import json import pathlib from typing import Any, Callable, List, Optional, Tuple, Union from urllib.parse import urlparse from PIL import Image from .utils import download_and_extract_archive, verify_str_arg from .vision import VisionDataset class CLEVRClassification(VisionDataset): """`CLEVR `_ classification dataset. The number of objects in a scene are used as label. Args: root (str or ``pathlib.Path``): Root directory of dataset where directory ``root/clevr`` exists or will be saved to if download is set to True. split (string, optional): The dataset split, supports ``"train"`` (default), ``"val"``, or ``"test"``. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in them target and transforms it. download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. """ _URL = "https://dl.fbaipublicfiles.com/clevr/CLEVR_v1.0.zip" _MD5 = "b11922020e72d0cd9154779b2d3d07d2" def __init__( self, root: Union[str, pathlib.Path], split: str = "train", transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, ) -> None: self._split = verify_str_arg(split, "split", ("train", "val", "test")) super().__init__(root, transform=transform, target_transform=target_transform) self._base_folder = pathlib.Path(self.root) / "clevr" self._data_folder = self._base_folder / pathlib.Path(urlparse(self._URL).path).stem if download: self._download() if not self._check_exists(): raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it") self._image_files = sorted(self._data_folder.joinpath("images", self._split).glob("*")) self._labels: List[Optional[int]] if self._split != "test": with open(self._data_folder / "scenes" / f"CLEVR_{self._split}_scenes.json") as file: content = json.load(file) num_objects = {scene["image_filename"]: len(scene["objects"]) for scene in content["scenes"]} self._labels = [num_objects[image_file.name] for image_file in self._image_files] else: self._labels = [None] * len(self._image_files) def __len__(self) -> int: return len(self._image_files) def __getitem__(self, idx: int) -> Tuple[Any, Any]: image_file = self._image_files[idx] label = self._labels[idx] image = Image.open(image_file).convert("RGB") if self.transform: image = self.transform(image) if self.target_transform: label = self.target_transform(label) return image, label def _check_exists(self) -> bool: return self._data_folder.exists() and self._data_folder.is_dir() def _download(self) -> None: if self._check_exists(): return download_and_extract_archive(self._URL, str(self._base_folder), md5=self._MD5) def extra_repr(self) -> str: return f"split={self._split}"