Add neuralnetwork.py
This commit is contained in:
parent
7091a99ee6
commit
2398928dd0
87
neuralnetwork.py
Normal file
87
neuralnetwork.py
Normal file
@ -0,0 +1,87 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.utils.data import DataLoader
|
||||
from torchvision import datasets, transforms
|
||||
from PIL import Image
|
||||
|
||||
class SimpleNN(nn.Module):
|
||||
def __init__(self):
|
||||
super(SimpleNN, self).__init__()
|
||||
self.fc1 = nn.Linear(64 * 64, 128)
|
||||
self.fc2 = nn.Linear(128, 64)
|
||||
self.fc3 = nn.Linear(64, 4)
|
||||
self.relu = nn.ReLU()
|
||||
self.log_softmax = nn.LogSoftmax(dim=1)
|
||||
|
||||
def forward(self, x):
|
||||
x = x.view(x.size(0), -1) # Spłaszczenie obrazów
|
||||
x = self.relu(self.fc1(x))
|
||||
x = self.relu(self.fc2(x))
|
||||
x = self.log_softmax(self.fc3(x))
|
||||
return x
|
||||
|
||||
def train(model, train_loader, n_iter=100):
|
||||
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
|
||||
criterion = nn.NLLLoss()
|
||||
model.train()
|
||||
for epoch in range(n_iter):
|
||||
running_loss = 0.0
|
||||
for images, targets in train_loader:
|
||||
images, targets = images.to(device), targets.to(device)
|
||||
optimizer.zero_grad()
|
||||
out = model(images)
|
||||
loss = criterion(out, targets)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
running_loss += loss.item()
|
||||
if epoch % 10 == 0:
|
||||
print(f'Epoch: {epoch:3d}, Loss: {running_loss/len(train_loader):.4f}')
|
||||
|
||||
def predict_image(image_path, model):
|
||||
image_path = "warzywa/" + str(image_path) + ".png"
|
||||
image = Image.open(image_path)
|
||||
image = transform(image).unsqueeze(0).to(device)
|
||||
class_names = ["marchewka","ziemniak","rzodkiewka","pomidor"]
|
||||
with torch.no_grad():
|
||||
output = model(image)
|
||||
_, predicted = torch.max(output, 1)
|
||||
return class_names[predicted.item()]
|
||||
|
||||
def accuracy(model, dataset):
|
||||
model.eval()
|
||||
correct = 0
|
||||
total = 0
|
||||
with torch.no_grad():
|
||||
for images, targets in DataLoader(dataset, batch_size=256):
|
||||
images, targets = images.to(device), targets.to(device)
|
||||
outputs = model(images)
|
||||
_, predicted = torch.max(outputs, 1)
|
||||
correct += (predicted == targets).sum().item()
|
||||
total += targets.size(0)
|
||||
return correct / total
|
||||
|
||||
def load_model(model_path):
|
||||
model = SimpleNN()
|
||||
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
|
||||
model.eval()
|
||||
return model
|
||||
|
||||
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
||||
transform = transforms.Compose([
|
||||
transforms.Resize((64, 64)),
|
||||
transforms.Grayscale(num_output_channels=1),
|
||||
transforms.ToTensor(),
|
||||
])
|
||||
train_data_path = 'train'
|
||||
train_dataset = datasets.ImageFolder(root=train_data_path, transform=transform)
|
||||
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
|
||||
|
||||
test_data_path = 'test'
|
||||
test_dataset = datasets.ImageFolder(root=train_data_path, transform=transform)
|
||||
|
||||
model = SimpleNN().to(device)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
train(model, train_loader, n_iter=100)
|
||||
torch.save(model.state_dict(), 'model.pth')
|
Loading…
Reference in New Issue
Block a user