255 lines
9.6 KiB
Python
255 lines
9.6 KiB
Python
|
import logging
|
||
|
|
||
|
from collections import defaultdict
|
||
|
from threading import Lock
|
||
|
from typing import List, Optional
|
||
|
|
||
|
import torch
|
||
|
import torch.distributed.autograd as dist_autograd
|
||
|
import torch.distributed.rpc as rpc
|
||
|
import torch.jit as jit
|
||
|
import torch.nn as nn
|
||
|
from torch import Tensor
|
||
|
from torch.distributed.rpc import RRef
|
||
|
from .utils import functional_optim_map
|
||
|
|
||
|
__all__ = ["DistributedOptimizer"]
|
||
|
|
||
|
logger = logging.getLogger(__name__)
|
||
|
|
||
|
|
||
|
# XXX: we define a _ScriptModuleOptimizer here to explicitly
|
||
|
# compile the FunctionalOptimizer class into TorchScript
|
||
|
# This is because ScriptClass instance still lives in
|
||
|
# python unless you explicitly compile it as an attribute
|
||
|
# in ScriptModule or pass it to a ScriptFunction
|
||
|
# _ScriptLocalOptimizerInterface serves as a common
|
||
|
# interface type for Optimizer ScriptModules.
|
||
|
#
|
||
|
# TODO (wanchaol): remove this once we added TorchScript
|
||
|
# class reference semantics
|
||
|
@jit.interface
|
||
|
class _ScriptLocalOptimizerInterface:
|
||
|
def step(self, autograd_ctx_id: int) -> None:
|
||
|
pass
|
||
|
|
||
|
|
||
|
class _ScriptLocalOptimizer(nn.Module):
|
||
|
# TorchScript does not support multithread concurrent compiling.
|
||
|
# request_callback might invoke concurrent compiling, so we
|
||
|
# serialize the compiling with a lock
|
||
|
compile_lock = Lock()
|
||
|
|
||
|
def __init__(self, optim_cls, local_params_rref, *args, **kwargs):
|
||
|
super().__init__()
|
||
|
self._local_params = [rref.local_value() for rref in local_params_rref]
|
||
|
self.optim = optim_cls(self._local_params, *args, **kwargs)
|
||
|
|
||
|
@jit.export
|
||
|
def step(self, autograd_ctx_id: int):
|
||
|
all_local_grads = dist_autograd.get_gradients(autograd_ctx_id)
|
||
|
# apply functional optimizer step with a list of gradients
|
||
|
grads: List[Optional[Tensor]] = [
|
||
|
all_local_grads[p] if p in all_local_grads else None
|
||
|
for p in self._local_params
|
||
|
]
|
||
|
|
||
|
self.optim.step(grads)
|
||
|
|
||
|
|
||
|
# TODO (wanchaol): remove/merge this with ScriptLocalOptimizer once
|
||
|
# we have converted all to functional optimizer in distributed.optim
|
||
|
class _LocalOptimizer:
|
||
|
# Ideally we would only need to share a lock for instances of
|
||
|
# _LocalOptimizer that deal with the same parameters. We are
|
||
|
# making a simplifying assumption here that if there is more
|
||
|
# than one instance of _LocalOptimizer per worker, they will
|
||
|
# be optimizing the same parameters (e.g. each data parallel
|
||
|
# trainer will create its own instance of _LocalOptimizer but
|
||
|
# they will all optimize the same parameters on each worker)
|
||
|
global_lock = Lock()
|
||
|
|
||
|
def __init__(self, optim_cls, local_params_rref, *args, **kwargs):
|
||
|
self._local_params = [rref.local_value() for rref in local_params_rref]
|
||
|
self.optim = optim_cls(self._local_params, *args, **kwargs)
|
||
|
|
||
|
def step(self, autograd_ctx_id):
|
||
|
all_local_grads = dist_autograd.get_gradients(autograd_ctx_id)
|
||
|
|
||
|
with _LocalOptimizer.global_lock:
|
||
|
for param, grad in all_local_grads.items():
|
||
|
param.grad = grad
|
||
|
self.optim.step()
|
||
|
|
||
|
|
||
|
def _new_local_optimizer(optim_cls, local_params_rref, *args, **kwargs):
|
||
|
return rpc.RRef(_LocalOptimizer(optim_cls, local_params_rref, *args, **kwargs))
|
||
|
|
||
|
|
||
|
def _local_optimizer_step(local_optim_rref, autograd_ctx_id):
|
||
|
local_optim = local_optim_rref.local_value()
|
||
|
local_optim.step(autograd_ctx_id)
|
||
|
|
||
|
|
||
|
# new/step functions combined with _ScriptLocalOptimizer to provide GIL-free optimizer
|
||
|
def _new_script_local_optimizer(optim_cls, local_params_rref, *args, **kwargs):
|
||
|
optim = _ScriptLocalOptimizer(optim_cls, local_params_rref, *args, **kwargs)
|
||
|
|
||
|
with _ScriptLocalOptimizer.compile_lock:
|
||
|
script_optim = jit.script(optim)
|
||
|
return rpc.RRef(script_optim, _ScriptLocalOptimizerInterface)
|
||
|
|
||
|
|
||
|
@jit.script
|
||
|
def _script_local_optimizer_step(
|
||
|
local_optim_rref: RRef[_ScriptLocalOptimizerInterface], autograd_ctx_id: int
|
||
|
) -> None:
|
||
|
local_optim = local_optim_rref.local_value()
|
||
|
local_optim.step(autograd_ctx_id)
|
||
|
|
||
|
|
||
|
def _wait_for_all(rpc_futs):
|
||
|
# TODO: improve error propagation
|
||
|
exception = None
|
||
|
results = []
|
||
|
for fut in rpc_futs:
|
||
|
try:
|
||
|
results.append(fut.wait())
|
||
|
except Exception as e:
|
||
|
results.append(e)
|
||
|
exception = e
|
||
|
if exception is not None:
|
||
|
raise exception
|
||
|
return results
|
||
|
|
||
|
|
||
|
class DistributedOptimizer:
|
||
|
"""
|
||
|
DistributedOptimizer takes remote references to parameters scattered
|
||
|
across workers and applies the given optimizer locally for each parameter.
|
||
|
|
||
|
This class uses :meth:`~torch.distributed.autograd.get_gradients` in order
|
||
|
to retrieve the gradients for specific parameters.
|
||
|
|
||
|
Concurrent calls to
|
||
|
:meth:`~torch.distributed.optim.DistributedOptimizer.step`,
|
||
|
either from the same or different clients, will
|
||
|
be serialized on each worker -- as each worker's optimizer can only work
|
||
|
on one set of gradients at a time. However, there is no guarantee that
|
||
|
the full forward-backward-optimizer sequence will execute for one client
|
||
|
at a time. This means that the gradients being applied may not correspond
|
||
|
to the latest forward pass executed on a given worker. Also, there is no
|
||
|
guaranteed ordering across workers.
|
||
|
|
||
|
`DistributedOptimizer` creates the local optimizer with TorchScript enabled
|
||
|
by default, so that optimizer updates are not blocked by the Python Global
|
||
|
Interpreter Lock (GIL) in the case of multithreaded training (e.g. Distributed
|
||
|
Model Parallel). This feature is currently enabled for most optimizers. You
|
||
|
can also follow `the recipe`__ in PyTorch tutorials to enable TorchScript support
|
||
|
for your own custom optimizers.
|
||
|
|
||
|
Args:
|
||
|
optimizer_class (optim.Optimizer): the class of optimizer to
|
||
|
instantiate on each worker.
|
||
|
params_rref (list[RRef]): list of RRefs to local or remote parameters
|
||
|
to optimize.
|
||
|
args: arguments to pass to the optimizer constructor on each worker.
|
||
|
kwargs: arguments to pass to the optimizer constructor on each worker.
|
||
|
|
||
|
Example::
|
||
|
>>> # xdoctest: +SKIP("distributed")
|
||
|
>>> import torch.distributed.autograd as dist_autograd
|
||
|
>>> import torch.distributed.rpc as rpc
|
||
|
>>> from torch import optim
|
||
|
>>> from torch.distributed.optim import DistributedOptimizer
|
||
|
>>>
|
||
|
>>> with dist_autograd.context() as context_id:
|
||
|
>>> # Forward pass.
|
||
|
>>> rref1 = rpc.remote("worker1", torch.add, args=(torch.ones(2), 3))
|
||
|
>>> rref2 = rpc.remote("worker1", torch.add, args=(torch.ones(2), 1))
|
||
|
>>> loss = rref1.to_here() + rref2.to_here()
|
||
|
>>>
|
||
|
>>> # Backward pass.
|
||
|
>>> dist_autograd.backward(context_id, [loss.sum()])
|
||
|
>>>
|
||
|
>>> # Optimizer.
|
||
|
>>> dist_optim = DistributedOptimizer(
|
||
|
>>> optim.SGD,
|
||
|
>>> [rref1, rref2],
|
||
|
>>> lr=0.05,
|
||
|
>>> )
|
||
|
>>> dist_optim.step(context_id)
|
||
|
|
||
|
__ https://github.com/pytorch/tutorials/pull/1465
|
||
|
"""
|
||
|
|
||
|
def __init__(self, optimizer_class, params_rref, *args, **kwargs):
|
||
|
torch._C._log_api_usage_once("torch.distributed.optim.DistributedOptimizer")
|
||
|
per_worker_params_rref = defaultdict(list)
|
||
|
for param in params_rref:
|
||
|
per_worker_params_rref[param.owner()].append(param)
|
||
|
|
||
|
if optimizer_class in functional_optim_map and jit._state._enabled:
|
||
|
optim_ctor = functional_optim_map.get(optimizer_class)
|
||
|
else:
|
||
|
optim_ctor = optimizer_class
|
||
|
self.is_functional_optim = optim_ctor != optimizer_class
|
||
|
|
||
|
if self.is_functional_optim:
|
||
|
optimizer_new_func = _new_script_local_optimizer
|
||
|
else:
|
||
|
logger.warning(
|
||
|
"Creating the optimizer %s without TorchScript support, "
|
||
|
"this might result in slow computation time in multithreading environment"
|
||
|
"(i.e. Distributed Model Parallel training on CPU) due to the Python's "
|
||
|
"Global Interpreter Lock (GIL). Please file an issue if you need this "
|
||
|
"optimizer in TorchScript. ",
|
||
|
optimizer_class
|
||
|
)
|
||
|
optimizer_new_func = _new_local_optimizer
|
||
|
|
||
|
remote_optim_futs = []
|
||
|
for worker, param_rrefs in per_worker_params_rref.items():
|
||
|
remote_optim_rref_fut = rpc.rpc_async(
|
||
|
worker,
|
||
|
optimizer_new_func,
|
||
|
args=(optim_ctor, param_rrefs) + args,
|
||
|
kwargs=kwargs,
|
||
|
)
|
||
|
remote_optim_futs.append(remote_optim_rref_fut)
|
||
|
|
||
|
self.remote_optimizers = _wait_for_all(remote_optim_futs)
|
||
|
|
||
|
def step(self, context_id):
|
||
|
"""
|
||
|
Performs a single optimization step.
|
||
|
|
||
|
This will call :meth:`torch.optim.Optimizer.step` on each worker
|
||
|
containing parameters to be optimized, and will block until all workers
|
||
|
return. The provided ``context_id`` will be used to retrieve the
|
||
|
corresponding :class:`~torch.distributed.autograd.context` that
|
||
|
contains the gradients that should be applied to the parameters.
|
||
|
|
||
|
Args:
|
||
|
context_id: the autograd context id for which we should run the
|
||
|
optimizer step.
|
||
|
"""
|
||
|
dist_autograd._is_valid_context(context_id)
|
||
|
|
||
|
optimizer_step_func = (
|
||
|
_script_local_optimizer_step
|
||
|
if self.is_functional_optim
|
||
|
else _local_optimizer_step
|
||
|
)
|
||
|
|
||
|
rpc_futs = []
|
||
|
for optimizer in self.remote_optimizers:
|
||
|
rpc_futs.append(
|
||
|
rpc.rpc_async(
|
||
|
optimizer.owner(),
|
||
|
optimizer_step_func,
|
||
|
args=(optimizer, context_id),
|
||
|
)
|
||
|
)
|
||
|
_wait_for_all(rpc_futs)
|