""" Neighborhood Component Analysis """ # Authors: William de Vazelhes # John Chiotellis # License: BSD 3 clause import sys import time from numbers import Integral, Real from warnings import warn import numpy as np from scipy.optimize import minimize from ..base import ( BaseEstimator, ClassNamePrefixFeaturesOutMixin, TransformerMixin, _fit_context, ) from ..decomposition import PCA from ..exceptions import ConvergenceWarning from ..metrics import pairwise_distances from ..preprocessing import LabelEncoder from ..utils._param_validation import Interval, StrOptions from ..utils.extmath import softmax from ..utils.multiclass import check_classification_targets from ..utils.random import check_random_state from ..utils.validation import check_array, check_is_fitted class NeighborhoodComponentsAnalysis( ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator ): """Neighborhood Components Analysis. Neighborhood Component Analysis (NCA) is a machine learning algorithm for metric learning. It learns a linear transformation in a supervised fashion to improve the classification accuracy of a stochastic nearest neighbors rule in the transformed space. Read more in the :ref:`User Guide `. Parameters ---------- n_components : int, default=None Preferred dimensionality of the projected space. If None it will be set to `n_features`. init : {'auto', 'pca', 'lda', 'identity', 'random'} or ndarray of shape \ (n_features_a, n_features_b), default='auto' Initialization of the linear transformation. Possible options are `'auto'`, `'pca'`, `'lda'`, `'identity'`, `'random'`, and a numpy array of shape `(n_features_a, n_features_b)`. - `'auto'` Depending on `n_components`, the most reasonable initialization will be chosen. If `n_components <= n_classes` we use `'lda'`, as it uses labels information. If not, but `n_components < min(n_features, n_samples)`, we use `'pca'`, as it projects data in meaningful directions (those of higher variance). Otherwise, we just use `'identity'`. - `'pca'` `n_components` principal components of the inputs passed to :meth:`fit` will be used to initialize the transformation. (See :class:`~sklearn.decomposition.PCA`) - `'lda'` `min(n_components, n_classes)` most discriminative components of the inputs passed to :meth:`fit` will be used to initialize the transformation. (If `n_components > n_classes`, the rest of the components will be zero.) (See :class:`~sklearn.discriminant_analysis.LinearDiscriminantAnalysis`) - `'identity'` If `n_components` is strictly smaller than the dimensionality of the inputs passed to :meth:`fit`, the identity matrix will be truncated to the first `n_components` rows. - `'random'` The initial transformation will be a random array of shape `(n_components, n_features)`. Each value is sampled from the standard normal distribution. - numpy array `n_features_b` must match the dimensionality of the inputs passed to :meth:`fit` and n_features_a must be less than or equal to that. If `n_components` is not `None`, `n_features_a` must match it. warm_start : bool, default=False If `True` and :meth:`fit` has been called before, the solution of the previous call to :meth:`fit` is used as the initial linear transformation (`n_components` and `init` will be ignored). max_iter : int, default=50 Maximum number of iterations in the optimization. tol : float, default=1e-5 Convergence tolerance for the optimization. callback : callable, default=None If not `None`, this function is called after every iteration of the optimizer, taking as arguments the current solution (flattened transformation matrix) and the number of iterations. This might be useful in case one wants to examine or store the transformation found after each iteration. verbose : int, default=0 If 0, no progress messages will be printed. If 1, progress messages will be printed to stdout. If > 1, progress messages will be printed and the `disp` parameter of :func:`scipy.optimize.minimize` will be set to `verbose - 2`. random_state : int or numpy.RandomState, default=None A pseudo random number generator object or a seed for it if int. If `init='random'`, `random_state` is used to initialize the random transformation. If `init='pca'`, `random_state` is passed as an argument to PCA when initializing the transformation. Pass an int for reproducible results across multiple function calls. See :term:`Glossary `. Attributes ---------- components_ : ndarray of shape (n_components, n_features) The linear transformation learned during fitting. n_features_in_ : int Number of features seen during :term:`fit`. .. versionadded:: 0.24 n_iter_ : int Counts the number of iterations performed by the optimizer. random_state_ : numpy.RandomState Pseudo random number generator object used during initialization. feature_names_in_ : ndarray of shape (`n_features_in_`,) Names of features seen during :term:`fit`. Defined only when `X` has feature names that are all strings. .. versionadded:: 1.0 See Also -------- sklearn.discriminant_analysis.LinearDiscriminantAnalysis : Linear Discriminant Analysis. sklearn.decomposition.PCA : Principal component analysis (PCA). References ---------- .. [1] J. Goldberger, G. Hinton, S. Roweis, R. Salakhutdinov. "Neighbourhood Components Analysis". Advances in Neural Information Processing Systems. 17, 513-520, 2005. http://www.cs.nyu.edu/~roweis/papers/ncanips.pdf .. [2] Wikipedia entry on Neighborhood Components Analysis https://en.wikipedia.org/wiki/Neighbourhood_components_analysis Examples -------- >>> from sklearn.neighbors import NeighborhoodComponentsAnalysis >>> from sklearn.neighbors import KNeighborsClassifier >>> from sklearn.datasets import load_iris >>> from sklearn.model_selection import train_test_split >>> X, y = load_iris(return_X_y=True) >>> X_train, X_test, y_train, y_test = train_test_split(X, y, ... stratify=y, test_size=0.7, random_state=42) >>> nca = NeighborhoodComponentsAnalysis(random_state=42) >>> nca.fit(X_train, y_train) NeighborhoodComponentsAnalysis(...) >>> knn = KNeighborsClassifier(n_neighbors=3) >>> knn.fit(X_train, y_train) KNeighborsClassifier(...) >>> print(knn.score(X_test, y_test)) 0.933333... >>> knn.fit(nca.transform(X_train), y_train) KNeighborsClassifier(...) >>> print(knn.score(nca.transform(X_test), y_test)) 0.961904... """ _parameter_constraints: dict = { "n_components": [ Interval(Integral, 1, None, closed="left"), None, ], "init": [ StrOptions({"auto", "pca", "lda", "identity", "random"}), np.ndarray, ], "warm_start": ["boolean"], "max_iter": [Interval(Integral, 1, None, closed="left")], "tol": [Interval(Real, 0, None, closed="left")], "callback": [callable, None], "verbose": ["verbose"], "random_state": ["random_state"], } def __init__( self, n_components=None, *, init="auto", warm_start=False, max_iter=50, tol=1e-5, callback=None, verbose=0, random_state=None, ): self.n_components = n_components self.init = init self.warm_start = warm_start self.max_iter = max_iter self.tol = tol self.callback = callback self.verbose = verbose self.random_state = random_state @_fit_context(prefer_skip_nested_validation=True) def fit(self, X, y): """Fit the model according to the given training data. Parameters ---------- X : array-like of shape (n_samples, n_features) The training samples. y : array-like of shape (n_samples,) The corresponding training labels. Returns ------- self : object Fitted estimator. """ # Validate the inputs X and y, and converts y to numerical classes. X, y = self._validate_data(X, y, ensure_min_samples=2) check_classification_targets(y) y = LabelEncoder().fit_transform(y) # Check the preferred dimensionality of the projected space if self.n_components is not None and self.n_components > X.shape[1]: raise ValueError( "The preferred dimensionality of the " f"projected space `n_components` ({self.n_components}) cannot " "be greater than the given data " f"dimensionality ({X.shape[1]})!" ) # If warm_start is enabled, check that the inputs are consistent if ( self.warm_start and hasattr(self, "components_") and self.components_.shape[1] != X.shape[1] ): raise ValueError( f"The new inputs dimensionality ({X.shape[1]}) does not " "match the input dimensionality of the " f"previously learned transformation ({self.components_.shape[1]})." ) # Check how the linear transformation should be initialized init = self.init if isinstance(init, np.ndarray): init = check_array(init) # Assert that init.shape[1] = X.shape[1] if init.shape[1] != X.shape[1]: raise ValueError( f"The input dimensionality ({init.shape[1]}) of the given " "linear transformation `init` must match the " f"dimensionality of the given inputs `X` ({X.shape[1]})." ) # Assert that init.shape[0] <= init.shape[1] if init.shape[0] > init.shape[1]: raise ValueError( f"The output dimensionality ({init.shape[0]}) of the given " "linear transformation `init` cannot be " f"greater than its input dimensionality ({init.shape[1]})." ) # Assert that self.n_components = init.shape[0] if self.n_components is not None and self.n_components != init.shape[0]: raise ValueError( "The preferred dimensionality of the " f"projected space `n_components` ({self.n_components}) does" " not match the output dimensionality of " "the given linear transformation " f"`init` ({init.shape[0]})!" ) # Initialize the random generator self.random_state_ = check_random_state(self.random_state) # Measure the total training time t_train = time.time() # Compute a mask that stays fixed during optimization: same_class_mask = y[:, np.newaxis] == y[np.newaxis, :] # (n_samples, n_samples) # Initialize the transformation transformation = np.ravel(self._initialize(X, y, init)) # Create a dictionary of parameters to be passed to the optimizer disp = self.verbose - 2 if self.verbose > 1 else -1 optimizer_params = { "method": "L-BFGS-B", "fun": self._loss_grad_lbfgs, "args": (X, same_class_mask, -1.0), "jac": True, "x0": transformation, "tol": self.tol, "options": dict(maxiter=self.max_iter, disp=disp), "callback": self._callback, } # Call the optimizer self.n_iter_ = 0 opt_result = minimize(**optimizer_params) # Reshape the solution found by the optimizer self.components_ = opt_result.x.reshape(-1, X.shape[1]) # Stop timer t_train = time.time() - t_train if self.verbose: cls_name = self.__class__.__name__ # Warn the user if the algorithm did not converge if not opt_result.success: warn( "[{}] NCA did not converge: {}".format( cls_name, opt_result.message ), ConvergenceWarning, ) print("[{}] Training took {:8.2f}s.".format(cls_name, t_train)) return self def transform(self, X): """Apply the learned transformation to the given data. Parameters ---------- X : array-like of shape (n_samples, n_features) Data samples. Returns ------- X_embedded: ndarray of shape (n_samples, n_components) The data samples transformed. Raises ------ NotFittedError If :meth:`fit` has not been called before. """ check_is_fitted(self) X = self._validate_data(X, reset=False) return np.dot(X, self.components_.T) def _initialize(self, X, y, init): """Initialize the transformation. Parameters ---------- X : array-like of shape (n_samples, n_features) The training samples. y : array-like of shape (n_samples,) The training labels. init : str or ndarray of shape (n_features_a, n_features_b) The validated initialization of the linear transformation. Returns ------- transformation : ndarray of shape (n_components, n_features) The initialized linear transformation. """ transformation = init if self.warm_start and hasattr(self, "components_"): transformation = self.components_ elif isinstance(init, np.ndarray): pass else: n_samples, n_features = X.shape n_components = self.n_components or n_features if init == "auto": n_classes = len(np.unique(y)) if n_components <= min(n_features, n_classes - 1): init = "lda" elif n_components < min(n_features, n_samples): init = "pca" else: init = "identity" if init == "identity": transformation = np.eye(n_components, X.shape[1]) elif init == "random": transformation = self.random_state_.standard_normal( size=(n_components, X.shape[1]) ) elif init in {"pca", "lda"}: init_time = time.time() if init == "pca": pca = PCA( n_components=n_components, random_state=self.random_state_ ) if self.verbose: print("Finding principal components... ", end="") sys.stdout.flush() pca.fit(X) transformation = pca.components_ elif init == "lda": from ..discriminant_analysis import LinearDiscriminantAnalysis lda = LinearDiscriminantAnalysis(n_components=n_components) if self.verbose: print("Finding most discriminative components... ", end="") sys.stdout.flush() lda.fit(X, y) transformation = lda.scalings_.T[:n_components] if self.verbose: print("done in {:5.2f}s".format(time.time() - init_time)) return transformation def _callback(self, transformation): """Called after each iteration of the optimizer. Parameters ---------- transformation : ndarray of shape (n_components * n_features,) The solution computed by the optimizer in this iteration. """ if self.callback is not None: self.callback(transformation, self.n_iter_) self.n_iter_ += 1 def _loss_grad_lbfgs(self, transformation, X, same_class_mask, sign=1.0): """Compute the loss and the loss gradient w.r.t. `transformation`. Parameters ---------- transformation : ndarray of shape (n_components * n_features,) The raveled linear transformation on which to compute loss and evaluate gradient. X : ndarray of shape (n_samples, n_features) The training samples. same_class_mask : ndarray of shape (n_samples, n_samples) A mask where `mask[i, j] == 1` if `X[i]` and `X[j]` belong to the same class, and `0` otherwise. Returns ------- loss : float The loss computed for the given transformation. gradient : ndarray of shape (n_components * n_features,) The new (flattened) gradient of the loss. """ if self.n_iter_ == 0: self.n_iter_ += 1 if self.verbose: header_fields = ["Iteration", "Objective Value", "Time(s)"] header_fmt = "{:>10} {:>20} {:>10}" header = header_fmt.format(*header_fields) cls_name = self.__class__.__name__ print("[{}]".format(cls_name)) print( "[{}] {}\n[{}] {}".format( cls_name, header, cls_name, "-" * len(header) ) ) t_funcall = time.time() transformation = transformation.reshape(-1, X.shape[1]) X_embedded = np.dot(X, transformation.T) # (n_samples, n_components) # Compute softmax distances p_ij = pairwise_distances(X_embedded, squared=True) np.fill_diagonal(p_ij, np.inf) p_ij = softmax(-p_ij) # (n_samples, n_samples) # Compute loss masked_p_ij = p_ij * same_class_mask p = np.sum(masked_p_ij, axis=1, keepdims=True) # (n_samples, 1) loss = np.sum(p) # Compute gradient of loss w.r.t. `transform` weighted_p_ij = masked_p_ij - p_ij * p weighted_p_ij_sym = weighted_p_ij + weighted_p_ij.T np.fill_diagonal(weighted_p_ij_sym, -weighted_p_ij.sum(axis=0)) gradient = 2 * X_embedded.T.dot(weighted_p_ij_sym).dot(X) # time complexity of the gradient: O(n_components x n_samples x ( # n_samples + n_features)) if self.verbose: t_funcall = time.time() - t_funcall values_fmt = "[{}] {:>10} {:>20.6e} {:>10.2f}" print( values_fmt.format( self.__class__.__name__, self.n_iter_, loss, t_funcall ) ) sys.stdout.flush() return sign * loss, sign * gradient.ravel() def _more_tags(self): return {"requires_y": True} @property def _n_features_out(self): """Number of transformed output features.""" return self.components_.shape[0]