424 lines
16 KiB
Python
424 lines
16 KiB
Python
|
from functools import partial
|
||
|
from typing import Any, Callable, List, Optional, Sequence
|
||
|
|
||
|
import torch
|
||
|
from torch import nn, Tensor
|
||
|
|
||
|
from ..ops.misc import Conv2dNormActivation, SqueezeExcitation as SElayer
|
||
|
from ..transforms._presets import ImageClassification
|
||
|
from ..utils import _log_api_usage_once
|
||
|
from ._api import register_model, Weights, WeightsEnum
|
||
|
from ._meta import _IMAGENET_CATEGORIES
|
||
|
from ._utils import _make_divisible, _ovewrite_named_param, handle_legacy_interface
|
||
|
|
||
|
|
||
|
__all__ = [
|
||
|
"MobileNetV3",
|
||
|
"MobileNet_V3_Large_Weights",
|
||
|
"MobileNet_V3_Small_Weights",
|
||
|
"mobilenet_v3_large",
|
||
|
"mobilenet_v3_small",
|
||
|
]
|
||
|
|
||
|
|
||
|
class InvertedResidualConfig:
|
||
|
# Stores information listed at Tables 1 and 2 of the MobileNetV3 paper
|
||
|
def __init__(
|
||
|
self,
|
||
|
input_channels: int,
|
||
|
kernel: int,
|
||
|
expanded_channels: int,
|
||
|
out_channels: int,
|
||
|
use_se: bool,
|
||
|
activation: str,
|
||
|
stride: int,
|
||
|
dilation: int,
|
||
|
width_mult: float,
|
||
|
):
|
||
|
self.input_channels = self.adjust_channels(input_channels, width_mult)
|
||
|
self.kernel = kernel
|
||
|
self.expanded_channels = self.adjust_channels(expanded_channels, width_mult)
|
||
|
self.out_channels = self.adjust_channels(out_channels, width_mult)
|
||
|
self.use_se = use_se
|
||
|
self.use_hs = activation == "HS"
|
||
|
self.stride = stride
|
||
|
self.dilation = dilation
|
||
|
|
||
|
@staticmethod
|
||
|
def adjust_channels(channels: int, width_mult: float):
|
||
|
return _make_divisible(channels * width_mult, 8)
|
||
|
|
||
|
|
||
|
class InvertedResidual(nn.Module):
|
||
|
# Implemented as described at section 5 of MobileNetV3 paper
|
||
|
def __init__(
|
||
|
self,
|
||
|
cnf: InvertedResidualConfig,
|
||
|
norm_layer: Callable[..., nn.Module],
|
||
|
se_layer: Callable[..., nn.Module] = partial(SElayer, scale_activation=nn.Hardsigmoid),
|
||
|
):
|
||
|
super().__init__()
|
||
|
if not (1 <= cnf.stride <= 2):
|
||
|
raise ValueError("illegal stride value")
|
||
|
|
||
|
self.use_res_connect = cnf.stride == 1 and cnf.input_channels == cnf.out_channels
|
||
|
|
||
|
layers: List[nn.Module] = []
|
||
|
activation_layer = nn.Hardswish if cnf.use_hs else nn.ReLU
|
||
|
|
||
|
# expand
|
||
|
if cnf.expanded_channels != cnf.input_channels:
|
||
|
layers.append(
|
||
|
Conv2dNormActivation(
|
||
|
cnf.input_channels,
|
||
|
cnf.expanded_channels,
|
||
|
kernel_size=1,
|
||
|
norm_layer=norm_layer,
|
||
|
activation_layer=activation_layer,
|
||
|
)
|
||
|
)
|
||
|
|
||
|
# depthwise
|
||
|
stride = 1 if cnf.dilation > 1 else cnf.stride
|
||
|
layers.append(
|
||
|
Conv2dNormActivation(
|
||
|
cnf.expanded_channels,
|
||
|
cnf.expanded_channels,
|
||
|
kernel_size=cnf.kernel,
|
||
|
stride=stride,
|
||
|
dilation=cnf.dilation,
|
||
|
groups=cnf.expanded_channels,
|
||
|
norm_layer=norm_layer,
|
||
|
activation_layer=activation_layer,
|
||
|
)
|
||
|
)
|
||
|
if cnf.use_se:
|
||
|
squeeze_channels = _make_divisible(cnf.expanded_channels // 4, 8)
|
||
|
layers.append(se_layer(cnf.expanded_channels, squeeze_channels))
|
||
|
|
||
|
# project
|
||
|
layers.append(
|
||
|
Conv2dNormActivation(
|
||
|
cnf.expanded_channels, cnf.out_channels, kernel_size=1, norm_layer=norm_layer, activation_layer=None
|
||
|
)
|
||
|
)
|
||
|
|
||
|
self.block = nn.Sequential(*layers)
|
||
|
self.out_channels = cnf.out_channels
|
||
|
self._is_cn = cnf.stride > 1
|
||
|
|
||
|
def forward(self, input: Tensor) -> Tensor:
|
||
|
result = self.block(input)
|
||
|
if self.use_res_connect:
|
||
|
result += input
|
||
|
return result
|
||
|
|
||
|
|
||
|
class MobileNetV3(nn.Module):
|
||
|
def __init__(
|
||
|
self,
|
||
|
inverted_residual_setting: List[InvertedResidualConfig],
|
||
|
last_channel: int,
|
||
|
num_classes: int = 1000,
|
||
|
block: Optional[Callable[..., nn.Module]] = None,
|
||
|
norm_layer: Optional[Callable[..., nn.Module]] = None,
|
||
|
dropout: float = 0.2,
|
||
|
**kwargs: Any,
|
||
|
) -> None:
|
||
|
"""
|
||
|
MobileNet V3 main class
|
||
|
|
||
|
Args:
|
||
|
inverted_residual_setting (List[InvertedResidualConfig]): Network structure
|
||
|
last_channel (int): The number of channels on the penultimate layer
|
||
|
num_classes (int): Number of classes
|
||
|
block (Optional[Callable[..., nn.Module]]): Module specifying inverted residual building block for mobilenet
|
||
|
norm_layer (Optional[Callable[..., nn.Module]]): Module specifying the normalization layer to use
|
||
|
dropout (float): The droupout probability
|
||
|
"""
|
||
|
super().__init__()
|
||
|
_log_api_usage_once(self)
|
||
|
|
||
|
if not inverted_residual_setting:
|
||
|
raise ValueError("The inverted_residual_setting should not be empty")
|
||
|
elif not (
|
||
|
isinstance(inverted_residual_setting, Sequence)
|
||
|
and all([isinstance(s, InvertedResidualConfig) for s in inverted_residual_setting])
|
||
|
):
|
||
|
raise TypeError("The inverted_residual_setting should be List[InvertedResidualConfig]")
|
||
|
|
||
|
if block is None:
|
||
|
block = InvertedResidual
|
||
|
|
||
|
if norm_layer is None:
|
||
|
norm_layer = partial(nn.BatchNorm2d, eps=0.001, momentum=0.01)
|
||
|
|
||
|
layers: List[nn.Module] = []
|
||
|
|
||
|
# building first layer
|
||
|
firstconv_output_channels = inverted_residual_setting[0].input_channels
|
||
|
layers.append(
|
||
|
Conv2dNormActivation(
|
||
|
3,
|
||
|
firstconv_output_channels,
|
||
|
kernel_size=3,
|
||
|
stride=2,
|
||
|
norm_layer=norm_layer,
|
||
|
activation_layer=nn.Hardswish,
|
||
|
)
|
||
|
)
|
||
|
|
||
|
# building inverted residual blocks
|
||
|
for cnf in inverted_residual_setting:
|
||
|
layers.append(block(cnf, norm_layer))
|
||
|
|
||
|
# building last several layers
|
||
|
lastconv_input_channels = inverted_residual_setting[-1].out_channels
|
||
|
lastconv_output_channels = 6 * lastconv_input_channels
|
||
|
layers.append(
|
||
|
Conv2dNormActivation(
|
||
|
lastconv_input_channels,
|
||
|
lastconv_output_channels,
|
||
|
kernel_size=1,
|
||
|
norm_layer=norm_layer,
|
||
|
activation_layer=nn.Hardswish,
|
||
|
)
|
||
|
)
|
||
|
|
||
|
self.features = nn.Sequential(*layers)
|
||
|
self.avgpool = nn.AdaptiveAvgPool2d(1)
|
||
|
self.classifier = nn.Sequential(
|
||
|
nn.Linear(lastconv_output_channels, last_channel),
|
||
|
nn.Hardswish(inplace=True),
|
||
|
nn.Dropout(p=dropout, inplace=True),
|
||
|
nn.Linear(last_channel, num_classes),
|
||
|
)
|
||
|
|
||
|
for m in self.modules():
|
||
|
if isinstance(m, nn.Conv2d):
|
||
|
nn.init.kaiming_normal_(m.weight, mode="fan_out")
|
||
|
if m.bias is not None:
|
||
|
nn.init.zeros_(m.bias)
|
||
|
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
|
||
|
nn.init.ones_(m.weight)
|
||
|
nn.init.zeros_(m.bias)
|
||
|
elif isinstance(m, nn.Linear):
|
||
|
nn.init.normal_(m.weight, 0, 0.01)
|
||
|
nn.init.zeros_(m.bias)
|
||
|
|
||
|
def _forward_impl(self, x: Tensor) -> Tensor:
|
||
|
x = self.features(x)
|
||
|
|
||
|
x = self.avgpool(x)
|
||
|
x = torch.flatten(x, 1)
|
||
|
|
||
|
x = self.classifier(x)
|
||
|
|
||
|
return x
|
||
|
|
||
|
def forward(self, x: Tensor) -> Tensor:
|
||
|
return self._forward_impl(x)
|
||
|
|
||
|
|
||
|
def _mobilenet_v3_conf(
|
||
|
arch: str, width_mult: float = 1.0, reduced_tail: bool = False, dilated: bool = False, **kwargs: Any
|
||
|
):
|
||
|
reduce_divider = 2 if reduced_tail else 1
|
||
|
dilation = 2 if dilated else 1
|
||
|
|
||
|
bneck_conf = partial(InvertedResidualConfig, width_mult=width_mult)
|
||
|
adjust_channels = partial(InvertedResidualConfig.adjust_channels, width_mult=width_mult)
|
||
|
|
||
|
if arch == "mobilenet_v3_large":
|
||
|
inverted_residual_setting = [
|
||
|
bneck_conf(16, 3, 16, 16, False, "RE", 1, 1),
|
||
|
bneck_conf(16, 3, 64, 24, False, "RE", 2, 1), # C1
|
||
|
bneck_conf(24, 3, 72, 24, False, "RE", 1, 1),
|
||
|
bneck_conf(24, 5, 72, 40, True, "RE", 2, 1), # C2
|
||
|
bneck_conf(40, 5, 120, 40, True, "RE", 1, 1),
|
||
|
bneck_conf(40, 5, 120, 40, True, "RE", 1, 1),
|
||
|
bneck_conf(40, 3, 240, 80, False, "HS", 2, 1), # C3
|
||
|
bneck_conf(80, 3, 200, 80, False, "HS", 1, 1),
|
||
|
bneck_conf(80, 3, 184, 80, False, "HS", 1, 1),
|
||
|
bneck_conf(80, 3, 184, 80, False, "HS", 1, 1),
|
||
|
bneck_conf(80, 3, 480, 112, True, "HS", 1, 1),
|
||
|
bneck_conf(112, 3, 672, 112, True, "HS", 1, 1),
|
||
|
bneck_conf(112, 5, 672, 160 // reduce_divider, True, "HS", 2, dilation), # C4
|
||
|
bneck_conf(160 // reduce_divider, 5, 960 // reduce_divider, 160 // reduce_divider, True, "HS", 1, dilation),
|
||
|
bneck_conf(160 // reduce_divider, 5, 960 // reduce_divider, 160 // reduce_divider, True, "HS", 1, dilation),
|
||
|
]
|
||
|
last_channel = adjust_channels(1280 // reduce_divider) # C5
|
||
|
elif arch == "mobilenet_v3_small":
|
||
|
inverted_residual_setting = [
|
||
|
bneck_conf(16, 3, 16, 16, True, "RE", 2, 1), # C1
|
||
|
bneck_conf(16, 3, 72, 24, False, "RE", 2, 1), # C2
|
||
|
bneck_conf(24, 3, 88, 24, False, "RE", 1, 1),
|
||
|
bneck_conf(24, 5, 96, 40, True, "HS", 2, 1), # C3
|
||
|
bneck_conf(40, 5, 240, 40, True, "HS", 1, 1),
|
||
|
bneck_conf(40, 5, 240, 40, True, "HS", 1, 1),
|
||
|
bneck_conf(40, 5, 120, 48, True, "HS", 1, 1),
|
||
|
bneck_conf(48, 5, 144, 48, True, "HS", 1, 1),
|
||
|
bneck_conf(48, 5, 288, 96 // reduce_divider, True, "HS", 2, dilation), # C4
|
||
|
bneck_conf(96 // reduce_divider, 5, 576 // reduce_divider, 96 // reduce_divider, True, "HS", 1, dilation),
|
||
|
bneck_conf(96 // reduce_divider, 5, 576 // reduce_divider, 96 // reduce_divider, True, "HS", 1, dilation),
|
||
|
]
|
||
|
last_channel = adjust_channels(1024 // reduce_divider) # C5
|
||
|
else:
|
||
|
raise ValueError(f"Unsupported model type {arch}")
|
||
|
|
||
|
return inverted_residual_setting, last_channel
|
||
|
|
||
|
|
||
|
def _mobilenet_v3(
|
||
|
inverted_residual_setting: List[InvertedResidualConfig],
|
||
|
last_channel: int,
|
||
|
weights: Optional[WeightsEnum],
|
||
|
progress: bool,
|
||
|
**kwargs: Any,
|
||
|
) -> MobileNetV3:
|
||
|
if weights is not None:
|
||
|
_ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))
|
||
|
|
||
|
model = MobileNetV3(inverted_residual_setting, last_channel, **kwargs)
|
||
|
|
||
|
if weights is not None:
|
||
|
model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
|
||
|
|
||
|
return model
|
||
|
|
||
|
|
||
|
_COMMON_META = {
|
||
|
"min_size": (1, 1),
|
||
|
"categories": _IMAGENET_CATEGORIES,
|
||
|
}
|
||
|
|
||
|
|
||
|
class MobileNet_V3_Large_Weights(WeightsEnum):
|
||
|
IMAGENET1K_V1 = Weights(
|
||
|
url="https://download.pytorch.org/models/mobilenet_v3_large-8738ca79.pth",
|
||
|
transforms=partial(ImageClassification, crop_size=224),
|
||
|
meta={
|
||
|
**_COMMON_META,
|
||
|
"num_params": 5483032,
|
||
|
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#mobilenetv3-large--small",
|
||
|
"_metrics": {
|
||
|
"ImageNet-1K": {
|
||
|
"acc@1": 74.042,
|
||
|
"acc@5": 91.340,
|
||
|
}
|
||
|
},
|
||
|
"_ops": 0.217,
|
||
|
"_file_size": 21.114,
|
||
|
"_docs": """These weights were trained from scratch by using a simple training recipe.""",
|
||
|
},
|
||
|
)
|
||
|
IMAGENET1K_V2 = Weights(
|
||
|
url="https://download.pytorch.org/models/mobilenet_v3_large-5c1a4163.pth",
|
||
|
transforms=partial(ImageClassification, crop_size=224, resize_size=232),
|
||
|
meta={
|
||
|
**_COMMON_META,
|
||
|
"num_params": 5483032,
|
||
|
"recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe-with-reg-tuning",
|
||
|
"_metrics": {
|
||
|
"ImageNet-1K": {
|
||
|
"acc@1": 75.274,
|
||
|
"acc@5": 92.566,
|
||
|
}
|
||
|
},
|
||
|
"_ops": 0.217,
|
||
|
"_file_size": 21.107,
|
||
|
"_docs": """
|
||
|
These weights improve marginally upon the results of the original paper by using a modified version of
|
||
|
TorchVision's `new training recipe
|
||
|
<https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
|
||
|
""",
|
||
|
},
|
||
|
)
|
||
|
DEFAULT = IMAGENET1K_V2
|
||
|
|
||
|
|
||
|
class MobileNet_V3_Small_Weights(WeightsEnum):
|
||
|
IMAGENET1K_V1 = Weights(
|
||
|
url="https://download.pytorch.org/models/mobilenet_v3_small-047dcff4.pth",
|
||
|
transforms=partial(ImageClassification, crop_size=224),
|
||
|
meta={
|
||
|
**_COMMON_META,
|
||
|
"num_params": 2542856,
|
||
|
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#mobilenetv3-large--small",
|
||
|
"_metrics": {
|
||
|
"ImageNet-1K": {
|
||
|
"acc@1": 67.668,
|
||
|
"acc@5": 87.402,
|
||
|
}
|
||
|
},
|
||
|
"_ops": 0.057,
|
||
|
"_file_size": 9.829,
|
||
|
"_docs": """
|
||
|
These weights improve upon the results of the original paper by using a simple training recipe.
|
||
|
""",
|
||
|
},
|
||
|
)
|
||
|
DEFAULT = IMAGENET1K_V1
|
||
|
|
||
|
|
||
|
@register_model()
|
||
|
@handle_legacy_interface(weights=("pretrained", MobileNet_V3_Large_Weights.IMAGENET1K_V1))
|
||
|
def mobilenet_v3_large(
|
||
|
*, weights: Optional[MobileNet_V3_Large_Weights] = None, progress: bool = True, **kwargs: Any
|
||
|
) -> MobileNetV3:
|
||
|
"""
|
||
|
Constructs a large MobileNetV3 architecture from
|
||
|
`Searching for MobileNetV3 <https://arxiv.org/abs/1905.02244>`__.
|
||
|
|
||
|
Args:
|
||
|
weights (:class:`~torchvision.models.MobileNet_V3_Large_Weights`, optional): The
|
||
|
pretrained weights to use. See
|
||
|
:class:`~torchvision.models.MobileNet_V3_Large_Weights` below for
|
||
|
more details, and possible values. By default, no pre-trained
|
||
|
weights are used.
|
||
|
progress (bool, optional): If True, displays a progress bar of the
|
||
|
download to stderr. Default is True.
|
||
|
**kwargs: parameters passed to the ``torchvision.models.mobilenet.MobileNetV3``
|
||
|
base class. Please refer to the `source code
|
||
|
<https://github.com/pytorch/vision/blob/main/torchvision/models/mobilenetv3.py>`_
|
||
|
for more details about this class.
|
||
|
|
||
|
.. autoclass:: torchvision.models.MobileNet_V3_Large_Weights
|
||
|
:members:
|
||
|
"""
|
||
|
weights = MobileNet_V3_Large_Weights.verify(weights)
|
||
|
|
||
|
inverted_residual_setting, last_channel = _mobilenet_v3_conf("mobilenet_v3_large", **kwargs)
|
||
|
return _mobilenet_v3(inverted_residual_setting, last_channel, weights, progress, **kwargs)
|
||
|
|
||
|
|
||
|
@register_model()
|
||
|
@handle_legacy_interface(weights=("pretrained", MobileNet_V3_Small_Weights.IMAGENET1K_V1))
|
||
|
def mobilenet_v3_small(
|
||
|
*, weights: Optional[MobileNet_V3_Small_Weights] = None, progress: bool = True, **kwargs: Any
|
||
|
) -> MobileNetV3:
|
||
|
"""
|
||
|
Constructs a small MobileNetV3 architecture from
|
||
|
`Searching for MobileNetV3 <https://arxiv.org/abs/1905.02244>`__.
|
||
|
|
||
|
Args:
|
||
|
weights (:class:`~torchvision.models.MobileNet_V3_Small_Weights`, optional): The
|
||
|
pretrained weights to use. See
|
||
|
:class:`~torchvision.models.MobileNet_V3_Small_Weights` below for
|
||
|
more details, and possible values. By default, no pre-trained
|
||
|
weights are used.
|
||
|
progress (bool, optional): If True, displays a progress bar of the
|
||
|
download to stderr. Default is True.
|
||
|
**kwargs: parameters passed to the ``torchvision.models.mobilenet.MobileNetV3``
|
||
|
base class. Please refer to the `source code
|
||
|
<https://github.com/pytorch/vision/blob/main/torchvision/models/mobilenetv3.py>`_
|
||
|
for more details about this class.
|
||
|
|
||
|
.. autoclass:: torchvision.models.MobileNet_V3_Small_Weights
|
||
|
:members:
|
||
|
"""
|
||
|
weights = MobileNet_V3_Small_Weights.verify(weights)
|
||
|
|
||
|
inverted_residual_setting, last_channel = _mobilenet_v3_conf("mobilenet_v3_small", **kwargs)
|
||
|
return _mobilenet_v3(inverted_residual_setting, last_channel, weights, progress, **kwargs)
|