplementedError(filldedent('''
|
||
|
The inequality, %s, cannot be solved using
|
||
|
solve_univariate_inequality.
|
||
|
''' % expr.subs(gen, Symbol('x'))))
|
||
|
|
||
|
expanded_e = expand_mul(e)
|
||
|
def valid(x):
|
||
|
# this is used to see if gen=x satisfies the
|
||
|
# relational by substituting it into the
|
||
|
# expanded form and testing against 0, e.g.
|
||
|
# if expr = x*(x + 1) < 2 then e = x*(x + 1) - 2
|
||
|
# and expanded_e = x**2 + x - 2; the test is
|
||
|
# whether a given value of x satisfies
|
||
|
# x**2 + x - 2 < 0
|
||
|
#
|
||
|
# expanded_e, expr and gen used from enclosing scope
|
||
|
v = expanded_e.subs(gen, expand_mul(x))
|
||
|
try:
|
||
|
r = expr.func(v, 0)
|
||
|
except TypeError:
|
||
|
r = S.false
|
||
|
if r in (S.true, S.false):
|
||
|
return r
|
||
|
if v.is_extended_real is False:
|
||
|
return S.false
|
||
|
else:
|
||
|
v = v.n(2)
|
||
|
if v.is_comparable:
|
||
|
return expr.func(v, 0)
|
||
|
# not comparable or couldn't be evaluated
|
||
|
raise NotImplementedError(
|
||
|
'relationship did not evaluate: %s' % r)
|
||
|
|
||
|
singularities = []
|
||
|
for d in denoms(expr, gen):
|
||
|
singularities.extend(solvify(d, gen, domain))
|
||
|
if not continuous:
|
||
|
domain = continuous_domain(expanded_e, gen, domain)
|
||
|
|
||
|
include_x = '=' in expr.rel_op and expr.rel_op != '!='
|
||
|
|
||
|
try:
|
||
|
discontinuities = set(domain.boundary -
|
||
|
FiniteSet(domain.inf, domain.sup))
|
||
|
# remove points that are not between inf and sup of domain
|
||
|
critical_points = FiniteSet(*(solns + singularities + list(
|
||
|
discontinuities))).intersection(
|
||
|
Interval(domain.inf, domain.sup,
|
||
|
domain.inf not in domain, domain.sup not in domain))
|
||
|
if all(r.is_number for r in critical_points):
|
||
|
reals = _nsort(critical_points, separated=True)[0]
|
||
|
else:
|
||
|
sifted = sift(critical_points, lambda x: x.is_extended_real)
|
||
|
if sifted[None]:
|
||
|
# there were some roots that weren't known
|
||
|
# to be real
|
||
|
raise NotImplementedError
|
||
|
try:
|
||
|
reals = sifted[True]
|
||
|
if len(reals) > 1:
|
||
|
reals = sorted(reals)
|
||
|
except TypeError:
|
||
|
raise NotImplementedError
|
||
|
except NotImplementedError:
|
||
|
raise NotImplementedError('sorting of these roots is not supported')
|
||
|
|
||
|
# If expr contains imaginary coefficients, only take real
|
||
|
# values of x for which the imaginary part is 0
|
||
|
make_real = S.Reals
|
||
|
if im(expanded_e) != S.Zero:
|
||
|
check = True
|
||
|
im_sol = FiniteSet()
|
||
|
try:
|
||
|
a = solveset(im(expanded_e), gen, domain)
|
||
|
if not isinstance(a, Interval):
|
||
|
for z in a:
|
||
|
if z not in singularities and valid(z) and z.is_extended_real:
|
||
|
im_sol += FiniteSet(z)
|
||
|
else:
|
||
|
start, end = a.inf, a.sup
|
||
|
for z in _nsort(critical_points + FiniteSet(end)):
|
||
|
valid_start = valid(start)
|
||
|
if start != end:
|
||
|
valid_z = valid(z)
|
||
|
pt = _pt(start, z)
|
||
|
if pt not in singularities and pt.is_extended_real and valid(pt):
|
||
|
if valid_start and valid_z:
|
||
|
im_sol += Interval(start, z)
|
||
|
elif valid_start:
|
||
|
im_sol += Interval.Ropen(start, z)
|
||
|
elif valid_z:
|
||
|
im_sol += Interval.Lopen(start, z)
|
||
|
else:
|
||
|
im_sol += Interval.open(start, z)
|
||
|
start = z
|
||
|
for s in singularities:
|
||
|
im_sol -= FiniteSet(s)
|
||
|
except (TypeError):
|
||
|
im_sol = S.Reals
|
||
|
check = False
|
||
|
|
||
|
if im_sol is S.EmptySet:
|
||
|
raise ValueError(filldedent('''
|
||
|
%s contains imaginary parts which cannot be
|
||
|
made 0 for any value of %s satisfying the
|
||
|
inequality, leading to relations like I < 0.
|
||
|
''' % (expr.subs(gen, _gen), _gen)))
|
||
|
|
||
|
make_real = make_real.intersect(im_sol)
|
||
|
|
||
|
sol_sets = [S.EmptySet]
|
||
|
|
||
|
start = domain.inf
|
||
|
if start in domain and valid(start) and start.is_finite:
|
||
|
sol_sets.append(FiniteSet(start))
|
||
|
|
||
|
for x in reals:
|
||
|
end = x
|
||
|
|
||
|
if valid(_pt(start, end)):
|
||
|
sol_sets.append(Interval(start, end, True, True))
|
||
|
|
||
|
if x in singularities:
|
||
|
singularities.remove(x)
|
||
|
else:
|
||
|
if x in discontinuities:
|
||
|
discontinuities.remove(x)
|
||
|
_valid = valid(x)
|
||
|
else: # it's a solution
|
||
|
_valid = include_x
|
||
|
if _valid:
|
||
|
sol_sets.append(FiniteSet(x))
|
||
|
|
||
|
start = end
|
||
|
|
||
|
end = domain.sup
|
||
|
if end in domain and valid(end) and end.is_finite:
|
||
|
sol_sets.append(FiniteSet(end))
|
||
|
|
||
|
if valid(_pt(start, end)):
|
||
|
sol_sets.append(Interval.open(start, end))
|
||
|
|
||
|
if im(expanded_e) != S.Zero and check:
|
||
|
rv = (make_real).intersect(_domain)
|
||
|
else:
|
||
|
rv = Intersection(
|
||
|
(Union(*sol_sets)), make_real, _domain).subs(gen, _gen)
|
||
|
|
||
|
return rv if not relational else rv.as_relational(_gen)
|
||
|
|
||
|
|
||
|
def _pt(start, end):
|
||
|
"""Return a point between start and end"""
|
||
|
if not start.is_infinite and not end.is_infinite:
|
||
|
pt = (start + end)/2
|
||
|
elif start.is_infinite and end.is_infinite:
|
||
|
pt = S.Zero
|
||
|
else:
|
||
|
if (start.is_infinite and start.is_extended_positive is None or
|
||
|
end.is_infinite and end.is_extended_positive is None):
|
||
|
raise ValueError('cannot proceed with unsigned infinite values')
|
||
|
if (end.is_infinite and end.is_extended_negative or
|
||
|
start.is_infinite and start.is_extended_positive):
|
||
|
start, end = end, start
|
||
|
# if possible, use a multiple of self which has
|
||
|
# better behavior when checking assumptions than
|
||
|
# an expression obtained by adding or subtracting 1
|
||
|
if end.is_infinite:
|
||
|
if start.is_extended_positive:
|
||
|
pt = start*2
|
||
|
elif start.is_extended_negative:
|
||
|
pt = start*S.Half
|
||
|
else:
|
||
|
pt = start + 1
|
||
|
elif start.is_infinite:
|
||
|
if end.is_extended_positive:
|
||
|
pt = end*S.Half
|
||
|
elif end.is_extended_negative:
|
||
|
pt = end*2
|
||
|
else:
|
||
|
pt = end - 1
|
||
|
return pt
|
||
|
|
||
|
|
||
|
def _solve_inequality(ie, s, linear=False):
|
||
|
"""Return the inequality with s isolated on the left, if possible.
|
||
|
If the relationship is non-linear, a solution involving And or Or
|
||
|
may be returned. False or True are returned if the relationship
|
||
|
is never True or always True, respectively.
|
||
|
|
||
|
If `linear` is True (default is False) an `s`-dependent expression
|
||
|
will be isolated on the left, if possible
|
||
|
but it will not be solved for `s` unless the expression is linear
|
||
|
in `s`. Furthermore, only "safe" operations which do not change the
|
||
|
sense of the relationship are applied: no division by an unsigned
|
||
|
value is attempted unless the relationship involves Eq or Ne and
|
||
|
no division by a value not known to be nonzero is ever attempted.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Eq, Symbol
|
||
|
>>> from sympy.solvers.inequalities import _solve_inequality as f
|
||
|
>>> from sympy.abc import x, y
|
||
|
|
||
|
For linear expressions, the symbol can be isolated:
|
||
|
|
||
|
>>> f(x - 2 < 0, x)
|
||
|
x < 2
|
||
|
>>> f(-x - 6 < x, x)
|
||
|
x > -3
|
||
|
|
||
|
Sometimes nonlinear relationships will be False
|
||
|
|
||
|
>>> f(x**2 + 4 < 0, x)
|
||
|
False
|
||
|
|
||
|
Or they may involve more than one region of values:
|
||
|
|
||
|
>>> f(x**2 - 4 < 0, x)
|
||
|
(-2 < x) & (x < 2)
|
||
|
|
||
|
To restrict the solution to a relational, set linear=True
|
||
|
and only the x-dependent portion will be isolated on the left:
|
||
|
|
||
|
>>> f(x**2 - 4 < 0, x, linear=True)
|
||
|
x**2 < 4
|
||
|
|
||
|
Division of only nonzero quantities is allowed, so x cannot
|
||
|
be isolated by dividing by y:
|
||
|
|
||
|
>>> y.is_nonzero is None # it is unknown whether it is 0 or not
|
||
|
True
|
||
|
>>> f(x*y < 1, x)
|
||
|
x*y < 1
|
||
|
|
||
|
And while an equality (or inequality) still holds after dividing by a
|
||
|
non-zero quantity
|
||
|
|
||
|
>>> nz = Symbol('nz', nonzero=True)
|
||
|
>>> f(Eq(x*nz, 1), x)
|
||
|
Eq(x, 1/nz)
|
||
|
|
||
|
the sign must be known for other inequalities involving > or <:
|
||
|
|
||
|
>>> f(x*nz <= 1, x)
|
||
|
nz*x <= 1
|
||
|
>>> p = Symbol('p', positive=True)
|
||
|
>>> f(x*p <= 1, x)
|
||
|
x <= 1/p
|
||
|
|
||
|
When there are denominators in the original expression that
|
||
|
are removed by expansion, conditions for them will be returned
|
||
|
as part of the result:
|
||
|
|
||
|
>>> f(x < x*(2/x - 1), x)
|
||
|
(x < 1) & Ne(x, 0)
|
||
|
"""
|
||
|
from sympy.solvers.solvers import denoms
|
||
|
if s not in ie.free_symbols:
|
||
|
return ie
|
||
|
if ie.rhs == s:
|
||
|
ie = ie.reversed
|
||
|
if ie.lhs == s and s not in ie.rhs.free_symbols:
|
||
|
return ie
|
||
|
|
||
|
def classify(ie, s, i):
|
||
|
# return True or False if ie evaluates when substituting s with
|
||
|
# i else None (if unevaluated) or NaN (when there is an error
|
||
|
# in evaluating)
|
||
|
try:
|
||
|
v = ie.subs(s, i)
|
||
|
if v is S.NaN:
|
||
|
return v
|
||
|
elif v not in (True, False):
|
||
|
return
|
||
|
return v
|
||
|
except TypeError:
|
||
|
return S.NaN
|
||
|
|
||
|
rv = None
|
||
|
oo = S.Infinity
|
||
|
expr = ie.lhs - ie.rhs
|
||
|
try:
|
||
|
p = Poly(expr, s)
|
||
|
if p.degree() == 0:
|
||
|
rv = ie.func(p.as_expr(), 0)
|
||
|
elif not linear and p.degree() > 1:
|
||
|
# handle in except clause
|
||
|
raise NotImplementedError
|
||
|
except (PolynomialError, NotImplementedError):
|
||
|
if not linear:
|
||
|
try:
|
||
|
rv = reduce_rational_inequalities([[ie]], s)
|
||
|
except PolynomialError:
|
||
|
rv = solve_univariate_inequality(ie, s)
|
||
|
# remove restrictions wrt +/-oo that may have been
|
||
|
# applied when using sets to simplify the relationship
|
||
|
okoo = classify(ie, s, oo)
|
||
|
if okoo is S.true and classify(rv, s, oo) is S.false:
|
||
|
rv = rv.subs(s < oo, True)
|
||
|
oknoo = classify(ie, s, -oo)
|
||
|
if (oknoo is S.true and
|
||
|
classify(rv, s, -oo) is S.false):
|
||
|
rv = rv.subs(-oo < s, True)
|
||
|
rv = rv.subs(s > -oo, True)
|
||
|
if rv is S.true:
|
||
|
rv = (s <= oo) if okoo is S.true else (s < oo)
|
||
|
if oknoo is not S.true:
|
||
|
rv = And(-oo < s, rv)
|
||
|
else:
|
||
|
p = Poly(expr)
|
||
|
|
||
|
conds = []
|
||
|
if rv is None:
|
||
|
e = p.as_expr() # this is in expanded form
|
||
|
# Do a safe inversion of e, moving non-s terms
|
||
|
# to the rhs and dividing by a nonzero factor if
|
||
|
# the relational is Eq/Ne; for other relationals
|
||
|
# the sign must also be positive or negative
|
||
|
rhs = 0
|
||
|
b, ax = e.as_independent(s, as_Add=True)
|
||
|
e -= b
|
||
|
rhs -= b
|
||
|
ef = factor_terms(e)
|
||
|
a, e = ef.as_independent(s, as_Add=False)
|
||
|
if (a.is_zero != False or # don't divide by potential 0
|
||
|
a.is_negative ==
|
||
|
a.is_positive is None and # if sign is not known then
|
||
|
ie.rel_op not in ('!=', '==')): # reject if not Eq/Ne
|
||
|
e = ef
|
||
|
a = S.One
|
||
|
rhs /= a
|
||
|
if a.is_positive:
|
||
|
rv = ie.func(e, rhs)
|
||
|
else:
|
||
|
rv = ie.reversed.func(e, rhs)
|
||
|
|
||
|
# return conditions under which the value is
|
||
|
# valid, too.
|
||
|
beginning_denoms = denoms(ie.lhs) | denoms(ie.rhs)
|
||
|
current_denoms = denoms(rv)
|
||
|
for d in beginning_denoms - current_denoms:
|
||
|
c = _solve_inequality(Eq(d, 0), s, linear=linear)
|
||
|
if isinstance(c, Eq) and c.lhs == s:
|
||
|
if classify(rv, s, c.rhs) is S.true:
|
||
|
# rv is permitting this value but it shouldn't
|
||
|
conds.append(~c)
|
||
|
for i in (-oo, oo):
|
||
|
if (classify(rv, s, i) is S.true and
|
||
|
classify(ie, s, i) is not S.true):
|
||
|
conds.append(s < i if i is oo else i < s)
|
||
|
|
||
|
conds.append(rv)
|
||
|
return And(*conds)
|
||
|
|
||
|
|
||
|
def _reduce_inequalities(inequalities, symbols):
|
||
|
# helper for reduce_inequalities
|
||
|
|
||
|
poly_part, abs_part = {}, {}
|
||
|
other = []
|
||
|
|
||
|
for inequality in inequalities:
|
||
|
|
||
|
expr, rel = inequality.lhs, inequality.rel_op # rhs is 0
|
||
|
|
||
|
# check for gens using atoms which is more strict than free_symbols to
|
||
|
# guard against EX domain which won't be handled by
|
||
|
# reduce_rational_inequalities
|
||
|
gens = expr.atoms(Symbol)
|
||
|
|
||
|
if len(gens) == 1:
|
||
|
gen = gens.pop()
|
||
|
else:
|
||
|
common = expr.free_symbols & symbols
|
||
|
if len(common) == 1:
|
||
|
gen = common.pop()
|
||
|
other.append(_solve_inequality(Relational(expr, 0, rel), gen))
|
||
|
continue
|
||
|
else:
|
||
|
raise NotImplementedError(filldedent('''
|
||
|
inequality has more than one symbol of interest.
|
||
|
'''))
|
||
|
|
||
|
if expr.is_polynomial(gen):
|
||
|
poly_part.setdefault(gen, []).append((expr, rel))
|
||
|
else:
|
||
|
components = expr.find(lambda u:
|
||
|
u.has(gen) and (
|
||
|
u.is_Function or u.is_Pow and not u.exp.is_Integer))
|
||
|
if components and all(isinstance(i, Abs) for i in components):
|
||
|
abs_part.setdefault(gen, []).append((expr, rel))
|
||
|
else:
|
||
|
other.append(_solve_inequality(Relational(expr, 0, rel), gen))
|
||
|
|
||
|
poly_reduced = [reduce_rational_inequalities([exprs], gen) for gen, exprs in poly_part.items()]
|
||
|
abs_reduced = [reduce_abs_inequalities(exprs, gen) for gen, exprs in abs_part.items()]
|
||
|
|
||
|
return And(*(poly_reduced + abs_reduced + other))
|
||
|
|
||
|
|
||
|
def reduce_inequalities(inequalities, symbols=[]):
|
||
|
"""Reduce a system of inequalities with rational coefficients.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.abc import x, y
|
||
|
>>> from sympy import reduce_inequalities
|
||
|
|
||
|
>>> reduce_inequalities(0 <= x + 3, [])
|
||
|
(-3 <= x) & (x < oo)
|
||
|
|
||
|
>>> reduce_inequalities(0 <= x + y*2 - 1, [x])
|
||
|
(x < oo) & (x >= 1 - 2*y)
|
||
|
"""
|
||
|
if not iterable(inequalities):
|
||
|
inequalities = [inequalities]
|
||
|
inequalities = [sympify(i) for i in inequalities]
|
||
|
|
||
|
gens = set().union(*[i.free_symbols for i in inequalities])
|
||
|
|
||
|
if not iterable(symbols):
|
||
|
symbols = [symbols]
|
||
|
symbols = (set(symbols) or gens) & gens
|
||
|
if any(i.is_extended_real is False for i in symbols):
|
||
|
raise TypeError(filldedent('''
|
||
|
inequalities cannot contain symbols that are not real.
|
||
|
'''))
|
||
|
|
||
|
# make vanilla symbol real
|
||
|
recast = {i: Dummy(i.name, extended_real=True)
|
||
|
for i in gens if i.is_extended_real is None}
|
||
|
inequalities = [i.xreplace(recast) for i in inequalities]
|
||
|
symbols = {i.xreplace(recast) for i in symbols}
|
||
|
|
||
|
# prefilter
|
||
|
keep = []
|
||
|
for i in inequalities:
|
||
|
if isinstance(i, Relational):
|
||
|
i = i.func(i.lhs.as_expr() - i.rhs.as_expr(), 0)
|
||
|
elif i not in (True, False):
|
||
|
i = Eq(i, 0)
|
||
|
if i == True:
|
||
|
continue
|
||
|
elif i == False:
|
||
|
return S.false
|
||
|
if i.lhs.is_number:
|
||
|
raise NotImplementedError(
|
||
|
"could not determine truth value of %s" % i)
|
||
|
keep.append(i)
|
||
|
inequalities = keep
|
||
|
del keep
|
||
|
|
||
|
# solve system
|
||
|
rv = _reduce_inequalities(inequalities, symbols)
|
||
|
|
||
|
# restore original symbols and return
|
||
|
return rv.xreplace({v: k for k, v in recast.items()})
|