import math from collections import OrderedDict from functools import partial from typing import Any, Callable, Dict, List, Optional, Tuple import torch from torch import nn, Tensor from ..ops.misc import Conv2dNormActivation, SqueezeExcitation from ..transforms._presets import ImageClassification, InterpolationMode from ..utils import _log_api_usage_once from ._api import register_model, Weights, WeightsEnum from ._meta import _IMAGENET_CATEGORIES from ._utils import _make_divisible, _ovewrite_named_param, handle_legacy_interface __all__ = [ "RegNet", "RegNet_Y_400MF_Weights", "RegNet_Y_800MF_Weights", "RegNet_Y_1_6GF_Weights", "RegNet_Y_3_2GF_Weights", "RegNet_Y_8GF_Weights", "RegNet_Y_16GF_Weights", "RegNet_Y_32GF_Weights", "RegNet_Y_128GF_Weights", "RegNet_X_400MF_Weights", "RegNet_X_800MF_Weights", "RegNet_X_1_6GF_Weights", "RegNet_X_3_2GF_Weights", "RegNet_X_8GF_Weights", "RegNet_X_16GF_Weights", "RegNet_X_32GF_Weights", "regnet_y_400mf", "regnet_y_800mf", "regnet_y_1_6gf", "regnet_y_3_2gf", "regnet_y_8gf", "regnet_y_16gf", "regnet_y_32gf", "regnet_y_128gf", "regnet_x_400mf", "regnet_x_800mf", "regnet_x_1_6gf", "regnet_x_3_2gf", "regnet_x_8gf", "regnet_x_16gf", "regnet_x_32gf", ] class SimpleStemIN(Conv2dNormActivation): """Simple stem for ImageNet: 3x3, BN, ReLU.""" def __init__( self, width_in: int, width_out: int, norm_layer: Callable[..., nn.Module], activation_layer: Callable[..., nn.Module], ) -> None: super().__init__( width_in, width_out, kernel_size=3, stride=2, norm_layer=norm_layer, activation_layer=activation_layer ) class BottleneckTransform(nn.Sequential): """Bottleneck transformation: 1x1, 3x3 [+SE], 1x1.""" def __init__( self, width_in: int, width_out: int, stride: int, norm_layer: Callable[..., nn.Module], activation_layer: Callable[..., nn.Module], group_width: int, bottleneck_multiplier: float, se_ratio: Optional[float], ) -> None: layers: OrderedDict[str, nn.Module] = OrderedDict() w_b = int(round(width_out * bottleneck_multiplier)) g = w_b // group_width layers["a"] = Conv2dNormActivation( width_in, w_b, kernel_size=1, stride=1, norm_layer=norm_layer, activation_layer=activation_layer ) layers["b"] = Conv2dNormActivation( w_b, w_b, kernel_size=3, stride=stride, groups=g, norm_layer=norm_layer, activation_layer=activation_layer ) if se_ratio: # The SE reduction ratio is defined with respect to the # beginning of the block width_se_out = int(round(se_ratio * width_in)) layers["se"] = SqueezeExcitation( input_channels=w_b, squeeze_channels=width_se_out, activation=activation_layer, ) layers["c"] = Conv2dNormActivation( w_b, width_out, kernel_size=1, stride=1, norm_layer=norm_layer, activation_layer=None ) super().__init__(layers) class ResBottleneckBlock(nn.Module): """Residual bottleneck block: x + F(x), F = bottleneck transform.""" def __init__( self, width_in: int, width_out: int, stride: int, norm_layer: Callable[..., nn.Module], activation_layer: Callable[..., nn.Module], group_width: int = 1, bottleneck_multiplier: float = 1.0, se_ratio: Optional[float] = None, ) -> None: super().__init__() # Use skip connection with projection if shape changes self.proj = None should_proj = (width_in != width_out) or (stride != 1) if should_proj: self.proj = Conv2dNormActivation( width_in, width_out, kernel_size=1, stride=stride, norm_layer=norm_layer, activation_layer=None ) self.f = BottleneckTransform( width_in, width_out, stride, norm_layer, activation_layer, group_width, bottleneck_multiplier, se_ratio, ) self.activation = activation_layer(inplace=True) def forward(self, x: Tensor) -> Tensor: if self.proj is not None: x = self.proj(x) + self.f(x) else: x = x + self.f(x) return self.activation(x) class AnyStage(nn.Sequential): """AnyNet stage (sequence of blocks w/ the same output shape).""" def __init__( self, width_in: int, width_out: int, stride: int, depth: int, block_constructor: Callable[..., nn.Module], norm_layer: Callable[..., nn.Module], activation_layer: Callable[..., nn.Module], group_width: int, bottleneck_multiplier: float, se_ratio: Optional[float] = None, stage_index: int = 0, ) -> None: super().__init__() for i in range(depth): block = block_constructor( width_in if i == 0 else width_out, width_out, stride if i == 0 else 1, norm_layer, activation_layer, group_width, bottleneck_multiplier, se_ratio, ) self.add_module(f"block{stage_index}-{i}", block) class BlockParams: def __init__( self, depths: List[int], widths: List[int], group_widths: List[int], bottleneck_multipliers: List[float], strides: List[int], se_ratio: Optional[float] = None, ) -> None: self.depths = depths self.widths = widths self.group_widths = group_widths self.bottleneck_multipliers = bottleneck_multipliers self.strides = strides self.se_ratio = se_ratio @classmethod def from_init_params( cls, depth: int, w_0: int, w_a: float, w_m: float, group_width: int, bottleneck_multiplier: float = 1.0, se_ratio: Optional[float] = None, **kwargs: Any, ) -> "BlockParams": """ Programmatically compute all the per-block settings, given the RegNet parameters. The first step is to compute the quantized linear block parameters, in log space. Key parameters are: - `w_a` is the width progression slope - `w_0` is the initial width - `w_m` is the width stepping in the log space In other terms `log(block_width) = log(w_0) + w_m * block_capacity`, with `bock_capacity` ramping up following the w_0 and w_a params. This block width is finally quantized to multiples of 8. The second step is to compute the parameters per stage, taking into account the skip connection and the final 1x1 convolutions. We use the fact that the output width is constant within a stage. """ QUANT = 8 STRIDE = 2 if w_a < 0 or w_0 <= 0 or w_m <= 1 or w_0 % 8 != 0: raise ValueError("Invalid RegNet settings") # Compute the block widths. Each stage has one unique block width widths_cont = torch.arange(depth) * w_a + w_0 block_capacity = torch.round(torch.log(widths_cont / w_0) / math.log(w_m)) block_widths = (torch.round(torch.divide(w_0 * torch.pow(w_m, block_capacity), QUANT)) * QUANT).int().tolist() num_stages = len(set(block_widths)) # Convert to per stage parameters split_helper = zip( block_widths + [0], [0] + block_widths, block_widths + [0], [0] + block_widths, ) splits = [w != wp or r != rp for w, wp, r, rp in split_helper] stage_widths = [w for w, t in zip(block_widths, splits[:-1]) if t] stage_depths = torch.diff(torch.tensor([d for d, t in enumerate(splits) if t])).int().tolist() strides = [STRIDE] * num_stages bottleneck_multipliers = [bottleneck_multiplier] * num_stages group_widths = [group_width] * num_stages # Adjust the compatibility of stage widths and group widths stage_widths, group_widths = cls._adjust_widths_groups_compatibilty( stage_widths, bottleneck_multipliers, group_widths ) return cls( depths=stage_depths, widths=stage_widths, group_widths=group_widths, bottleneck_multipliers=bottleneck_multipliers, strides=strides, se_ratio=se_ratio, ) def _get_expanded_params(self): return zip(self.widths, self.strides, self.depths, self.group_widths, self.bottleneck_multipliers) @staticmethod def _adjust_widths_groups_compatibilty( stage_widths: List[int], bottleneck_ratios: List[float], group_widths: List[int] ) -> Tuple[List[int], List[int]]: """ Adjusts the compatibility of widths and groups, depending on the bottleneck ratio. """ # Compute all widths for the current settings widths = [int(w * b) for w, b in zip(stage_widths, bottleneck_ratios)] group_widths_min = [min(g, w_bot) for g, w_bot in zip(group_widths, widths)] # Compute the adjusted widths so that stage and group widths fit ws_bot = [_make_divisible(w_bot, g) for w_bot, g in zip(widths, group_widths_min)] stage_widths = [int(w_bot / b) for w_bot, b in zip(ws_bot, bottleneck_ratios)] return stage_widths, group_widths_min class RegNet(nn.Module): def __init__( self, block_params: BlockParams, num_classes: int = 1000, stem_width: int = 32, stem_type: Optional[Callable[..., nn.Module]] = None, block_type: Optional[Callable[..., nn.Module]] = None, norm_layer: Optional[Callable[..., nn.Module]] = None, activation: Optional[Callable[..., nn.Module]] = None, ) -> None: super().__init__() _log_api_usage_once(self) if stem_type is None: stem_type = SimpleStemIN if norm_layer is None: norm_layer = nn.BatchNorm2d if block_type is None: block_type = ResBottleneckBlock if activation is None: activation = nn.ReLU # Ad hoc stem self.stem = stem_type( 3, # width_in stem_width, norm_layer, activation, ) current_width = stem_width blocks = [] for i, ( width_out, stride, depth, group_width, bottleneck_multiplier, ) in enumerate(block_params._get_expanded_params()): blocks.append( ( f"block{i+1}", AnyStage( current_width, width_out, stride, depth, block_type, norm_layer, activation, group_width, bottleneck_multiplier, block_params.se_ratio, stage_index=i + 1, ), ) ) current_width = width_out self.trunk_output = nn.Sequential(OrderedDict(blocks)) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(in_features=current_width, out_features=num_classes) # Performs ResNet-style weight initialization for m in self.modules(): if isinstance(m, nn.Conv2d): # Note that there is no bias due to BN fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels nn.init.normal_(m.weight, mean=0.0, std=math.sqrt(2.0 / fan_out)) elif isinstance(m, nn.BatchNorm2d): nn.init.ones_(m.weight) nn.init.zeros_(m.bias) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, mean=0.0, std=0.01) nn.init.zeros_(m.bias) def forward(self, x: Tensor) -> Tensor: x = self.stem(x) x = self.trunk_output(x) x = self.avgpool(x) x = x.flatten(start_dim=1) x = self.fc(x) return x def _regnet( block_params: BlockParams, weights: Optional[WeightsEnum], progress: bool, **kwargs: Any, ) -> RegNet: if weights is not None: _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"])) norm_layer = kwargs.pop("norm_layer", partial(nn.BatchNorm2d, eps=1e-05, momentum=0.1)) model = RegNet(block_params, norm_layer=norm_layer, **kwargs) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) return model _COMMON_META: Dict[str, Any] = { "min_size": (1, 1), "categories": _IMAGENET_CATEGORIES, } _COMMON_SWAG_META = { **_COMMON_META, "recipe": "https://github.com/facebookresearch/SWAG", "license": "https://github.com/facebookresearch/SWAG/blob/main/LICENSE", } class RegNet_Y_400MF_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/regnet_y_400mf-c65dace8.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 4344144, "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#small-models", "_metrics": { "ImageNet-1K": { "acc@1": 74.046, "acc@5": 91.716, } }, "_ops": 0.402, "_file_size": 16.806, "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""", }, ) IMAGENET1K_V2 = Weights( url="https://download.pytorch.org/models/regnet_y_400mf-e6988f5f.pth", transforms=partial(ImageClassification, crop_size=224, resize_size=232), meta={ **_COMMON_META, "num_params": 4344144, "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe", "_metrics": { "ImageNet-1K": { "acc@1": 75.804, "acc@5": 92.742, } }, "_ops": 0.402, "_file_size": 16.806, "_docs": """ These weights improve upon the results of the original paper by using a modified version of TorchVision's `new training recipe `_. """, }, ) DEFAULT = IMAGENET1K_V2 class RegNet_Y_800MF_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/regnet_y_800mf-1b27b58c.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 6432512, "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#small-models", "_metrics": { "ImageNet-1K": { "acc@1": 76.420, "acc@5": 93.136, } }, "_ops": 0.834, "_file_size": 24.774, "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""", }, ) IMAGENET1K_V2 = Weights( url="https://download.pytorch.org/models/regnet_y_800mf-58fc7688.pth", transforms=partial(ImageClassification, crop_size=224, resize_size=232), meta={ **_COMMON_META, "num_params": 6432512, "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe", "_metrics": { "ImageNet-1K": { "acc@1": 78.828, "acc@5": 94.502, } }, "_ops": 0.834, "_file_size": 24.774, "_docs": """ These weights improve upon the results of the original paper by using a modified version of TorchVision's `new training recipe `_. """, }, ) DEFAULT = IMAGENET1K_V2 class RegNet_Y_1_6GF_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/regnet_y_1_6gf-b11a554e.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 11202430, "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#small-models", "_metrics": { "ImageNet-1K": { "acc@1": 77.950, "acc@5": 93.966, } }, "_ops": 1.612, "_file_size": 43.152, "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""", }, ) IMAGENET1K_V2 = Weights( url="https://download.pytorch.org/models/regnet_y_1_6gf-0d7bc02a.pth", transforms=partial(ImageClassification, crop_size=224, resize_size=232), meta={ **_COMMON_META, "num_params": 11202430, "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe", "_metrics": { "ImageNet-1K": { "acc@1": 80.876, "acc@5": 95.444, } }, "_ops": 1.612, "_file_size": 43.152, "_docs": """ These weights improve upon the results of the original paper by using a modified version of TorchVision's `new training recipe `_. """, }, ) DEFAULT = IMAGENET1K_V2 class RegNet_Y_3_2GF_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/regnet_y_3_2gf-b5a9779c.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 19436338, "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#medium-models", "_metrics": { "ImageNet-1K": { "acc@1": 78.948, "acc@5": 94.576, } }, "_ops": 3.176, "_file_size": 74.567, "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""", }, ) IMAGENET1K_V2 = Weights( url="https://download.pytorch.org/models/regnet_y_3_2gf-9180c971.pth", transforms=partial(ImageClassification, crop_size=224, resize_size=232), meta={ **_COMMON_META, "num_params": 19436338, "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe", "_metrics": { "ImageNet-1K": { "acc@1": 81.982, "acc@5": 95.972, } }, "_ops": 3.176, "_file_size": 74.567, "_docs": """ These weights improve upon the results of the original paper by using a modified version of TorchVision's `new training recipe `_. """, }, ) DEFAULT = IMAGENET1K_V2 class RegNet_Y_8GF_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/regnet_y_8gf-d0d0e4a8.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 39381472, "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#medium-models", "_metrics": { "ImageNet-1K": { "acc@1": 80.032, "acc@5": 95.048, } }, "_ops": 8.473, "_file_size": 150.701, "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""", }, ) IMAGENET1K_V2 = Weights( url="https://download.pytorch.org/models/regnet_y_8gf-dc2b1b54.pth", transforms=partial(ImageClassification, crop_size=224, resize_size=232), meta={ **_COMMON_META, "num_params": 39381472, "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe", "_metrics": { "ImageNet-1K": { "acc@1": 82.828, "acc@5": 96.330, } }, "_ops": 8.473, "_file_size": 150.701, "_docs": """ These weights improve upon the results of the original paper by using a modified version of TorchVision's `new training recipe `_. """, }, ) DEFAULT = IMAGENET1K_V2 class RegNet_Y_16GF_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/regnet_y_16gf-9e6ed7dd.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 83590140, "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#large-models", "_metrics": { "ImageNet-1K": { "acc@1": 80.424, "acc@5": 95.240, } }, "_ops": 15.912, "_file_size": 319.49, "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""", }, ) IMAGENET1K_V2 = Weights( url="https://download.pytorch.org/models/regnet_y_16gf-3e4a00f9.pth", transforms=partial(ImageClassification, crop_size=224, resize_size=232), meta={ **_COMMON_META, "num_params": 83590140, "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe", "_metrics": { "ImageNet-1K": { "acc@1": 82.886, "acc@5": 96.328, } }, "_ops": 15.912, "_file_size": 319.49, "_docs": """ These weights improve upon the results of the original paper by using a modified version of TorchVision's `new training recipe `_. """, }, ) IMAGENET1K_SWAG_E2E_V1 = Weights( url="https://download.pytorch.org/models/regnet_y_16gf_swag-43afe44d.pth", transforms=partial( ImageClassification, crop_size=384, resize_size=384, interpolation=InterpolationMode.BICUBIC ), meta={ **_COMMON_SWAG_META, "num_params": 83590140, "_metrics": { "ImageNet-1K": { "acc@1": 86.012, "acc@5": 98.054, } }, "_ops": 46.735, "_file_size": 319.49, "_docs": """ These weights are learnt via transfer learning by end-to-end fine-tuning the original `SWAG `_ weights on ImageNet-1K data. """, }, ) IMAGENET1K_SWAG_LINEAR_V1 = Weights( url="https://download.pytorch.org/models/regnet_y_16gf_lc_swag-f3ec0043.pth", transforms=partial( ImageClassification, crop_size=224, resize_size=224, interpolation=InterpolationMode.BICUBIC ), meta={ **_COMMON_SWAG_META, "recipe": "https://github.com/pytorch/vision/pull/5793", "num_params": 83590140, "_metrics": { "ImageNet-1K": { "acc@1": 83.976, "acc@5": 97.244, } }, "_ops": 15.912, "_file_size": 319.49, "_docs": """ These weights are composed of the original frozen `SWAG `_ trunk weights and a linear classifier learnt on top of them trained on ImageNet-1K data. """, }, ) DEFAULT = IMAGENET1K_V2 class RegNet_Y_32GF_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/regnet_y_32gf-4dee3f7a.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 145046770, "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#large-models", "_metrics": { "ImageNet-1K": { "acc@1": 80.878, "acc@5": 95.340, } }, "_ops": 32.28, "_file_size": 554.076, "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""", }, ) IMAGENET1K_V2 = Weights( url="https://download.pytorch.org/models/regnet_y_32gf-8db6d4b5.pth", transforms=partial(ImageClassification, crop_size=224, resize_size=232), meta={ **_COMMON_META, "num_params": 145046770, "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe", "_metrics": { "ImageNet-1K": { "acc@1": 83.368, "acc@5": 96.498, } }, "_ops": 32.28, "_file_size": 554.076, "_docs": """ These weights improve upon the results of the original paper by using a modified version of TorchVision's `new training recipe `_. """, }, ) IMAGENET1K_SWAG_E2E_V1 = Weights( url="https://download.pytorch.org/models/regnet_y_32gf_swag-04fdfa75.pth", transforms=partial( ImageClassification, crop_size=384, resize_size=384, interpolation=InterpolationMode.BICUBIC ), meta={ **_COMMON_SWAG_META, "num_params": 145046770, "_metrics": { "ImageNet-1K": { "acc@1": 86.838, "acc@5": 98.362, } }, "_ops": 94.826, "_file_size": 554.076, "_docs": """ These weights are learnt via transfer learning by end-to-end fine-tuning the original `SWAG `_ weights on ImageNet-1K data. """, }, ) IMAGENET1K_SWAG_LINEAR_V1 = Weights( url="https://download.pytorch.org/models/regnet_y_32gf_lc_swag-e1583746.pth", transforms=partial( ImageClassification, crop_size=224, resize_size=224, interpolation=InterpolationMode.BICUBIC ), meta={ **_COMMON_SWAG_META, "recipe": "https://github.com/pytorch/vision/pull/5793", "num_params": 145046770, "_metrics": { "ImageNet-1K": { "acc@1": 84.622, "acc@5": 97.480, } }, "_ops": 32.28, "_file_size": 554.076, "_docs": """ These weights are composed of the original frozen `SWAG `_ trunk weights and a linear classifier learnt on top of them trained on ImageNet-1K data. """, }, ) DEFAULT = IMAGENET1K_V2 class RegNet_Y_128GF_Weights(WeightsEnum): IMAGENET1K_SWAG_E2E_V1 = Weights( url="https://download.pytorch.org/models/regnet_y_128gf_swag-c8ce3e52.pth", transforms=partial( ImageClassification, crop_size=384, resize_size=384, interpolation=InterpolationMode.BICUBIC ), meta={ **_COMMON_SWAG_META, "num_params": 644812894, "_metrics": { "ImageNet-1K": { "acc@1": 88.228, "acc@5": 98.682, } }, "_ops": 374.57, "_file_size": 2461.564, "_docs": """ These weights are learnt via transfer learning by end-to-end fine-tuning the original `SWAG `_ weights on ImageNet-1K data. """, }, ) IMAGENET1K_SWAG_LINEAR_V1 = Weights( url="https://download.pytorch.org/models/regnet_y_128gf_lc_swag-cbe8ce12.pth", transforms=partial( ImageClassification, crop_size=224, resize_size=224, interpolation=InterpolationMode.BICUBIC ), meta={ **_COMMON_SWAG_META, "recipe": "https://github.com/pytorch/vision/pull/5793", "num_params": 644812894, "_metrics": { "ImageNet-1K": { "acc@1": 86.068, "acc@5": 97.844, } }, "_ops": 127.518, "_file_size": 2461.564, "_docs": """ These weights are composed of the original frozen `SWAG `_ trunk weights and a linear classifier learnt on top of them trained on ImageNet-1K data. """, }, ) DEFAULT = IMAGENET1K_SWAG_E2E_V1 class RegNet_X_400MF_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/regnet_x_400mf-adf1edd5.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 5495976, "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#small-models", "_metrics": { "ImageNet-1K": { "acc@1": 72.834, "acc@5": 90.950, } }, "_ops": 0.414, "_file_size": 21.258, "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""", }, ) IMAGENET1K_V2 = Weights( url="https://download.pytorch.org/models/regnet_x_400mf-62229a5f.pth", transforms=partial(ImageClassification, crop_size=224, resize_size=232), meta={ **_COMMON_META, "num_params": 5495976, "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe-with-fixres", "_metrics": { "ImageNet-1K": { "acc@1": 74.864, "acc@5": 92.322, } }, "_ops": 0.414, "_file_size": 21.257, "_docs": """ These weights improve upon the results of the original paper by using a modified version of TorchVision's `new training recipe `_. """, }, ) DEFAULT = IMAGENET1K_V2 class RegNet_X_800MF_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/regnet_x_800mf-ad17e45c.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 7259656, "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#small-models", "_metrics": { "ImageNet-1K": { "acc@1": 75.212, "acc@5": 92.348, } }, "_ops": 0.8, "_file_size": 27.945, "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""", }, ) IMAGENET1K_V2 = Weights( url="https://download.pytorch.org/models/regnet_x_800mf-94a99ebd.pth", transforms=partial(ImageClassification, crop_size=224, resize_size=232), meta={ **_COMMON_META, "num_params": 7259656, "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe-with-fixres", "_metrics": { "ImageNet-1K": { "acc@1": 77.522, "acc@5": 93.826, } }, "_ops": 0.8, "_file_size": 27.945, "_docs": """ These weights improve upon the results of the original paper by using a modified version of TorchVision's `new training recipe `_. """, }, ) DEFAULT = IMAGENET1K_V2 class RegNet_X_1_6GF_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/regnet_x_1_6gf-e3633e7f.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 9190136, "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#small-models", "_metrics": { "ImageNet-1K": { "acc@1": 77.040, "acc@5": 93.440, } }, "_ops": 1.603, "_file_size": 35.339, "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""", }, ) IMAGENET1K_V2 = Weights( url="https://download.pytorch.org/models/regnet_x_1_6gf-a12f2b72.pth", transforms=partial(ImageClassification, crop_size=224, resize_size=232), meta={ **_COMMON_META, "num_params": 9190136, "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe-with-fixres", "_metrics": { "ImageNet-1K": { "acc@1": 79.668, "acc@5": 94.922, } }, "_ops": 1.603, "_file_size": 35.339, "_docs": """ These weights improve upon the results of the original paper by using a modified version of TorchVision's `new training recipe `_. """, }, ) DEFAULT = IMAGENET1K_V2 class RegNet_X_3_2GF_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/regnet_x_3_2gf-f342aeae.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 15296552, "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#medium-models", "_metrics": { "ImageNet-1K": { "acc@1": 78.364, "acc@5": 93.992, } }, "_ops": 3.177, "_file_size": 58.756, "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""", }, ) IMAGENET1K_V2 = Weights( url="https://download.pytorch.org/models/regnet_x_3_2gf-7071aa85.pth", transforms=partial(ImageClassification, crop_size=224, resize_size=232), meta={ **_COMMON_META, "num_params": 15296552, "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe", "_metrics": { "ImageNet-1K": { "acc@1": 81.196, "acc@5": 95.430, } }, "_ops": 3.177, "_file_size": 58.756, "_docs": """ These weights improve upon the results of the original paper by using a modified version of TorchVision's `new training recipe `_. """, }, ) DEFAULT = IMAGENET1K_V2 class RegNet_X_8GF_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/regnet_x_8gf-03ceed89.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 39572648, "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#medium-models", "_metrics": { "ImageNet-1K": { "acc@1": 79.344, "acc@5": 94.686, } }, "_ops": 7.995, "_file_size": 151.456, "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""", }, ) IMAGENET1K_V2 = Weights( url="https://download.pytorch.org/models/regnet_x_8gf-2b70d774.pth", transforms=partial(ImageClassification, crop_size=224, resize_size=232), meta={ **_COMMON_META, "num_params": 39572648, "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe", "_metrics": { "ImageNet-1K": { "acc@1": 81.682, "acc@5": 95.678, } }, "_ops": 7.995, "_file_size": 151.456, "_docs": """ These weights improve upon the results of the original paper by using a modified version of TorchVision's `new training recipe `_. """, }, ) DEFAULT = IMAGENET1K_V2 class RegNet_X_16GF_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/regnet_x_16gf-2007eb11.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 54278536, "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#medium-models", "_metrics": { "ImageNet-1K": { "acc@1": 80.058, "acc@5": 94.944, } }, "_ops": 15.941, "_file_size": 207.627, "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""", }, ) IMAGENET1K_V2 = Weights( url="https://download.pytorch.org/models/regnet_x_16gf-ba3796d7.pth", transforms=partial(ImageClassification, crop_size=224, resize_size=232), meta={ **_COMMON_META, "num_params": 54278536, "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe", "_metrics": { "ImageNet-1K": { "acc@1": 82.716, "acc@5": 96.196, } }, "_ops": 15.941, "_file_size": 207.627, "_docs": """ These weights improve upon the results of the original paper by using a modified version of TorchVision's `new training recipe `_. """, }, ) DEFAULT = IMAGENET1K_V2 class RegNet_X_32GF_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/regnet_x_32gf-9d47f8d0.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 107811560, "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#large-models", "_metrics": { "ImageNet-1K": { "acc@1": 80.622, "acc@5": 95.248, } }, "_ops": 31.736, "_file_size": 412.039, "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""", }, ) IMAGENET1K_V2 = Weights( url="https://download.pytorch.org/models/regnet_x_32gf-6eb8fdc6.pth", transforms=partial(ImageClassification, crop_size=224, resize_size=232), meta={ **_COMMON_META, "num_params": 107811560, "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe", "_metrics": { "ImageNet-1K": { "acc@1": 83.014, "acc@5": 96.288, } }, "_ops": 31.736, "_file_size": 412.039, "_docs": """ These weights improve upon the results of the original paper by using a modified version of TorchVision's `new training recipe `_. """, }, ) DEFAULT = IMAGENET1K_V2 @register_model() @handle_legacy_interface(weights=("pretrained", RegNet_Y_400MF_Weights.IMAGENET1K_V1)) def regnet_y_400mf(*, weights: Optional[RegNet_Y_400MF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet: """ Constructs a RegNetY_400MF architecture from `Designing Network Design Spaces `_. Args: weights (:class:`~torchvision.models.RegNet_Y_400MF_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.RegNet_Y_400MF_Weights` below for more details and possible values. By default, no pretrained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to either ``torchvision.models.regnet.RegNet`` or ``torchvision.models.regnet.BlockParams`` class. Please refer to the `source code `_ for more detail about the classes. .. autoclass:: torchvision.models.RegNet_Y_400MF_Weights :members: """ weights = RegNet_Y_400MF_Weights.verify(weights) params = BlockParams.from_init_params(depth=16, w_0=48, w_a=27.89, w_m=2.09, group_width=8, se_ratio=0.25, **kwargs) return _regnet(params, weights, progress, **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", RegNet_Y_800MF_Weights.IMAGENET1K_V1)) def regnet_y_800mf(*, weights: Optional[RegNet_Y_800MF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet: """ Constructs a RegNetY_800MF architecture from `Designing Network Design Spaces `_. Args: weights (:class:`~torchvision.models.RegNet_Y_800MF_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.RegNet_Y_800MF_Weights` below for more details and possible values. By default, no pretrained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to either ``torchvision.models.regnet.RegNet`` or ``torchvision.models.regnet.BlockParams`` class. Please refer to the `source code `_ for more detail about the classes. .. autoclass:: torchvision.models.RegNet_Y_800MF_Weights :members: """ weights = RegNet_Y_800MF_Weights.verify(weights) params = BlockParams.from_init_params(depth=14, w_0=56, w_a=38.84, w_m=2.4, group_width=16, se_ratio=0.25, **kwargs) return _regnet(params, weights, progress, **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", RegNet_Y_1_6GF_Weights.IMAGENET1K_V1)) def regnet_y_1_6gf(*, weights: Optional[RegNet_Y_1_6GF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet: """ Constructs a RegNetY_1.6GF architecture from `Designing Network Design Spaces `_. Args: weights (:class:`~torchvision.models.RegNet_Y_1_6GF_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.RegNet_Y_1_6GF_Weights` below for more details and possible values. By default, no pretrained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to either ``torchvision.models.regnet.RegNet`` or ``torchvision.models.regnet.BlockParams`` class. Please refer to the `source code `_ for more detail about the classes. .. autoclass:: torchvision.models.RegNet_Y_1_6GF_Weights :members: """ weights = RegNet_Y_1_6GF_Weights.verify(weights) params = BlockParams.from_init_params( depth=27, w_0=48, w_a=20.71, w_m=2.65, group_width=24, se_ratio=0.25, **kwargs ) return _regnet(params, weights, progress, **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", RegNet_Y_3_2GF_Weights.IMAGENET1K_V1)) def regnet_y_3_2gf(*, weights: Optional[RegNet_Y_3_2GF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet: """ Constructs a RegNetY_3.2GF architecture from `Designing Network Design Spaces `_. Args: weights (:class:`~torchvision.models.RegNet_Y_3_2GF_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.RegNet_Y_3_2GF_Weights` below for more details and possible values. By default, no pretrained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to either ``torchvision.models.regnet.RegNet`` or ``torchvision.models.regnet.BlockParams`` class. Please refer to the `source code `_ for more detail about the classes. .. autoclass:: torchvision.models.RegNet_Y_3_2GF_Weights :members: """ weights = RegNet_Y_3_2GF_Weights.verify(weights) params = BlockParams.from_init_params( depth=21, w_0=80, w_a=42.63, w_m=2.66, group_width=24, se_ratio=0.25, **kwargs ) return _regnet(params, weights, progress, **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", RegNet_Y_8GF_Weights.IMAGENET1K_V1)) def regnet_y_8gf(*, weights: Optional[RegNet_Y_8GF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet: """ Constructs a RegNetY_8GF architecture from `Designing Network Design Spaces `_. Args: weights (:class:`~torchvision.models.RegNet_Y_8GF_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.RegNet_Y_8GF_Weights` below for more details and possible values. By default, no pretrained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to either ``torchvision.models.regnet.RegNet`` or ``torchvision.models.regnet.BlockParams`` class. Please refer to the `source code `_ for more detail about the classes. .. autoclass:: torchvision.models.RegNet_Y_8GF_Weights :members: """ weights = RegNet_Y_8GF_Weights.verify(weights) params = BlockParams.from_init_params( depth=17, w_0=192, w_a=76.82, w_m=2.19, group_width=56, se_ratio=0.25, **kwargs ) return _regnet(params, weights, progress, **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", RegNet_Y_16GF_Weights.IMAGENET1K_V1)) def regnet_y_16gf(*, weights: Optional[RegNet_Y_16GF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet: """ Constructs a RegNetY_16GF architecture from `Designing Network Design Spaces `_. Args: weights (:class:`~torchvision.models.RegNet_Y_16GF_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.RegNet_Y_16GF_Weights` below for more details and possible values. By default, no pretrained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to either ``torchvision.models.regnet.RegNet`` or ``torchvision.models.regnet.BlockParams`` class. Please refer to the `source code `_ for more detail about the classes. .. autoclass:: torchvision.models.RegNet_Y_16GF_Weights :members: """ weights = RegNet_Y_16GF_Weights.verify(weights) params = BlockParams.from_init_params( depth=18, w_0=200, w_a=106.23, w_m=2.48, group_width=112, se_ratio=0.25, **kwargs ) return _regnet(params, weights, progress, **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", RegNet_Y_32GF_Weights.IMAGENET1K_V1)) def regnet_y_32gf(*, weights: Optional[RegNet_Y_32GF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet: """ Constructs a RegNetY_32GF architecture from `Designing Network Design Spaces `_. Args: weights (:class:`~torchvision.models.RegNet_Y_32GF_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.RegNet_Y_32GF_Weights` below for more details and possible values. By default, no pretrained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to either ``torchvision.models.regnet.RegNet`` or ``torchvision.models.regnet.BlockParams`` class. Please refer to the `source code `_ for more detail about the classes. .. autoclass:: torchvision.models.RegNet_Y_32GF_Weights :members: """ weights = RegNet_Y_32GF_Weights.verify(weights) params = BlockParams.from_init_params( depth=20, w_0=232, w_a=115.89, w_m=2.53, group_width=232, se_ratio=0.25, **kwargs ) return _regnet(params, weights, progress, **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", None)) def regnet_y_128gf(*, weights: Optional[RegNet_Y_128GF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet: """ Constructs a RegNetY_128GF architecture from `Designing Network Design Spaces `_. Args: weights (:class:`~torchvision.models.RegNet_Y_128GF_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.RegNet_Y_128GF_Weights` below for more details and possible values. By default, no pretrained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to either ``torchvision.models.regnet.RegNet`` or ``torchvision.models.regnet.BlockParams`` class. Please refer to the `source code `_ for more detail about the classes. .. autoclass:: torchvision.models.RegNet_Y_128GF_Weights :members: """ weights = RegNet_Y_128GF_Weights.verify(weights) params = BlockParams.from_init_params( depth=27, w_0=456, w_a=160.83, w_m=2.52, group_width=264, se_ratio=0.25, **kwargs ) return _regnet(params, weights, progress, **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", RegNet_X_400MF_Weights.IMAGENET1K_V1)) def regnet_x_400mf(*, weights: Optional[RegNet_X_400MF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet: """ Constructs a RegNetX_400MF architecture from `Designing Network Design Spaces `_. Args: weights (:class:`~torchvision.models.RegNet_X_400MF_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.RegNet_X_400MF_Weights` below for more details and possible values. By default, no pretrained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to either ``torchvision.models.regnet.RegNet`` or ``torchvision.models.regnet.BlockParams`` class. Please refer to the `source code `_ for more detail about the classes. .. autoclass:: torchvision.models.RegNet_X_400MF_Weights :members: """ weights = RegNet_X_400MF_Weights.verify(weights) params = BlockParams.from_init_params(depth=22, w_0=24, w_a=24.48, w_m=2.54, group_width=16, **kwargs) return _regnet(params, weights, progress, **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", RegNet_X_800MF_Weights.IMAGENET1K_V1)) def regnet_x_800mf(*, weights: Optional[RegNet_X_800MF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet: """ Constructs a RegNetX_800MF architecture from `Designing Network Design Spaces `_. Args: weights (:class:`~torchvision.models.RegNet_X_800MF_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.RegNet_X_800MF_Weights` below for more details and possible values. By default, no pretrained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to either ``torchvision.models.regnet.RegNet`` or ``torchvision.models.regnet.BlockParams`` class. Please refer to the `source code `_ for more detail about the classes. .. autoclass:: torchvision.models.RegNet_X_800MF_Weights :members: """ weights = RegNet_X_800MF_Weights.verify(weights) params = BlockParams.from_init_params(depth=16, w_0=56, w_a=35.73, w_m=2.28, group_width=16, **kwargs) return _regnet(params, weights, progress, **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", RegNet_X_1_6GF_Weights.IMAGENET1K_V1)) def regnet_x_1_6gf(*, weights: Optional[RegNet_X_1_6GF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet: """ Constructs a RegNetX_1.6GF architecture from `Designing Network Design Spaces `_. Args: weights (:class:`~torchvision.models.RegNet_X_1_6GF_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.RegNet_X_1_6GF_Weights` below for more details and possible values. By default, no pretrained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to either ``torchvision.models.regnet.RegNet`` or ``torchvision.models.regnet.BlockParams`` class. Please refer to the `source code `_ for more detail about the classes. .. autoclass:: torchvision.models.RegNet_X_1_6GF_Weights :members: """ weights = RegNet_X_1_6GF_Weights.verify(weights) params = BlockParams.from_init_params(depth=18, w_0=80, w_a=34.01, w_m=2.25, group_width=24, **kwargs) return _regnet(params, weights, progress, **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", RegNet_X_3_2GF_Weights.IMAGENET1K_V1)) def regnet_x_3_2gf(*, weights: Optional[RegNet_X_3_2GF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet: """ Constructs a RegNetX_3.2GF architecture from `Designing Network Design Spaces `_. Args: weights (:class:`~torchvision.models.RegNet_X_3_2GF_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.RegNet_X_3_2GF_Weights` below for more details and possible values. By default, no pretrained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to either ``torchvision.models.regnet.RegNet`` or ``torchvision.models.regnet.BlockParams`` class. Please refer to the `source code `_ for more detail about the classes. .. autoclass:: torchvision.models.RegNet_X_3_2GF_Weights :members: """ weights = RegNet_X_3_2GF_Weights.verify(weights) params = BlockParams.from_init_params(depth=25, w_0=88, w_a=26.31, w_m=2.25, group_width=48, **kwargs) return _regnet(params, weights, progress, **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", RegNet_X_8GF_Weights.IMAGENET1K_V1)) def regnet_x_8gf(*, weights: Optional[RegNet_X_8GF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet: """ Constructs a RegNetX_8GF architecture from `Designing Network Design Spaces `_. Args: weights (:class:`~torchvision.models.RegNet_X_8GF_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.RegNet_X_8GF_Weights` below for more details and possible values. By default, no pretrained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to either ``torchvision.models.regnet.RegNet`` or ``torchvision.models.regnet.BlockParams`` class. Please refer to the `source code `_ for more detail about the classes. .. autoclass:: torchvision.models.RegNet_X_8GF_Weights :members: """ weights = RegNet_X_8GF_Weights.verify(weights) params = BlockParams.from_init_params(depth=23, w_0=80, w_a=49.56, w_m=2.88, group_width=120, **kwargs) return _regnet(params, weights, progress, **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", RegNet_X_16GF_Weights.IMAGENET1K_V1)) def regnet_x_16gf(*, weights: Optional[RegNet_X_16GF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet: """ Constructs a RegNetX_16GF architecture from `Designing Network Design Spaces `_. Args: weights (:class:`~torchvision.models.RegNet_X_16GF_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.RegNet_X_16GF_Weights` below for more details and possible values. By default, no pretrained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to either ``torchvision.models.regnet.RegNet`` or ``torchvision.models.regnet.BlockParams`` class. Please refer to the `source code `_ for more detail about the classes. .. autoclass:: torchvision.models.RegNet_X_16GF_Weights :members: """ weights = RegNet_X_16GF_Weights.verify(weights) params = BlockParams.from_init_params(depth=22, w_0=216, w_a=55.59, w_m=2.1, group_width=128, **kwargs) return _regnet(params, weights, progress, **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", RegNet_X_32GF_Weights.IMAGENET1K_V1)) def regnet_x_32gf(*, weights: Optional[RegNet_X_32GF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet: """ Constructs a RegNetX_32GF architecture from `Designing Network Design Spaces `_. Args: weights (:class:`~torchvision.models.RegNet_X_32GF_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.RegNet_X_32GF_Weights` below for more details and possible values. By default, no pretrained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to either ``torchvision.models.regnet.RegNet`` or ``torchvision.models.regnet.BlockParams`` class. Please refer to the `source code `_ for more detail about the classes. .. autoclass:: torchvision.models.RegNet_X_32GF_Weights :members: """ weights = RegNet_X_32GF_Weights.verify(weights) params = BlockParams.from_init_params(depth=23, w_0=320, w_a=69.86, w_m=2.0, group_width=168, **kwargs) return _regnet(params, weights, progress, **kwargs)