Traktor/myenv/Lib/site-packages/torchgen/api/functionalization.py

200 lines
7.4 KiB
Python
Raw Normal View History

2024-05-23 01:57:24 +02:00
from typing import List, Optional
from torchgen.api import dispatcher
from torchgen.api.types import (
BaseCppType,
BaseCType,
Binding,
boolT,
ConstRefCType,
CType,
longT,
NamedCType,
tensorT,
)
from torchgen.model import (
Argument,
BaseTy,
BaseType,
FunctionSchema,
NativeFunction,
NativeFunctionsViewGroup,
)
# This file describes the translation of JIT schema to API's used
# when creating view lambdas that are used by the functionalization pass.
# There are two types of lambdas: forward lambdas and reverse lambdas.
# These API's mostly follow the dispatcher API, with a few quirks:
# - The lambda capture has to convert reference types to value types
# - While the forward lambda just directly calls into the at::_ops API
# (following the dispatcher convention), the logic here for the reverse lambda
# is responsible for generating both the call-site, and the declarations
# (which are implemented manually in the at::functionalization::impl namespace).
# The lambdas generated for each view op in the functionalization pass are of the form
# [capture_arguments](outer_arguments) -> returns_type {
# return name(inner_arguments);
# }
# Define some specific lambda input arguments.
base_binding = Binding(
name="base",
nctype=NamedCType(name="base", type=ConstRefCType(BaseCType(tensorT))),
argument=Argument(
name="base", type=BaseType(BaseTy.Tensor), default=None, annotation=None
),
default=None,
)
mutated_view_binding = Binding(
name="mutated_view",
nctype=NamedCType(name="mutated_view", type=ConstRefCType(BaseCType(tensorT))),
argument=Argument(
name="base", type=BaseType(BaseTy.Tensor), default=None, annotation=None
),
default=None,
)
mutated_view_idx_binding = Binding(
name="mutated_view_idx",
nctype=NamedCType(name="mutated_view_idx", type=BaseCType(longT)),
argument=Argument(
name="base", type=BaseType(BaseTy.Tensor), default=None, annotation=None
),
default=None,
)
reapply_views_binding = Binding(
name="reapply_views",
nctype=NamedCType(name="reapply_views", type=BaseCType(boolT)),
argument=Argument(
name="reapply_views", type=BaseType(BaseTy.bool), default=None, annotation=None
),
default=None,
)
InverseReturnModeT = BaseCppType("at::functionalization", "InverseReturnMode")
inverse_return_mode_binding = Binding(
name="inverse_return_mode",
nctype=NamedCType(name="inverse_return_mode", type=BaseCType(InverseReturnModeT)),
argument=Argument(
name="inverse_return_mode",
# NB: not actually a bool but it doesn't matter because this isn't used
type=BaseType(BaseTy.bool),
default=None,
annotation=None,
),
default=None,
)
# The lambda capture itself doesn't have a name.
# The name returned here corresponds to the name of the inner function called by the lambda.
def name(
g: NativeFunctionsViewGroup,
*,
is_reverse: bool,
include_namespace: bool,
reapply_views: Optional[bool] = None,
) -> str:
if reapply_views is None:
# reapply_views is only important for the fwd lambda,
# since we always plumb the runtime "reapply_views" argument into the reverse function.
assert is_reverse
if is_reverse:
return reverse_name(g.view, include_namespace)
# in the forward case, we just directly call into the at::_ops API (so we always need the namespace)
assert include_namespace
assert g.view_copy is not None
api_name = (
g.view.func.name.unambiguous_name()
if reapply_views
else g.view_copy.func.name.unambiguous_name()
)
return f"at::_ops::{api_name}::call"
def reverse_name(f: NativeFunction, include_namespace: bool) -> str:
# for the reverse: we plumb the "reapply_views" flag into that function and support
# both copy and non-copy variants. (We could avoid doing that, but that would require
# writing out twice as many view inverse functions).
api_name = f.func.name.unambiguous_name()
# in the reverse case, we codegen both the call-sites (which need the full namespace) and the declarations (which don't)
if include_namespace:
return f"at::functionalization::FunctionalInverses::{api_name}_inverse"
else:
return f"{api_name}_inverse"
def capture_arguments(func: FunctionSchema, *, is_reverse: bool) -> List[Binding]:
# capture arguments include all arguments except `self`.
# Importantly, they don't include any C++ reference types (or else we'll get a dangling reference in the capture),
# So any reference types (IntArrayRef) need to be converted to value types (vector<int64_t>)
args = func.arguments.flat_all
assert args[0].type == BaseType(BaseTy.Tensor)
non_self_args = args[1:]
non_self_value_bindings = [
dispatcher.argument(a, remove_non_owning_ref_types=True) for a in non_self_args
]
all_bindings = [
inverse_return_mode_binding if is_reverse else reapply_views_binding
]
all_bindings.extend(non_self_value_bindings)
return all_bindings
def returns_type(func: FunctionSchema) -> CType:
# Assertion: all view ops return tensor-like outputs
assert len(func.returns) >= 1
for ret in func.returns:
assert ret.type.is_tensor_like()
# However, the return type of the lambda is always an individual tensor.
# For multi-tensor outputs, each tensor needs to be tracked individually.
return BaseCType(tensorT)
def outer_arguments(*, is_reverse: bool) -> List[Binding]:
if is_reverse:
return [base_binding, mutated_view_binding, mutated_view_idx_binding]
else:
return [base_binding, mutated_view_idx_binding]
def inner_call_index(func: FunctionSchema) -> Optional[Binding]:
# For view ops that return multiple tensors (like `split`), we generate a separate lambda for each output.
# When we replay a view op that returns multiple tensors, we need to index into the output appropriately
if len(func.returns) > 1 or (
len(func.returns) == 1 and func.returns[0].type.is_list_like()
):
return mutated_view_idx_binding
return None
def inner_arguments(func: FunctionSchema, is_reverse: bool) -> List[Binding]:
args = func.arguments.flat_all
assert args[0].type == BaseType(BaseTy.Tensor)
non_self_args = args[1:]
# The forward lambda calls the at::_ops API, while the reverse lambda calls the view inverse API.
# Both of these follow the dispatcher API.
non_self_bindings = [dispatcher.argument(a) for a in non_self_args]
if not is_reverse:
# the forward lambda swaps out the original tensor argument with the lambd arg "base"
return [base_binding] + non_self_bindings
else:
# the reverse lambda does the same, but with an additional "mutated_view" arg
# additionally, we have a calling convention: for view ops that return multiple tensor outputs
# their corresponding view_inverse function takes in an additional index argument.
index_binding = inner_call_index(func)
if index_binding is not None:
return [
base_binding,
mutated_view_binding,
inverse_return_mode_binding,
index_binding,
] + non_self_bindings
else:
return [
base_binding,
mutated_view_binding,
inverse_return_mode_binding,
] + non_self_bindings