Compare commits

...

5 Commits

Author SHA1 Message Date
8204825a97 fix gen alg 2024-06-10 15:47:10 +02:00
4b828f878b fix gen alg 2024-06-10 15:41:01 +02:00
084e96ba7d fix gen alg 2024-06-10 15:35:08 +02:00
e56854690c Merge branch 'refs/heads/master' into genetical-algorithm 2024-06-08 12:55:03 +02:00
0c5532ac0d astar fix 2024-06-08 12:41:46 +02:00
3 changed files with 224 additions and 162 deletions

207
astar.py
View File

@ -3,124 +3,108 @@ from board import Board
from constant import width, height, rows, cols
from tractor import Tractor
import heapq
import math
fps = 2
WIN = pygame.display.set_mode((width, height))
pygame.display.set_caption('Inteligenty Traktor')
class Node:
def __init__(self, x, y):
self.x = x
self.y = y
self.f = 0
self.g = 0
self.h = 0
self.cost = 1
self.visited = False
self.closed = False
self.parent = None
def __init__(self, state, parent=None, action=None, cost=0):
self.state = state # Stan reprezentowany przez węzeł
self.parent = parent # Węzeł rodzica
self.action = action # Akcja prowadząca do tego stanu
self.cost = cost # Koszt przejścia do tego stanu
self.f = 0 # Wartość funkcji priorytetowej
self.tie_breaker = 0 # Wartość używana do rozwiązywania konfliktów priorytetów
def __lt__(self, other):
# Porównanie węzłów w celu ustalenia kolejności w kolejce priorytetowej
if self.f == other.f:
return self.tie_breaker > other.tie_breaker # Większy tie_breaker ma wyższy priorytet
return self.f < other.f
def neighbors(self, grid):
ret = []
x, y = self.x, self.y
if x > 0 and grid[x - 1][y]:
ret.append(grid[x - 1][y])
if x < len(grid) - 1 and grid[x + 1][y]:
ret.append(grid[x + 1][y])
if y > 0 and grid[x][y - 1]:
ret.append(grid[x][y - 1])
if y < len(grid[0]) - 1 and grid[x][y + 1]:
ret.append(grid[x][y + 1])
return ret
def init(grid):
for x in range(len(grid)):
for y in range(len(grid[x])):
node = grid[x][y]
node.f = 0
node.g = 0
node.h = 0
node.cost = 1
node.visited = False
node.closed = False
node.parent = None
def heap():
return []
def search(grid, start, end, board, heuristic=None):
init(grid)
if heuristic is None:
heuristic = manhattan
open_heap = heap()
heapq.heappush(open_heap, start)
while open_heap:
current_node = heapq.heappop(open_heap)
if (current_node.x, current_node.y) == (end.x, end.y):
ret = []
while current_node.parent:
ret.append(current_node)
current_node = current_node.parent
ret.append(start)
ret_path = ret[::-1]
for node in ret_path:
print(f"({node.x}, {node.y}): {node.g}")
print("Znaleziono ścieżkę [(x,y)jako(kolumna,wiersz)] o koszcie:", ret_path[-1].g)
return ret_path, start
current_node.closed = True
for neighbor in current_node.neighbors(grid):
if neighbor.closed:
continue
g_score = current_node.g + board.get_cost(neighbor.x, neighbor.y)
been_visited = neighbor.visited
if not been_visited or g_score < neighbor.g:
neighbor.visited = True
neighbor.parent = current_node
neighbor.h = neighbor.h or heuristic((neighbor.x, neighbor.y), (end.x, end.y))
neighbor.g = g_score
neighbor.f = neighbor.g + neighbor.h
if not been_visited:
heapq.heappush(open_heap, neighbor)
print("Nie znaleziono ścieżki.")
return None
# Jesli pare wezlow ma taie same f, to tilebreaker ustawia
# prorytety akcje right i down maja wyzszy priorytet
def manhattan(pos0, pos1):
# Heurystyka odległości Manhattan
d1 = abs(pos1[0] - pos0[0])
d2 = abs(pos1[1] - pos0[1])
return d1 + d2
def nastepnik(state, board):
# Funkcja generująca możliwe następne stany (akcje)
x, y = state
successors = []
actions = [('right', (x+1, y), 1), ('down', (x, y+1), 1), ('up', (x, y-1), 0), ('left', (x-1, y), 0)]
for action, next_state, tie_breaker in actions:
if 0 <= next_state[0] < cols and 0 <= next_state[1] < rows:
cost = board.get_cost(next_state[0], next_state[1])
successors.append((action, next_state, cost, tie_breaker))
return successors
def goal_test(state, goal):
# Czy dany stan jest stanem docelowym
return state == goal
def graphsearch(istate, goal, board, heuristic=manhattan):
# Algorytm przeszukiwania grafu
fringe = [] # Kolejka priorytetowa przechowująca węzły do odwiedzenia
explored = set() # Zbiór odwiedzonych stanów
start_node = Node(istate)
start_node.f = heuristic(istate, goal) # Obliczenie wartości heurystycznej dla stanu początkowego
start_node.tie_breaker = 0 # Ustawienie tie_breaker dla węzła startowego,
heapq.heappush(fringe, start_node)
while fringe:
elem = heapq.heappop(fringe)
if goal_test(elem.state, goal):
path = []
total_cost = elem.cost # Zapisanie całkowitego kosztu
while elem:
path.append((elem.state, elem.action))
elem = elem.parent
return path[::-1], total_cost # Zwrócenie ścieżki i kosztu
explored.add(elem.state)
for action_index, (action, state, cost, tie_breaker) in enumerate(nastepnik(elem.state, board)):
x = Node(state, parent=elem, action=action, cost=elem.cost + cost)
x.f = x.cost + heuristic(state, goal) # Obliczenie wartości funkcji priorytetowej
x.tie_breaker = elem.tie_breaker * 4 + action_index # Obliczanie tie_breaker na podstawie akcji
if state not in explored and not any(node.state == state for node in fringe):
heapq.heappush(fringe, x)
else:
for i, node in enumerate(fringe):
if node.state == state and (node.f > x.f or (node.f == x.f and node.tie_breaker < x.tie_breaker)):
fringe[i] = x
heapq.heapify(fringe)
break
print("Nie znaleziono ścieżki.")
return None, 0 # Zwrócenie ścieżki jako None i kosztu jako 0 w przypadku braku ścieżki
def main():
run = True
clock = pygame.time.Clock()
board = Board()
board.load_images()
start_row, start_col = 0,0
end_row, end_col = 9,9
tractor = Tractor(start_row, start_col)
board.set_grass(start_row, start_col)
board.set_grass(end_row, end_col)
grid = [[Node(x, y) for y in range(rows)] for x in range(cols)]
start = grid[start_row][start_col]
end = grid[end_row][end_col]
path, start_node = search(grid, start, end, board)
start_state = (9, 9) # Stan początkowy
goal_state = (0, 0) # Stan docelowy
tractor = Tractor(start_state[1], start_state[0])
board.set_grass(start_state[0], start_state[1]) # Ustawienie startowego pola jako trawę
board.set_grass(goal_state[0], goal_state[1]) # Ustawienie docelowego pola jako trawę
path, total_cost = graphsearch(start_state, goal_state, board)
while run:
clock.tick(fps)
for event in pygame.event.get():
if event.type == pygame.QUIT:
run = False
@ -129,39 +113,38 @@ def main():
run = False
continue
next_node = path.pop(0) if path else start_node
dx = next_node.x - tractor.col
dy = next_node.y - tractor.row
tractor.row, tractor.col = next_node.y, next_node.x
next_state, action = path.pop(0) if path else (start_state, None)
print(next_state) # Wypisanie następnego stanu
tractor.row, tractor.col = next_state[1], next_state[0]
if dx > 0:
if action == "right":
tractor.direction = "right"
elif dx < 0:
elif action == "left":
tractor.direction = "left"
elif dy > 0:
elif action == "down":
tractor.direction = "down"
elif dy < 0:
elif action == "up":
tractor.direction = "up"
if board.is_weed(tractor.col, tractor.row ):
board.set_grass(tractor.col, tractor.row )
elif board.is_dirt(tractor.col, tractor.row ):
board.set_soil(tractor.col, tractor.row )
elif board.is_soil(tractor.col, tractor.row ):
board.set_carrot(tractor.col, tractor.row )
# Aktualizacja planszy na podstawie położenia traktora
if board.is_weed(tractor.col, tractor.row):
board.set_grass(tractor.col, tractor.row)
elif board.is_dirt(tractor.col, tractor.row):
board.set_soil(tractor.col, tractor.row)
elif board.is_soil(tractor.col, tractor.row):
board.set_carrot(tractor.col, tractor.row)
board.draw_cubes(WIN)
tractor.draw(WIN)
pygame.display.update()
print(f"Całkowity koszt trasy: {total_cost}")
while True:
for event in pygame.event.get():
if event.type == pygame.QUIT:
pygame.quit()
return
main()

View File

@ -10,6 +10,7 @@ class Board:
self.load_costs()
def load_images(self):
self.grass = pygame.image.load("board/grass.png")
self.dirt = pygame.image.load("board/dirt.png")
@ -19,37 +20,52 @@ class Board:
self.carrot = pygame.image.load("board/carrot.png")
def generate_board(self):
self.board = [[random.choice([0,1,2,3,4,5,6,7,8,9]) for _ in range(rows)] for _ in range(cols)]
# Najpierw wypełniamy całą planszę trawą (kod 2)
self.board = [[2 for _ in range(rows)] for _ in range(cols)]
# Losowo wybieramy 5 unikalnych pozycji dla chwastów
weed_positions = random.sample([(row, col) for row in range(rows) for col in range(cols)], 5)
# Umieszczamy chwasty na wylosowanych pozycjach
for row, col in weed_positions:
self.board[row][col] = 1 # 1 oznacza chwast
# Teraz losowo umieszczamy inne elementy, omijając pozycje chwastów
for row in range(rows):
for col in range(cols):
if (row, col) not in weed_positions:
# Losujemy typ terenu, ale pomijamy kod 1 (chwast)
self.board[row][col] = random.choice([0, 2, 3, 4, 5, 6, 7, 8, 9])
def draw_cubes(self, win):
for row in range(rows):
for col in range(cols):
cube_rect = pygame.Rect(row * size, col * size, size, size)
cube=self.board[row][col]
cube = self.board[row][col]
if row==4 and col==4:
if row == 4 and col == 4:
win.blit(self.grass, cube_rect)
elif cube == 0:
rock_scale = pygame.transform.scale(self.rock, (size, size))
win.blit(self.dirt, cube_rect)
win.blit(rock_scale, cube_rect)
#win.blit(rock_scale, cube_rect)
elif cube == 1:
weed_scale = pygame.transform.scale(self.weeds, (size,size))
weed_scale = pygame.transform.scale(self.weeds, (size, size))
win.blit(self.grass, cube_rect)
win.blit(weed_scale, cube_rect)
elif cube in(2,3,4,5):
win.blit(self.grass, cube_rect)
elif cube in (2, 3, 4, 5):
win.blit(self.grass, cube_rect)
elif cube == 10:
win.blit(self.soil, cube_rect)
elif cube == 11:
carrot_scale = pygame.transform.scale(self.carrot, (size,size))
carrot_scale = pygame.transform.scale(self.carrot, (size, size))
win.blit(self.carrot, cube_rect)
win.blit(carrot_scale, cube_rect)
else:
win.blit(self.dirt, cube_rect)
win.blit(self.dirt, cube_rect)
def load_costs(self):
self.costs = {
@ -78,6 +94,7 @@ class Board:
def is_weed(self,row,col):
return self.board[row][col] == 1
def set_grass(self,row,col):
self.board[row][col]=2
@ -93,10 +110,10 @@ class Board:
def set_carrot(self, row, col):
self.board[row][col] = 11
def get_dirt_positions(self):
dirt_positions = []
def get_weed_positions(self):
weed_positions = []
for row in range(rows):
for col in range(cols):
if self.is_dirt(row, col):
dirt_positions.append([row, col])
return dirt_positions
if self.is_weed(row, col):
weed_positions.append([row, col])
return weed_positions

View File

@ -5,36 +5,34 @@ from constant import width, height, size, rows, cols
from board import Board
from tractor import Tractor
routes_num = 20 # Ilość ścieżek
board = Board()
dirt_positions = board.get_dirt_positions()
dirt_count = len(dirt_positions)
weed_positions = board.get_weed_positions()
weed_count = len(weed_positions)
def manhattan(a, b):
return abs(a[0] - b[0]) + abs(a[1] - b[1])
def find_routes(routes_num):
population_set = [] # zapisujemy trasy - losowe ułóżenia
for i in range(routes_num):
# losowo wygenerowane kolejności na trasie
single_route = np.random.choice(list(range(dirt_count)), dirt_count, replace=False)
single_route = np.random.choice(list(range(weed_count)), weed_count, replace=False)
population_set.append(single_route)
return np.array(population_set)
return np.array(population_set) #zwracamy 20 roznych losowych tras
def sum_up_for_route(route_indices):
sum = 0
for i in range(len(route_indices) - 1):
current_dirt = dirt_positions[route_indices[i]]
next_dirt = dirt_positions[route_indices[i + 1]]
sum += manhattan(current_dirt, next_dirt)
return sum
current_weed = weed_positions[route_indices[i]]
next_weed = weed_positions[route_indices[i + 1]]
sum += manhattan(current_weed, next_weed)
return sum #zwracamy odleglosc (ilosc pol) dla danej trasy manhatanem
def routes_sum(population_set): # zapisujemy na liście finalne sumy odległości dla każdej z opcji tras
def routes_sum(population_set): # zapisujemy na liście finalne sumy odległości dla każdej z tras
list_of_sums = np.zeros(routes_num)
for i in range(routes_num):
list_of_sums[i] = sum_up_for_route(population_set[i]) # wywołujemy dla każdej trasy na liście
@ -42,29 +40,30 @@ def routes_sum(population_set): # zapisujemy na liście finalne sumy odległoś
def calculate_fitness(distances):
# Odwrotność odległości jako fitness
# Dodajemy małą wartość (np. 1) aby uniknąć dzielenia przez zero
# odwrotność odległości jako fitness
# dodajemy małą wartość (np. 1) aby uniknąć dzielenia przez zero
return 1 / (distances + 1)
def selection(population_set, list_of_sums):
# Oblicz wartości fitness dla każdej trasy
fitness_values = calculate_fitness(list_of_sums)
# Normalizuj wartości fitness, aby sumowały się do 1 (wymagane dla np.random.choice)
#RULETKA - czesciowo faworyzuje rozwiaznaia, wiekszy fitness wieksze szanse
# obliczamy wartości fitness (przystosowania) dla każdej trasy
fitness_values = calculate_fitness(list_of_sums)#krotsze trasy maja miec wyzsze wartosci
# normalizujemy wartości fitness, aby sumowały się do 1 (wymagane dla np.random.choice)
probabilities = fitness_values / fitness_values.sum()
# Wybierz rodziców na podstawie prawdopodobieństw (wartości fitness)
# wybieramy indeksy rodziców na podstawie prawdopodobieństw
progenitor_indices_a = np.random.choice(range(len(population_set)), len(population_set), p=probabilities, replace=True)
progenitor_indices_b = np.random.choice(range(len(population_set)), len(population_set), p=probabilities, replace=True)
# Wybierz rzeczywiste trasy
# finalne trasy
progenitor_a = population_set[progenitor_indices_a]
progenitor_b = population_set[progenitor_indices_b]
return np.array([progenitor_a, progenitor_b])
return np.array([progenitor_a, progenitor_b]) #zwracami listy przodkow-rodzicow
def one_point_crossover(parent_a, parent_b): #krzyzowanie jednopunktowe
crossover_point = np.random.randint(1, len(parent_a))
child = np.concatenate((parent_a[:crossover_point], [x for x in parent_b if x not in parent_a[:crossover_point]]))
return child
return child #loosyw punkt przeciecia ktory skleja nam nowa trase, wieksza szans na lepsza tarse
def population_mating(progenitor_list):
new_population_set = []
@ -72,24 +71,17 @@ def population_mating(progenitor_list):
progenitor_a, progenitor_b = progenitor_list[0][i], progenitor_list[1][i]
child = one_point_crossover(progenitor_a, progenitor_b)
new_population_set.append(child)
return new_population_set
return new_population_set # lista potomkow po krzyzowaniu
def mutation_of_child(child):
for i in range(dirt_count): # dla każdego elementu dajemy losową szansę zamiany int *rate
x = np.random.randint(0, dirt_count)
y = np.random.randint(0, dirt_count)
child[x], child[y] = child[y], child[x] # zamiana miejscami
return child
'''def mutation_of_child(child, mutation_rate=0.1):#procent moze pomoc w niezaklucaniu trasy gdy jesy duza trasa ale idk
def mutation_of_child(child, mutation_rate=0.2):#procent moze pomoc w niezaklucaniu trasy gdy jesy duza trasa ale idk
num_mutations = int(len(child) * mutation_rate)
for _ in range(num_mutations):
x = np.random.randint(0, len(child))
x = np.random.randint(0, len(child))#losowa szansa zamiany - mutacja
y = np.random.randint(0, len(child))
child[x], child[y] = child[y], child[x]
return child'''
return child#zwrocenie bardziej roznorodnych potomkow
def mutate_population(new_population_set):
@ -100,6 +92,23 @@ def mutate_population(new_population_set):
if __name__ == '__main__':
pygame.init()
WIN = pygame.display.set_mode((width, height))
pygame.display.set_caption('Trasa Traktora')
clock = pygame.time.Clock()
board = Board()
board.load_images()
weed_positions = [(col, row) for col in range(cols) for row in range(rows) if board.is_weed(col, row)]
weed_count = len(weed_positions)
board.set_grass(9, 9) # pozycja startowa
tractor = Tractor(9, 9) # Start traktora
# Inicjalizacja final_route
final_route = [0, float('inf'), np.array([])]
# [0]: indeks iteracji, [1]: najlepsza suma odległości, [2]: najlepsza trasa
population_set = find_routes(routes_num)
list_of_sums = routes_sum(population_set)
@ -107,6 +116,7 @@ if __name__ == '__main__':
new_population_set = population_mating(progenitor_list)
final_mutated_population = mutate_population(new_population_set)
final_route = [-1, np.inf, np.array([])] # format listy
for i in range(20):
list_of_sums = routes_sum(final_mutated_population)
# zapisujemy najlepsze rozwiązanie
@ -115,12 +125,64 @@ if __name__ == '__main__':
final_route[1] = list_of_sums.min()
final_route[2] = np.array(final_mutated_population)[list_of_sums.min() == list_of_sums]
progenitor_list = selection(population_set, list_of_sums)
new_population_set = population_mating(progenitor_list)
final_mutated_population = mutate_population(new_population_set)
print(f"Najlepsza trasa znaleziona w iteracji: {final_route[0]}")
print(f"Minimalna suma odległości: {final_route[1]}")
print(f"Kolejne pola: {final_route[2]}")
run = True
current_target_index = 0
best_routes = final_route[2] #tablica z najlepszymi trasami
visited_fields = []
while run:
clock.tick(2) # FPS
for event in pygame.event.get():
if event.type == pygame.QUIT:
run = False
for route in best_routes:
if current_target_index < len(route):
current_weed = weed_positions[route[current_target_index]]
# ruch w kierunku bieżącego celu
if tractor.col < current_weed[0]:
tractor.col += 1
tractor.direction = "right"
elif tractor.col > current_weed[0]:
tractor.col -= 1
tractor.direction = "left"
elif tractor.row < current_weed[1]:
tractor.row += 1
tractor.direction = "down"
elif tractor.row > current_weed[1]:
tractor.row -= 1
tractor.direction = "up"
current_position = (tractor.col, tractor.row)
if current_position not in visited_fields:
visited_fields.append(current_position)
# Jeśli traktor dotarł do celu
if (tractor.col, tractor.row) == current_weed:
current_target_index += 1
# Aktualizacja planszy
if board.is_weed(tractor.col, tractor.row):
board.set_carrot(tractor.col, tractor.row)
board.draw_cubes(WIN)
tractor.draw(WIN)
pygame.display.update()
print("Odwiedzone pola:")
for field in visited_fields:
print(field)
pygame.quit()