import warnings from functools import partial from typing import Any, Optional, Union import torch import torch.nn as nn from torch import Tensor from torch.nn import functional as F from ...transforms._presets import ImageClassification from .._api import register_model, Weights, WeightsEnum from .._meta import _IMAGENET_CATEGORIES from .._utils import _ovewrite_named_param, handle_legacy_interface from ..googlenet import BasicConv2d, GoogLeNet, GoogLeNet_Weights, GoogLeNetOutputs, Inception, InceptionAux from .utils import _fuse_modules, _replace_relu, quantize_model __all__ = [ "QuantizableGoogLeNet", "GoogLeNet_QuantizedWeights", "googlenet", ] class QuantizableBasicConv2d(BasicConv2d): def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__(*args, **kwargs) self.relu = nn.ReLU() def forward(self, x: Tensor) -> Tensor: x = self.conv(x) x = self.bn(x) x = self.relu(x) return x def fuse_model(self, is_qat: Optional[bool] = None) -> None: _fuse_modules(self, ["conv", "bn", "relu"], is_qat, inplace=True) class QuantizableInception(Inception): def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__(*args, conv_block=QuantizableBasicConv2d, **kwargs) # type: ignore[misc] self.cat = nn.quantized.FloatFunctional() def forward(self, x: Tensor) -> Tensor: outputs = self._forward(x) return self.cat.cat(outputs, 1) class QuantizableInceptionAux(InceptionAux): # TODO https://github.com/pytorch/vision/pull/4232#pullrequestreview-730461659 def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__(*args, conv_block=QuantizableBasicConv2d, **kwargs) # type: ignore[misc] self.relu = nn.ReLU() def forward(self, x: Tensor) -> Tensor: # aux1: N x 512 x 14 x 14, aux2: N x 528 x 14 x 14 x = F.adaptive_avg_pool2d(x, (4, 4)) # aux1: N x 512 x 4 x 4, aux2: N x 528 x 4 x 4 x = self.conv(x) # N x 128 x 4 x 4 x = torch.flatten(x, 1) # N x 2048 x = self.relu(self.fc1(x)) # N x 1024 x = self.dropout(x) # N x 1024 x = self.fc2(x) # N x 1000 (num_classes) return x class QuantizableGoogLeNet(GoogLeNet): # TODO https://github.com/pytorch/vision/pull/4232#pullrequestreview-730461659 def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__( # type: ignore[misc] *args, blocks=[QuantizableBasicConv2d, QuantizableInception, QuantizableInceptionAux], **kwargs ) self.quant = torch.ao.quantization.QuantStub() self.dequant = torch.ao.quantization.DeQuantStub() def forward(self, x: Tensor) -> GoogLeNetOutputs: x = self._transform_input(x) x = self.quant(x) x, aux1, aux2 = self._forward(x) x = self.dequant(x) aux_defined = self.training and self.aux_logits if torch.jit.is_scripting(): if not aux_defined: warnings.warn("Scripted QuantizableGoogleNet always returns GoogleNetOutputs Tuple") return GoogLeNetOutputs(x, aux2, aux1) else: return self.eager_outputs(x, aux2, aux1) def fuse_model(self, is_qat: Optional[bool] = None) -> None: r"""Fuse conv/bn/relu modules in googlenet model Fuse conv+bn+relu/ conv+relu/conv+bn modules to prepare for quantization. Model is modified in place. Note that this operation does not change numerics and the model after modification is in floating point """ for m in self.modules(): if type(m) is QuantizableBasicConv2d: m.fuse_model(is_qat) class GoogLeNet_QuantizedWeights(WeightsEnum): IMAGENET1K_FBGEMM_V1 = Weights( url="https://download.pytorch.org/models/quantized/googlenet_fbgemm-c81f6644.pth", transforms=partial(ImageClassification, crop_size=224), meta={ "num_params": 6624904, "min_size": (15, 15), "categories": _IMAGENET_CATEGORIES, "backend": "fbgemm", "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#post-training-quantized-models", "unquantized": GoogLeNet_Weights.IMAGENET1K_V1, "_metrics": { "ImageNet-1K": { "acc@1": 69.826, "acc@5": 89.404, } }, "_ops": 1.498, "_file_size": 12.618, "_docs": """ These weights were produced by doing Post Training Quantization (eager mode) on top of the unquantized weights listed below. """, }, ) DEFAULT = IMAGENET1K_FBGEMM_V1 @register_model(name="quantized_googlenet") @handle_legacy_interface( weights=( "pretrained", lambda kwargs: GoogLeNet_QuantizedWeights.IMAGENET1K_FBGEMM_V1 if kwargs.get("quantize", False) else GoogLeNet_Weights.IMAGENET1K_V1, ) ) def googlenet( *, weights: Optional[Union[GoogLeNet_QuantizedWeights, GoogLeNet_Weights]] = None, progress: bool = True, quantize: bool = False, **kwargs: Any, ) -> QuantizableGoogLeNet: """GoogLeNet (Inception v1) model architecture from `Going Deeper with Convolutions `__. .. note:: Note that ``quantize = True`` returns a quantized model with 8 bit weights. Quantized models only support inference and run on CPUs. GPU inference is not yet supported. Args: weights (:class:`~torchvision.models.quantization.GoogLeNet_QuantizedWeights` or :class:`~torchvision.models.GoogLeNet_Weights`, optional): The pretrained weights for the model. See :class:`~torchvision.models.quantization.GoogLeNet_QuantizedWeights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. quantize (bool, optional): If True, return a quantized version of the model. Default is False. **kwargs: parameters passed to the ``torchvision.models.quantization.QuantizableGoogLeNet`` base class. Please refer to the `source code `_ for more details about this class. .. autoclass:: torchvision.models.quantization.GoogLeNet_QuantizedWeights :members: .. autoclass:: torchvision.models.GoogLeNet_Weights :members: :noindex: """ weights = (GoogLeNet_QuantizedWeights if quantize else GoogLeNet_Weights).verify(weights) original_aux_logits = kwargs.get("aux_logits", False) if weights is not None: if "transform_input" not in kwargs: _ovewrite_named_param(kwargs, "transform_input", True) _ovewrite_named_param(kwargs, "aux_logits", True) _ovewrite_named_param(kwargs, "init_weights", False) _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"])) if "backend" in weights.meta: _ovewrite_named_param(kwargs, "backend", weights.meta["backend"]) backend = kwargs.pop("backend", "fbgemm") model = QuantizableGoogLeNet(**kwargs) _replace_relu(model) if quantize: quantize_model(model, backend) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) if not original_aux_logits: model.aux_logits = False model.aux1 = None # type: ignore[assignment] model.aux2 = None # type: ignore[assignment] else: warnings.warn( "auxiliary heads in the pretrained googlenet model are NOT pretrained, so make sure to train them" ) return model