import torch __all__ = ["DeepSpeech"] class FullyConnected(torch.nn.Module): """ Args: n_feature: Number of input features n_hidden: Internal hidden unit size. """ def __init__(self, n_feature: int, n_hidden: int, dropout: float, relu_max_clip: int = 20) -> None: super(FullyConnected, self).__init__() self.fc = torch.nn.Linear(n_feature, n_hidden, bias=True) self.relu_max_clip = relu_max_clip self.dropout = dropout def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.fc(x) x = torch.nn.functional.relu(x) x = torch.nn.functional.hardtanh(x, 0, self.relu_max_clip) if self.dropout: x = torch.nn.functional.dropout(x, self.dropout, self.training) return x class DeepSpeech(torch.nn.Module): """DeepSpeech architecture introduced in *Deep Speech: Scaling up end-to-end speech recognition* :cite:`hannun2014deep`. Args: n_feature: Number of input features n_hidden: Internal hidden unit size. n_class: Number of output classes """ def __init__( self, n_feature: int, n_hidden: int = 2048, n_class: int = 40, dropout: float = 0.0, ) -> None: super(DeepSpeech, self).__init__() self.n_hidden = n_hidden self.fc1 = FullyConnected(n_feature, n_hidden, dropout) self.fc2 = FullyConnected(n_hidden, n_hidden, dropout) self.fc3 = FullyConnected(n_hidden, n_hidden, dropout) self.bi_rnn = torch.nn.RNN(n_hidden, n_hidden, num_layers=1, nonlinearity="relu", bidirectional=True) self.fc4 = FullyConnected(n_hidden, n_hidden, dropout) self.out = torch.nn.Linear(n_hidden, n_class) def forward(self, x: torch.Tensor) -> torch.Tensor: """ Args: x (torch.Tensor): Tensor of dimension (batch, channel, time, feature). Returns: Tensor: Predictor tensor of dimension (batch, time, class). """ # N x C x T x F x = self.fc1(x) # N x C x T x H x = self.fc2(x) # N x C x T x H x = self.fc3(x) # N x C x T x H x = x.squeeze(1) # N x T x H x = x.transpose(0, 1) # T x N x H x, _ = self.bi_rnn(x) # The fifth (non-recurrent) layer takes both the forward and backward units as inputs x = x[:, :, : self.n_hidden] + x[:, :, self.n_hidden :] # T x N x H x = self.fc4(x) # T x N x H x = self.out(x) # T x N x n_class x = x.permute(1, 0, 2) # N x T x n_class x = torch.nn.functional.log_softmax(x, dim=2) # N x T x n_class return x