from __future__ import annotations import copy from typing import Optional, Tuple, TypeVar import torch __all__ = ['fuse_conv_bn_eval', 'fuse_conv_bn_weights', 'fuse_linear_bn_eval', 'fuse_linear_bn_weights'] ConvT = TypeVar("ConvT", bound="torch.nn.modules.conv._ConvNd") LinearT = TypeVar("LinearT", bound="torch.nn.Linear") def fuse_conv_bn_eval(conv: ConvT, bn: torch.nn.modules.batchnorm._BatchNorm, transpose: bool = False) -> ConvT: r"""Fuse a convolutional module and a BatchNorm module into a single, new convolutional module. Args: conv (torch.nn.modules.conv._ConvNd): A convolutional module. bn (torch.nn.modules.batchnorm._BatchNorm): A BatchNorm module. transpose (bool, optional): If True, transpose the convolutional weight. Defaults to False. Returns: torch.nn.modules.conv._ConvNd: The fused convolutional module. .. note:: Both ``conv`` and ``bn`` must be in eval mode, and ``bn`` must have its running buffers computed. """ assert not (conv.training or bn.training), "Fusion only for eval!" fused_conv = copy.deepcopy(conv) assert bn.running_mean is not None and bn.running_var is not None fused_conv.weight, fused_conv.bias = fuse_conv_bn_weights( fused_conv.weight, fused_conv.bias, bn.running_mean, bn.running_var, bn.eps, bn.weight, bn.bias, transpose) return fused_conv def fuse_conv_bn_weights( conv_w: torch.Tensor, conv_b: Optional[torch.Tensor], bn_rm: torch.Tensor, bn_rv: torch.Tensor, bn_eps: float, bn_w: Optional[torch.Tensor], bn_b: Optional[torch.Tensor], transpose: bool = False ) -> Tuple[torch.nn.Parameter, torch.nn.Parameter]: r"""Fuse convolutional module parameters and BatchNorm module parameters into new convolutional module parameters. Args: conv_w (torch.Tensor): Convolutional weight. conv_b (Optional[torch.Tensor]): Convolutional bias. bn_rm (torch.Tensor): BatchNorm running mean. bn_rv (torch.Tensor): BatchNorm running variance. bn_eps (float): BatchNorm epsilon. bn_w (Optional[torch.Tensor]): BatchNorm weight. bn_b (Optional[torch.Tensor]): BatchNorm bias. transpose (bool, optional): If True, transpose the conv weight. Defaults to False. Returns: Tuple[torch.nn.Parameter, torch.nn.Parameter]: Fused convolutional weight and bias. """ conv_weight_dtype = conv_w.dtype conv_bias_dtype = conv_b.dtype if conv_b is not None else conv_weight_dtype if conv_b is None: conv_b = torch.zeros_like(bn_rm) if bn_w is None: bn_w = torch.ones_like(bn_rm) if bn_b is None: bn_b = torch.zeros_like(bn_rm) bn_var_rsqrt = torch.rsqrt(bn_rv + bn_eps) if transpose: shape = [1, -1] + [1] * (len(conv_w.shape) - 2) else: shape = [-1, 1] + [1] * (len(conv_w.shape) - 2) fused_conv_w = (conv_w * (bn_w * bn_var_rsqrt).reshape(shape)).to(dtype=conv_weight_dtype) fused_conv_b = ((conv_b - bn_rm) * bn_var_rsqrt * bn_w + bn_b).to(dtype=conv_bias_dtype) return ( torch.nn.Parameter(fused_conv_w, conv_w.requires_grad), torch.nn.Parameter(fused_conv_b, conv_b.requires_grad) ) def fuse_linear_bn_eval(linear: LinearT, bn: torch.nn.modules.batchnorm._BatchNorm) -> LinearT: r"""Fuse a linear module and a BatchNorm module into a single, new linear module. Args: linear (torch.nn.Linear): A Linear module. bn (torch.nn.modules.batchnorm._BatchNorm): A BatchNorm module. Returns: torch.nn.Linear: The fused linear module. .. note:: Both ``linear`` and ``bn`` must be in eval mode, and ``bn`` must have its running buffers computed. """ assert not (linear.training or bn.training), "Fusion only for eval!" fused_linear = copy.deepcopy(linear) """ Linear-BN needs to be fused while preserving the shapes of linear weight/bias. To preserve the shapes of linear weight/bias, the channel dim of bn needs to be broadcastable with the last dim of linear, because bn operates over the channel dim, (N, C_in, H, W) while linear operates over the last dim, (*, H_in). To be broadcastable, the number of features in bn and the number of output features from linear must satisfy the following condition: 1. they are equal, or 2. the number of features in bn is 1 Otherwise, skip the folding path """ assert ( linear.out_features == bn.num_features or bn.num_features == 1 ), "To fuse, linear.out_features == bn.num_features or bn.num_features == 1" assert bn.running_mean is not None and bn.running_var is not None fused_linear.weight, fused_linear.bias = fuse_linear_bn_weights( fused_linear.weight, fused_linear.bias, bn.running_mean, bn.running_var, bn.eps, bn.weight, bn.bias) return fused_linear def fuse_linear_bn_weights( linear_w: torch.Tensor, linear_b: Optional[torch.Tensor], bn_rm: torch.Tensor, bn_rv: torch.Tensor, bn_eps: float, bn_w: torch.Tensor, bn_b: torch.Tensor, ) -> Tuple[torch.nn.Parameter, torch.nn.Parameter]: r"""Fuse linear module parameters and BatchNorm module parameters into new linear module parameters. Args: linear_w (torch.Tensor): Linear weight. linear_b (Optional[torch.Tensor]): Linear bias. bn_rm (torch.Tensor): BatchNorm running mean. bn_rv (torch.Tensor): BatchNorm running variance. bn_eps (float): BatchNorm epsilon. bn_w (torch.Tensor): BatchNorm weight. bn_b (torch.Tensor): BatchNorm bias. transpose (bool, optional): If True, transpose the conv weight. Defaults to False. Returns: Tuple[torch.nn.Parameter, torch.nn.Parameter]: Fused linear weight and bias. """ if linear_b is None: linear_b = torch.zeros_like(bn_rm) bn_scale = bn_w * torch.rsqrt(bn_rv + bn_eps) fused_w = linear_w * bn_scale.unsqueeze(-1) fused_b = (linear_b - bn_rm) * bn_scale + bn_b return torch.nn.Parameter(fused_w, linear_w.requires_grad), torch.nn.Parameter(fused_b, linear_b.requires_grad)