238 lines
9.0 KiB
Python
238 lines
9.0 KiB
Python
|
from functools import partial
|
||
|
from typing import Any, List, Optional, Union
|
||
|
|
||
|
import torch
|
||
|
from torch import nn, Tensor
|
||
|
from torch.ao.quantization import DeQuantStub, QuantStub
|
||
|
|
||
|
from ...ops.misc import Conv2dNormActivation, SqueezeExcitation
|
||
|
from ...transforms._presets import ImageClassification
|
||
|
from .._api import register_model, Weights, WeightsEnum
|
||
|
from .._meta import _IMAGENET_CATEGORIES
|
||
|
from .._utils import _ovewrite_named_param, handle_legacy_interface
|
||
|
from ..mobilenetv3 import (
|
||
|
_mobilenet_v3_conf,
|
||
|
InvertedResidual,
|
||
|
InvertedResidualConfig,
|
||
|
MobileNet_V3_Large_Weights,
|
||
|
MobileNetV3,
|
||
|
)
|
||
|
from .utils import _fuse_modules, _replace_relu
|
||
|
|
||
|
|
||
|
__all__ = [
|
||
|
"QuantizableMobileNetV3",
|
||
|
"MobileNet_V3_Large_QuantizedWeights",
|
||
|
"mobilenet_v3_large",
|
||
|
]
|
||
|
|
||
|
|
||
|
class QuantizableSqueezeExcitation(SqueezeExcitation):
|
||
|
_version = 2
|
||
|
|
||
|
def __init__(self, *args: Any, **kwargs: Any) -> None:
|
||
|
kwargs["scale_activation"] = nn.Hardsigmoid
|
||
|
super().__init__(*args, **kwargs)
|
||
|
self.skip_mul = nn.quantized.FloatFunctional()
|
||
|
|
||
|
def forward(self, input: Tensor) -> Tensor:
|
||
|
return self.skip_mul.mul(self._scale(input), input)
|
||
|
|
||
|
def fuse_model(self, is_qat: Optional[bool] = None) -> None:
|
||
|
_fuse_modules(self, ["fc1", "activation"], is_qat, inplace=True)
|
||
|
|
||
|
def _load_from_state_dict(
|
||
|
self,
|
||
|
state_dict,
|
||
|
prefix,
|
||
|
local_metadata,
|
||
|
strict,
|
||
|
missing_keys,
|
||
|
unexpected_keys,
|
||
|
error_msgs,
|
||
|
):
|
||
|
version = local_metadata.get("version", None)
|
||
|
|
||
|
if hasattr(self, "qconfig") and (version is None or version < 2):
|
||
|
default_state_dict = {
|
||
|
"scale_activation.activation_post_process.scale": torch.tensor([1.0]),
|
||
|
"scale_activation.activation_post_process.activation_post_process.scale": torch.tensor([1.0]),
|
||
|
"scale_activation.activation_post_process.zero_point": torch.tensor([0], dtype=torch.int32),
|
||
|
"scale_activation.activation_post_process.activation_post_process.zero_point": torch.tensor(
|
||
|
[0], dtype=torch.int32
|
||
|
),
|
||
|
"scale_activation.activation_post_process.fake_quant_enabled": torch.tensor([1]),
|
||
|
"scale_activation.activation_post_process.observer_enabled": torch.tensor([1]),
|
||
|
}
|
||
|
for k, v in default_state_dict.items():
|
||
|
full_key = prefix + k
|
||
|
if full_key not in state_dict:
|
||
|
state_dict[full_key] = v
|
||
|
|
||
|
super()._load_from_state_dict(
|
||
|
state_dict,
|
||
|
prefix,
|
||
|
local_metadata,
|
||
|
strict,
|
||
|
missing_keys,
|
||
|
unexpected_keys,
|
||
|
error_msgs,
|
||
|
)
|
||
|
|
||
|
|
||
|
class QuantizableInvertedResidual(InvertedResidual):
|
||
|
# TODO https://github.com/pytorch/vision/pull/4232#pullrequestreview-730461659
|
||
|
def __init__(self, *args: Any, **kwargs: Any) -> None:
|
||
|
super().__init__(*args, se_layer=QuantizableSqueezeExcitation, **kwargs) # type: ignore[misc]
|
||
|
self.skip_add = nn.quantized.FloatFunctional()
|
||
|
|
||
|
def forward(self, x: Tensor) -> Tensor:
|
||
|
if self.use_res_connect:
|
||
|
return self.skip_add.add(x, self.block(x))
|
||
|
else:
|
||
|
return self.block(x)
|
||
|
|
||
|
|
||
|
class QuantizableMobileNetV3(MobileNetV3):
|
||
|
def __init__(self, *args: Any, **kwargs: Any) -> None:
|
||
|
"""
|
||
|
MobileNet V3 main class
|
||
|
|
||
|
Args:
|
||
|
Inherits args from floating point MobileNetV3
|
||
|
"""
|
||
|
super().__init__(*args, **kwargs)
|
||
|
self.quant = QuantStub()
|
||
|
self.dequant = DeQuantStub()
|
||
|
|
||
|
def forward(self, x: Tensor) -> Tensor:
|
||
|
x = self.quant(x)
|
||
|
x = self._forward_impl(x)
|
||
|
x = self.dequant(x)
|
||
|
return x
|
||
|
|
||
|
def fuse_model(self, is_qat: Optional[bool] = None) -> None:
|
||
|
for m in self.modules():
|
||
|
if type(m) is Conv2dNormActivation:
|
||
|
modules_to_fuse = ["0", "1"]
|
||
|
if len(m) == 3 and type(m[2]) is nn.ReLU:
|
||
|
modules_to_fuse.append("2")
|
||
|
_fuse_modules(m, modules_to_fuse, is_qat, inplace=True)
|
||
|
elif type(m) is QuantizableSqueezeExcitation:
|
||
|
m.fuse_model(is_qat)
|
||
|
|
||
|
|
||
|
def _mobilenet_v3_model(
|
||
|
inverted_residual_setting: List[InvertedResidualConfig],
|
||
|
last_channel: int,
|
||
|
weights: Optional[WeightsEnum],
|
||
|
progress: bool,
|
||
|
quantize: bool,
|
||
|
**kwargs: Any,
|
||
|
) -> QuantizableMobileNetV3:
|
||
|
if weights is not None:
|
||
|
_ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))
|
||
|
if "backend" in weights.meta:
|
||
|
_ovewrite_named_param(kwargs, "backend", weights.meta["backend"])
|
||
|
backend = kwargs.pop("backend", "qnnpack")
|
||
|
|
||
|
model = QuantizableMobileNetV3(inverted_residual_setting, last_channel, block=QuantizableInvertedResidual, **kwargs)
|
||
|
_replace_relu(model)
|
||
|
|
||
|
if quantize:
|
||
|
# Instead of quantizing the model and then loading the quantized weights we take a different approach.
|
||
|
# We prepare the QAT model, load the QAT weights from training and then convert it.
|
||
|
# This is done to avoid extremely low accuracies observed on the specific model. This is rather a workaround
|
||
|
# for an unresolved bug on the eager quantization API detailed at: https://github.com/pytorch/vision/issues/5890
|
||
|
model.fuse_model(is_qat=True)
|
||
|
model.qconfig = torch.ao.quantization.get_default_qat_qconfig(backend)
|
||
|
torch.ao.quantization.prepare_qat(model, inplace=True)
|
||
|
|
||
|
if weights is not None:
|
||
|
model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
|
||
|
|
||
|
if quantize:
|
||
|
torch.ao.quantization.convert(model, inplace=True)
|
||
|
model.eval()
|
||
|
|
||
|
return model
|
||
|
|
||
|
|
||
|
class MobileNet_V3_Large_QuantizedWeights(WeightsEnum):
|
||
|
IMAGENET1K_QNNPACK_V1 = Weights(
|
||
|
url="https://download.pytorch.org/models/quantized/mobilenet_v3_large_qnnpack-5bcacf28.pth",
|
||
|
transforms=partial(ImageClassification, crop_size=224),
|
||
|
meta={
|
||
|
"num_params": 5483032,
|
||
|
"min_size": (1, 1),
|
||
|
"categories": _IMAGENET_CATEGORIES,
|
||
|
"backend": "qnnpack",
|
||
|
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#qat-mobilenetv3",
|
||
|
"unquantized": MobileNet_V3_Large_Weights.IMAGENET1K_V1,
|
||
|
"_metrics": {
|
||
|
"ImageNet-1K": {
|
||
|
"acc@1": 73.004,
|
||
|
"acc@5": 90.858,
|
||
|
}
|
||
|
},
|
||
|
"_ops": 0.217,
|
||
|
"_file_size": 21.554,
|
||
|
"_docs": """
|
||
|
These weights were produced by doing Quantization Aware Training (eager mode) on top of the unquantized
|
||
|
weights listed below.
|
||
|
""",
|
||
|
},
|
||
|
)
|
||
|
DEFAULT = IMAGENET1K_QNNPACK_V1
|
||
|
|
||
|
|
||
|
@register_model(name="quantized_mobilenet_v3_large")
|
||
|
@handle_legacy_interface(
|
||
|
weights=(
|
||
|
"pretrained",
|
||
|
lambda kwargs: MobileNet_V3_Large_QuantizedWeights.IMAGENET1K_QNNPACK_V1
|
||
|
if kwargs.get("quantize", False)
|
||
|
else MobileNet_V3_Large_Weights.IMAGENET1K_V1,
|
||
|
)
|
||
|
)
|
||
|
def mobilenet_v3_large(
|
||
|
*,
|
||
|
weights: Optional[Union[MobileNet_V3_Large_QuantizedWeights, MobileNet_V3_Large_Weights]] = None,
|
||
|
progress: bool = True,
|
||
|
quantize: bool = False,
|
||
|
**kwargs: Any,
|
||
|
) -> QuantizableMobileNetV3:
|
||
|
"""
|
||
|
MobileNetV3 (Large) model from
|
||
|
`Searching for MobileNetV3 <https://arxiv.org/abs/1905.02244>`_.
|
||
|
|
||
|
.. note::
|
||
|
Note that ``quantize = True`` returns a quantized model with 8 bit
|
||
|
weights. Quantized models only support inference and run on CPUs.
|
||
|
GPU inference is not yet supported.
|
||
|
|
||
|
Args:
|
||
|
weights (:class:`~torchvision.models.quantization.MobileNet_V3_Large_QuantizedWeights` or :class:`~torchvision.models.MobileNet_V3_Large_Weights`, optional): The
|
||
|
pretrained weights for the model. See
|
||
|
:class:`~torchvision.models.quantization.MobileNet_V3_Large_QuantizedWeights` below for
|
||
|
more details, and possible values. By default, no pre-trained
|
||
|
weights are used.
|
||
|
progress (bool): If True, displays a progress bar of the
|
||
|
download to stderr. Default is True.
|
||
|
quantize (bool): If True, return a quantized version of the model. Default is False.
|
||
|
**kwargs: parameters passed to the ``torchvision.models.quantization.MobileNet_V3_Large_QuantizedWeights``
|
||
|
base class. Please refer to the `source code
|
||
|
<https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/mobilenetv3.py>`_
|
||
|
for more details about this class.
|
||
|
|
||
|
.. autoclass:: torchvision.models.quantization.MobileNet_V3_Large_QuantizedWeights
|
||
|
:members:
|
||
|
.. autoclass:: torchvision.models.MobileNet_V3_Large_Weights
|
||
|
:members:
|
||
|
:noindex:
|
||
|
"""
|
||
|
weights = (MobileNet_V3_Large_QuantizedWeights if quantize else MobileNet_V3_Large_Weights).verify(weights)
|
||
|
|
||
|
inverted_residual_setting, last_channel = _mobilenet_v3_conf("mobilenet_v3_large", **kwargs)
|
||
|
return _mobilenet_v3_model(inverted_residual_setting, last_channel, weights, progress, quantize, **kwargs)
|