import numpy as np import pytest from sklearn.utils._testing import assert_allclose from sklearn.utils.arrayfuncs import _all_with_any_reduction_axis_1, min_pos def test_min_pos(): # Check that min_pos returns a positive value and that it's consistent # between float and double X = np.random.RandomState(0).randn(100) min_double = min_pos(X) min_float = min_pos(X.astype(np.float32)) assert_allclose(min_double, min_float) assert min_double >= 0 @pytest.mark.parametrize("dtype", [np.float32, np.float64]) def test_min_pos_no_positive(dtype): # Check that the return value of min_pos is the maximum representable # value of the input dtype when all input elements are <= 0 (#19328) X = np.full(100, -1.0).astype(dtype, copy=False) assert min_pos(X) == np.finfo(dtype).max @pytest.mark.parametrize( "dtype", [np.int16, np.int32, np.int64, np.float32, np.float64] ) @pytest.mark.parametrize("value", [0, 1.5, -1]) def test_all_with_any_reduction_axis_1(dtype, value): # Check that return value is False when there is no row equal to `value` X = np.arange(12, dtype=dtype).reshape(3, 4) assert not _all_with_any_reduction_axis_1(X, value=value) # Make a row equal to `value` X[1, :] = value assert _all_with_any_reduction_axis_1(X, value=value)