""" This module defines export functions for decision trees. """ # Authors: Gilles Louppe # Peter Prettenhofer # Brian Holt # Noel Dawe # Satrajit Gosh # Trevor Stephens # Li Li # Giuseppe Vettigli # License: BSD 3 clause from collections.abc import Iterable from io import StringIO from numbers import Integral import numpy as np from ..base import is_classifier from ..utils._param_validation import HasMethods, Interval, StrOptions, validate_params from ..utils.validation import check_array, check_is_fitted from . import DecisionTreeClassifier, DecisionTreeRegressor, _criterion, _tree from ._reingold_tilford import Tree, buchheim def _color_brew(n): """Generate n colors with equally spaced hues. Parameters ---------- n : int The number of colors required. Returns ------- color_list : list, length n List of n tuples of form (R, G, B) being the components of each color. """ color_list = [] # Initialize saturation & value; calculate chroma & value shift s, v = 0.75, 0.9 c = s * v m = v - c for h in np.arange(25, 385, 360.0 / n).astype(int): # Calculate some intermediate values h_bar = h / 60.0 x = c * (1 - abs((h_bar % 2) - 1)) # Initialize RGB with same hue & chroma as our color rgb = [ (c, x, 0), (x, c, 0), (0, c, x), (0, x, c), (x, 0, c), (c, 0, x), (c, x, 0), ] r, g, b = rgb[int(h_bar)] # Shift the initial RGB values to match value and store rgb = [(int(255 * (r + m))), (int(255 * (g + m))), (int(255 * (b + m)))] color_list.append(rgb) return color_list class Sentinel: def __repr__(self): return '"tree.dot"' SENTINEL = Sentinel() @validate_params( { "decision_tree": [DecisionTreeClassifier, DecisionTreeRegressor], "max_depth": [Interval(Integral, 0, None, closed="left"), None], "feature_names": ["array-like", None], "class_names": ["array-like", "boolean", None], "label": [StrOptions({"all", "root", "none"})], "filled": ["boolean"], "impurity": ["boolean"], "node_ids": ["boolean"], "proportion": ["boolean"], "rounded": ["boolean"], "precision": [Interval(Integral, 0, None, closed="left"), None], "ax": "no_validation", # delegate validation to matplotlib "fontsize": [Interval(Integral, 0, None, closed="left"), None], }, prefer_skip_nested_validation=True, ) def plot_tree( decision_tree, *, max_depth=None, feature_names=None, class_names=None, label="all", filled=False, impurity=True, node_ids=False, proportion=False, rounded=False, precision=3, ax=None, fontsize=None, ): """Plot a decision tree. The sample counts that are shown are weighted with any sample_weights that might be present. The visualization is fit automatically to the size of the axis. Use the ``figsize`` or ``dpi`` arguments of ``plt.figure`` to control the size of the rendering. Read more in the :ref:`User Guide `. .. versionadded:: 0.21 Parameters ---------- decision_tree : decision tree regressor or classifier The decision tree to be plotted. max_depth : int, default=None The maximum depth of the representation. If None, the tree is fully generated. feature_names : array-like of str, default=None Names of each of the features. If None, generic names will be used ("x[0]", "x[1]", ...). class_names : array-like of str or True, default=None Names of each of the target classes in ascending numerical order. Only relevant for classification and not supported for multi-output. If ``True``, shows a symbolic representation of the class name. label : {'all', 'root', 'none'}, default='all' Whether to show informative labels for impurity, etc. Options include 'all' to show at every node, 'root' to show only at the top root node, or 'none' to not show at any node. filled : bool, default=False When set to ``True``, paint nodes to indicate majority class for classification, extremity of values for regression, or purity of node for multi-output. impurity : bool, default=True When set to ``True``, show the impurity at each node. node_ids : bool, default=False When set to ``True``, show the ID number on each node. proportion : bool, default=False When set to ``True``, change the display of 'values' and/or 'samples' to be proportions and percentages respectively. rounded : bool, default=False When set to ``True``, draw node boxes with rounded corners and use Helvetica fonts instead of Times-Roman. precision : int, default=3 Number of digits of precision for floating point in the values of impurity, threshold and value attributes of each node. ax : matplotlib axis, default=None Axes to plot to. If None, use current axis. Any previous content is cleared. fontsize : int, default=None Size of text font. If None, determined automatically to fit figure. Returns ------- annotations : list of artists List containing the artists for the annotation boxes making up the tree. Examples -------- >>> from sklearn.datasets import load_iris >>> from sklearn import tree >>> clf = tree.DecisionTreeClassifier(random_state=0) >>> iris = load_iris() >>> clf = clf.fit(iris.data, iris.target) >>> tree.plot_tree(clf) [...] """ check_is_fitted(decision_tree) exporter = _MPLTreeExporter( max_depth=max_depth, feature_names=feature_names, class_names=class_names, label=label, filled=filled, impurity=impurity, node_ids=node_ids, proportion=proportion, rounded=rounded, precision=precision, fontsize=fontsize, ) return exporter.export(decision_tree, ax=ax) class _BaseTreeExporter: def __init__( self, max_depth=None, feature_names=None, class_names=None, label="all", filled=False, impurity=True, node_ids=False, proportion=False, rounded=False, precision=3, fontsize=None, ): self.max_depth = max_depth self.feature_names = feature_names self.class_names = class_names self.label = label self.filled = filled self.impurity = impurity self.node_ids = node_ids self.proportion = proportion self.rounded = rounded self.precision = precision self.fontsize = fontsize def get_color(self, value): # Find the appropriate color & intensity for a node if self.colors["bounds"] is None: # Classification tree color = list(self.colors["rgb"][np.argmax(value)]) sorted_values = sorted(value, reverse=True) if len(sorted_values) == 1: alpha = 0.0 else: alpha = (sorted_values[0] - sorted_values[1]) / (1 - sorted_values[1]) else: # Regression tree or multi-output color = list(self.colors["rgb"][0]) alpha = (value - self.colors["bounds"][0]) / ( self.colors["bounds"][1] - self.colors["bounds"][0] ) # compute the color as alpha against white color = [int(round(alpha * c + (1 - alpha) * 255, 0)) for c in color] # Return html color code in #RRGGBB format return "#%2x%2x%2x" % tuple(color) def get_fill_color(self, tree, node_id): # Fetch appropriate color for node if "rgb" not in self.colors: # Initialize colors and bounds if required self.colors["rgb"] = _color_brew(tree.n_classes[0]) if tree.n_outputs != 1: # Find max and min impurities for multi-output self.colors["bounds"] = (np.min(-tree.impurity), np.max(-tree.impurity)) elif tree.n_classes[0] == 1 and len(np.unique(tree.value)) != 1: # Find max and min values in leaf nodes for regression self.colors["bounds"] = (np.min(tree.value), np.max(tree.value)) if tree.n_outputs == 1: node_val = tree.value[node_id][0, :] if ( tree.n_classes[0] == 1 and isinstance(node_val, Iterable) and self.colors["bounds"] is not None ): # Unpack the float only for the regression tree case. # Classification tree requires an Iterable in `get_color`. node_val = node_val.item() else: # If multi-output color node by impurity node_val = -tree.impurity[node_id] return self.get_color(node_val) def node_to_str(self, tree, node_id, criterion): # Generate the node content string if tree.n_outputs == 1: value = tree.value[node_id][0, :] else: value = tree.value[node_id] # Should labels be shown? labels = (self.label == "root" and node_id == 0) or self.label == "all" characters = self.characters node_string = characters[-1] # Write node ID if self.node_ids: if labels: node_string += "node " node_string += characters[0] + str(node_id) + characters[4] # Write decision criteria if tree.children_left[node_id] != _tree.TREE_LEAF: # Always write node decision criteria, except for leaves if self.feature_names is not None: feature = self.feature_names[tree.feature[node_id]] else: feature = "x%s%s%s" % ( characters[1], tree.feature[node_id], characters[2], ) node_string += "%s %s %s%s" % ( feature, characters[3], round(tree.threshold[node_id], self.precision), characters[4], ) # Write impurity if self.impurity: if isinstance(criterion, _criterion.FriedmanMSE): criterion = "friedman_mse" elif isinstance(criterion, _criterion.MSE) or criterion == "squared_error": criterion = "squared_error" elif not isinstance(criterion, str): criterion = "impurity" if labels: node_string += "%s = " % criterion node_string += ( str(round(tree.impurity[node_id], self.precision)) + characters[4] ) # Write node sample count if labels: node_string += "samples = " if self.proportion: percent = ( 100.0 * tree.n_node_samples[node_id] / float(tree.n_node_samples[0]) ) node_string += str(round(percent, 1)) + "%" + characters[4] else: node_string += str(tree.n_node_samples[node_id]) + characters[4] # Write node class distribution / regression value if not self.proportion and tree.n_classes[0] != 1: # For classification this will show the proportion of samples value = value * tree.weighted_n_node_samples[node_id] if labels: node_string += "value = " if tree.n_classes[0] == 1: # Regression value_text = np.around(value, self.precision) elif self.proportion: # Classification value_text = np.around(value, self.precision) elif np.all(np.equal(np.mod(value, 1), 0)): # Classification without floating-point weights value_text = value.astype(int) else: # Classification with floating-point weights value_text = np.around(value, self.precision) # Strip whitespace value_text = str(value_text.astype("S32")).replace("b'", "'") value_text = value_text.replace("' '", ", ").replace("'", "") if tree.n_classes[0] == 1 and tree.n_outputs == 1: value_text = value_text.replace("[", "").replace("]", "") value_text = value_text.replace("\n ", characters[4]) node_string += value_text + characters[4] # Write node majority class if ( self.class_names is not None and tree.n_classes[0] != 1 and tree.n_outputs == 1 ): # Only done for single-output classification trees if labels: node_string += "class = " if self.class_names is not True: class_name = self.class_names[np.argmax(value)] else: class_name = "y%s%s%s" % ( characters[1], np.argmax(value), characters[2], ) node_string += class_name # Clean up any trailing newlines if node_string.endswith(characters[4]): node_string = node_string[: -len(characters[4])] return node_string + characters[5] class _DOTTreeExporter(_BaseTreeExporter): def __init__( self, out_file=SENTINEL, max_depth=None, feature_names=None, class_names=None, label="all", filled=False, leaves_parallel=False, impurity=True, node_ids=False, proportion=False, rotate=False, rounded=False, special_characters=False, precision=3, fontname="helvetica", ): super().__init__( max_depth=max_depth, feature_names=feature_names, class_names=class_names, label=label, filled=filled, impurity=impurity, node_ids=node_ids, proportion=proportion, rounded=rounded, precision=precision, ) self.leaves_parallel = leaves_parallel self.out_file = out_file self.special_characters = special_characters self.fontname = fontname self.rotate = rotate # PostScript compatibility for special characters if special_characters: self.characters = ["#", "", "", "≤", "
", ">", "<"] else: self.characters = ["#", "[", "]", "<=", "\\n", '"', '"'] # The depth of each node for plotting with 'leaf' option self.ranks = {"leaves": []} # The colors to render each node with self.colors = {"bounds": None} def export(self, decision_tree): # Check length of feature_names before getting into the tree node # Raise error if length of feature_names does not match # n_features_in_ in the decision_tree if self.feature_names is not None: if len(self.feature_names) != decision_tree.n_features_in_: raise ValueError( "Length of feature_names, %d does not match number of features, %d" % (len(self.feature_names), decision_tree.n_features_in_) ) # each part writes to out_file self.head() # Now recurse the tree and add node & edge attributes if isinstance(decision_tree, _tree.Tree): self.recurse(decision_tree, 0, criterion="impurity") else: self.recurse(decision_tree.tree_, 0, criterion=decision_tree.criterion) self.tail() def tail(self): # If required, draw leaf nodes at same depth as each other if self.leaves_parallel: for rank in sorted(self.ranks): self.out_file.write( "{rank=same ; " + "; ".join(r for r in self.ranks[rank]) + "} ;\n" ) self.out_file.write("}") def head(self): self.out_file.write("digraph Tree {\n") # Specify node aesthetics self.out_file.write("node [shape=box") rounded_filled = [] if self.filled: rounded_filled.append("filled") if self.rounded: rounded_filled.append("rounded") if len(rounded_filled) > 0: self.out_file.write( ', style="%s", color="black"' % ", ".join(rounded_filled) ) self.out_file.write(', fontname="%s"' % self.fontname) self.out_file.write("] ;\n") # Specify graph & edge aesthetics if self.leaves_parallel: self.out_file.write("graph [ranksep=equally, splines=polyline] ;\n") self.out_file.write('edge [fontname="%s"] ;\n' % self.fontname) if self.rotate: self.out_file.write("rankdir=LR ;\n") def recurse(self, tree, node_id, criterion, parent=None, depth=0): if node_id == _tree.TREE_LEAF: raise ValueError("Invalid node_id %s" % _tree.TREE_LEAF) left_child = tree.children_left[node_id] right_child = tree.children_right[node_id] # Add node with description if self.max_depth is None or depth <= self.max_depth: # Collect ranks for 'leaf' option in plot_options if left_child == _tree.TREE_LEAF: self.ranks["leaves"].append(str(node_id)) elif str(depth) not in self.ranks: self.ranks[str(depth)] = [str(node_id)] else: self.ranks[str(depth)].append(str(node_id)) self.out_file.write( "%d [label=%s" % (node_id, self.node_to_str(tree, node_id, criterion)) ) if self.filled: self.out_file.write( ', fillcolor="%s"' % self.get_fill_color(tree, node_id) ) self.out_file.write("] ;\n") if parent is not None: # Add edge to parent self.out_file.write("%d -> %d" % (parent, node_id)) if parent == 0: # Draw True/False labels if parent is root node angles = np.array([45, -45]) * ((self.rotate - 0.5) * -2) self.out_file.write(" [labeldistance=2.5, labelangle=") if node_id == 1: self.out_file.write('%d, headlabel="True"]' % angles[0]) else: self.out_file.write('%d, headlabel="False"]' % angles[1]) self.out_file.write(" ;\n") if left_child != _tree.TREE_LEAF: self.recurse( tree, left_child, criterion=criterion, parent=node_id, depth=depth + 1, ) self.recurse( tree, right_child, criterion=criterion, parent=node_id, depth=depth + 1, ) else: self.ranks["leaves"].append(str(node_id)) self.out_file.write('%d [label="(...)"' % node_id) if self.filled: # color cropped nodes grey self.out_file.write(', fillcolor="#C0C0C0"') self.out_file.write("] ;\n" % node_id) if parent is not None: # Add edge to parent self.out_file.write("%d -> %d ;\n" % (parent, node_id)) class _MPLTreeExporter(_BaseTreeExporter): def __init__( self, max_depth=None, feature_names=None, class_names=None, label="all", filled=False, impurity=True, node_ids=False, proportion=False, rounded=False, precision=3, fontsize=None, ): super().__init__( max_depth=max_depth, feature_names=feature_names, class_names=class_names, label=label, filled=filled, impurity=impurity, node_ids=node_ids, proportion=proportion, rounded=rounded, precision=precision, ) self.fontsize = fontsize # The depth of each node for plotting with 'leaf' option self.ranks = {"leaves": []} # The colors to render each node with self.colors = {"bounds": None} self.characters = ["#", "[", "]", "<=", "\n", "", ""] self.bbox_args = dict() if self.rounded: self.bbox_args["boxstyle"] = "round" self.arrow_args = dict(arrowstyle="<-") def _make_tree(self, node_id, et, criterion, depth=0): # traverses _tree.Tree recursively, builds intermediate # "_reingold_tilford.Tree" object name = self.node_to_str(et, node_id, criterion=criterion) if et.children_left[node_id] != _tree.TREE_LEAF and ( self.max_depth is None or depth <= self.max_depth ): children = [ self._make_tree( et.children_left[node_id], et, criterion, depth=depth + 1 ), self._make_tree( et.children_right[node_id], et, criterion, depth=depth + 1 ), ] else: return Tree(name, node_id) return Tree(name, node_id, *children) def export(self, decision_tree, ax=None): import matplotlib.pyplot as plt from matplotlib.text import Annotation if ax is None: ax = plt.gca() ax.clear() ax.set_axis_off() my_tree = self._make_tree(0, decision_tree.tree_, decision_tree.criterion) draw_tree = buchheim(my_tree) # important to make sure we're still # inside the axis after drawing the box # this makes sense because the width of a box # is about the same as the distance between boxes max_x, max_y = draw_tree.max_extents() + 1 ax_width = ax.get_window_extent().width ax_height = ax.get_window_extent().height scale_x = ax_width / max_x scale_y = ax_height / max_y self.recurse(draw_tree, decision_tree.tree_, ax, max_x, max_y) anns = [ann for ann in ax.get_children() if isinstance(ann, Annotation)] # update sizes of all bboxes renderer = ax.figure.canvas.get_renderer() for ann in anns: ann.update_bbox_position_size(renderer) if self.fontsize is None: # get figure to data transform # adjust fontsize to avoid overlap # get max box width and height extents = [ bbox_patch.get_window_extent() for ann in anns if (bbox_patch := ann.get_bbox_patch()) is not None ] max_width = max([extent.width for extent in extents]) max_height = max([extent.height for extent in extents]) # width should be around scale_x in axis coordinates size = anns[0].get_fontsize() * min( scale_x / max_width, scale_y / max_height ) for ann in anns: ann.set_fontsize(size) return anns def recurse(self, node, tree, ax, max_x, max_y, depth=0): import matplotlib.pyplot as plt # kwargs for annotations without a bounding box common_kwargs = dict( zorder=100 - 10 * depth, xycoords="axes fraction", ) if self.fontsize is not None: common_kwargs["fontsize"] = self.fontsize # kwargs for annotations with a bounding box kwargs = dict( ha="center", va="center", bbox=self.bbox_args.copy(), arrowprops=self.arrow_args.copy(), **common_kwargs, ) kwargs["arrowprops"]["edgecolor"] = plt.rcParams["text.color"] # offset things by .5 to center them in plot xy = ((node.x + 0.5) / max_x, (max_y - node.y - 0.5) / max_y) if self.max_depth is None or depth <= self.max_depth: if self.filled: kwargs["bbox"]["fc"] = self.get_fill_color(tree, node.tree.node_id) else: kwargs["bbox"]["fc"] = ax.get_facecolor() if node.parent is None: # root ax.annotate(node.tree.label, xy, **kwargs) else: xy_parent = ( (node.parent.x + 0.5) / max_x, (max_y - node.parent.y - 0.5) / max_y, ) ax.annotate(node.tree.label, xy_parent, xy, **kwargs) # Draw True/False labels if parent is root node if node.parent.parent is None: # Adjust the position for the text to be slightly above the arrow text_pos = ( (xy_parent[0] + xy[0]) / 2, (xy_parent[1] + xy[1]) / 2, ) # Annotate the arrow with the edge label to indicate the child # where the sample-split condition is satisfied if node.parent.left() == node: label_text, label_ha = ("True ", "right") else: label_text, label_ha = (" False", "left") ax.annotate(label_text, text_pos, ha=label_ha, **common_kwargs) for child in node.children: self.recurse(child, tree, ax, max_x, max_y, depth=depth + 1) else: xy_parent = ( (node.parent.x + 0.5) / max_x, (max_y - node.parent.y - 0.5) / max_y, ) kwargs["bbox"]["fc"] = "grey" ax.annotate("\n (...) \n", xy_parent, xy, **kwargs) @validate_params( { "decision_tree": "no_validation", "out_file": [str, None, HasMethods("write")], "max_depth": [Interval(Integral, 0, None, closed="left"), None], "feature_names": ["array-like", None], "class_names": ["array-like", "boolean", None], "label": [StrOptions({"all", "root", "none"})], "filled": ["boolean"], "leaves_parallel": ["boolean"], "impurity": ["boolean"], "node_ids": ["boolean"], "proportion": ["boolean"], "rotate": ["boolean"], "rounded": ["boolean"], "special_characters": ["boolean"], "precision": [Interval(Integral, 0, None, closed="left"), None], "fontname": [str], }, prefer_skip_nested_validation=True, ) def export_graphviz( decision_tree, out_file=None, *, max_depth=None, feature_names=None, class_names=None, label="all", filled=False, leaves_parallel=False, impurity=True, node_ids=False, proportion=False, rotate=False, rounded=False, special_characters=False, precision=3, fontname="helvetica", ): """Export a decision tree in DOT format. This function generates a GraphViz representation of the decision tree, which is then written into `out_file`. Once exported, graphical renderings can be generated using, for example:: $ dot -Tps tree.dot -o tree.ps (PostScript format) $ dot -Tpng tree.dot -o tree.png (PNG format) The sample counts that are shown are weighted with any sample_weights that might be present. Read more in the :ref:`User Guide `. Parameters ---------- decision_tree : object The decision tree estimator to be exported to GraphViz. out_file : object or str, default=None Handle or name of the output file. If ``None``, the result is returned as a string. .. versionchanged:: 0.20 Default of out_file changed from "tree.dot" to None. max_depth : int, default=None The maximum depth of the representation. If None, the tree is fully generated. feature_names : array-like of shape (n_features,), default=None An array containing the feature names. If None, generic names will be used ("x[0]", "x[1]", ...). class_names : array-like of shape (n_classes,) or bool, default=None Names of each of the target classes in ascending numerical order. Only relevant for classification and not supported for multi-output. If ``True``, shows a symbolic representation of the class name. label : {'all', 'root', 'none'}, default='all' Whether to show informative labels for impurity, etc. Options include 'all' to show at every node, 'root' to show only at the top root node, or 'none' to not show at any node. filled : bool, default=False When set to ``True``, paint nodes to indicate majority class for classification, extremity of values for regression, or purity of node for multi-output. leaves_parallel : bool, default=False When set to ``True``, draw all leaf nodes at the bottom of the tree. impurity : bool, default=True When set to ``True``, show the impurity at each node. node_ids : bool, default=False When set to ``True``, show the ID number on each node. proportion : bool, default=False When set to ``True``, change the display of 'values' and/or 'samples' to be proportions and percentages respectively. rotate : bool, default=False When set to ``True``, orient tree left to right rather than top-down. rounded : bool, default=False When set to ``True``, draw node boxes with rounded corners. special_characters : bool, default=False When set to ``False``, ignore special characters for PostScript compatibility. precision : int, default=3 Number of digits of precision for floating point in the values of impurity, threshold and value attributes of each node. fontname : str, default='helvetica' Name of font used to render text. Returns ------- dot_data : str String representation of the input tree in GraphViz dot format. Only returned if ``out_file`` is None. .. versionadded:: 0.18 Examples -------- >>> from sklearn.datasets import load_iris >>> from sklearn import tree >>> clf = tree.DecisionTreeClassifier() >>> iris = load_iris() >>> clf = clf.fit(iris.data, iris.target) >>> tree.export_graphviz(clf) 'digraph Tree {... """ if feature_names is not None: feature_names = check_array( feature_names, ensure_2d=False, dtype=None, ensure_min_samples=0 ) if class_names is not None and not isinstance(class_names, bool): class_names = check_array( class_names, ensure_2d=False, dtype=None, ensure_min_samples=0 ) check_is_fitted(decision_tree) own_file = False return_string = False try: if isinstance(out_file, str): out_file = open(out_file, "w", encoding="utf-8") own_file = True if out_file is None: return_string = True out_file = StringIO() exporter = _DOTTreeExporter( out_file=out_file, max_depth=max_depth, feature_names=feature_names, class_names=class_names, label=label, filled=filled, leaves_parallel=leaves_parallel, impurity=impurity, node_ids=node_ids, proportion=proportion, rotate=rotate, rounded=rounded, special_characters=special_characters, precision=precision, fontname=fontname, ) exporter.export(decision_tree) if return_string: return exporter.out_file.getvalue() finally: if own_file: out_file.close() def _compute_depth(tree, node): """ Returns the depth of the subtree rooted in node. """ def compute_depth_( current_node, current_depth, children_left, children_right, depths ): depths += [current_depth] left = children_left[current_node] right = children_right[current_node] if left != -1 and right != -1: compute_depth_( left, current_depth + 1, children_left, children_right, depths ) compute_depth_( right, current_depth + 1, children_left, children_right, depths ) depths = [] compute_depth_(node, 1, tree.children_left, tree.children_right, depths) return max(depths) @validate_params( { "decision_tree": [DecisionTreeClassifier, DecisionTreeRegressor], "feature_names": ["array-like", None], "class_names": ["array-like", None], "max_depth": [Interval(Integral, 0, None, closed="left"), None], "spacing": [Interval(Integral, 1, None, closed="left"), None], "decimals": [Interval(Integral, 0, None, closed="left"), None], "show_weights": ["boolean"], }, prefer_skip_nested_validation=True, ) def export_text( decision_tree, *, feature_names=None, class_names=None, max_depth=10, spacing=3, decimals=2, show_weights=False, ): """Build a text report showing the rules of a decision tree. Note that backwards compatibility may not be supported. Parameters ---------- decision_tree : object The decision tree estimator to be exported. It can be an instance of DecisionTreeClassifier or DecisionTreeRegressor. feature_names : array-like of shape (n_features,), default=None An array containing the feature names. If None generic names will be used ("feature_0", "feature_1", ...). class_names : array-like of shape (n_classes,), default=None Names of each of the target classes in ascending numerical order. Only relevant for classification and not supported for multi-output. - if `None`, the class names are delegated to `decision_tree.classes_`; - otherwise, `class_names` will be used as class names instead of `decision_tree.classes_`. The length of `class_names` must match the length of `decision_tree.classes_`. .. versionadded:: 1.3 max_depth : int, default=10 Only the first max_depth levels of the tree are exported. Truncated branches will be marked with "...". spacing : int, default=3 Number of spaces between edges. The higher it is, the wider the result. decimals : int, default=2 Number of decimal digits to display. show_weights : bool, default=False If true the classification weights will be exported on each leaf. The classification weights are the number of samples each class. Returns ------- report : str Text summary of all the rules in the decision tree. Examples -------- >>> from sklearn.datasets import load_iris >>> from sklearn.tree import DecisionTreeClassifier >>> from sklearn.tree import export_text >>> iris = load_iris() >>> X = iris['data'] >>> y = iris['target'] >>> decision_tree = DecisionTreeClassifier(random_state=0, max_depth=2) >>> decision_tree = decision_tree.fit(X, y) >>> r = export_text(decision_tree, feature_names=iris['feature_names']) >>> print(r) |--- petal width (cm) <= 0.80 | |--- class: 0 |--- petal width (cm) > 0.80 | |--- petal width (cm) <= 1.75 | | |--- class: 1 | |--- petal width (cm) > 1.75 | | |--- class: 2 """ if feature_names is not None: feature_names = check_array( feature_names, ensure_2d=False, dtype=None, ensure_min_samples=0 ) if class_names is not None: class_names = check_array( class_names, ensure_2d=False, dtype=None, ensure_min_samples=0 ) check_is_fitted(decision_tree) tree_ = decision_tree.tree_ if is_classifier(decision_tree): if class_names is None: class_names = decision_tree.classes_ elif len(class_names) != len(decision_tree.classes_): raise ValueError( "When `class_names` is an array, it should contain as" " many items as `decision_tree.classes_`. Got" f" {len(class_names)} while the tree was fitted with" f" {len(decision_tree.classes_)} classes." ) right_child_fmt = "{} {} <= {}\n" left_child_fmt = "{} {} > {}\n" truncation_fmt = "{} {}\n" if feature_names is not None and len(feature_names) != tree_.n_features: raise ValueError( "feature_names must contain %d elements, got %d" % (tree_.n_features, len(feature_names)) ) if isinstance(decision_tree, DecisionTreeClassifier): value_fmt = "{}{} weights: {}\n" if not show_weights: value_fmt = "{}{}{}\n" else: value_fmt = "{}{} value: {}\n" if feature_names is not None: feature_names_ = [ feature_names[i] if i != _tree.TREE_UNDEFINED else None for i in tree_.feature ] else: feature_names_ = ["feature_{}".format(i) for i in tree_.feature] export_text.report = "" def _add_leaf(value, weighted_n_node_samples, class_name, indent): val = "" if isinstance(decision_tree, DecisionTreeClassifier): if show_weights: val = [ "{1:.{0}f}, ".format(decimals, v * weighted_n_node_samples) for v in value ] val = "[" + "".join(val)[:-2] + "]" weighted_n_node_samples val += " class: " + str(class_name) else: val = ["{1:.{0}f}, ".format(decimals, v) for v in value] val = "[" + "".join(val)[:-2] + "]" export_text.report += value_fmt.format(indent, "", val) def print_tree_recurse(node, depth): indent = ("|" + (" " * spacing)) * depth indent = indent[:-spacing] + "-" * spacing value = None if tree_.n_outputs == 1: value = tree_.value[node][0] else: value = tree_.value[node].T[0] class_name = np.argmax(value) if tree_.n_classes[0] != 1 and tree_.n_outputs == 1: class_name = class_names[class_name] weighted_n_node_samples = tree_.weighted_n_node_samples[node] if depth <= max_depth + 1: info_fmt = "" info_fmt_left = info_fmt info_fmt_right = info_fmt if tree_.feature[node] != _tree.TREE_UNDEFINED: name = feature_names_[node] threshold = tree_.threshold[node] threshold = "{1:.{0}f}".format(decimals, threshold) export_text.report += right_child_fmt.format(indent, name, threshold) export_text.report += info_fmt_left print_tree_recurse(tree_.children_left[node], depth + 1) export_text.report += left_child_fmt.format(indent, name, threshold) export_text.report += info_fmt_right print_tree_recurse(tree_.children_right[node], depth + 1) else: # leaf _add_leaf(value, weighted_n_node_samples, class_name, indent) else: subtree_depth = _compute_depth(tree_, node) if subtree_depth == 1: _add_leaf(value, weighted_n_node_samples, class_name, indent) else: trunc_report = "truncated branch of depth %d" % subtree_depth export_text.report += truncation_fmt.format(indent, trunc_report) print_tree_recurse(0, 1) return export_text.report