from functools import partial from typing import Any, Callable, List, Optional import torch import torch.nn as nn from torch import Tensor from ..transforms._presets import ImageClassification from ..utils import _log_api_usage_once from ._api import register_model, Weights, WeightsEnum from ._meta import _IMAGENET_CATEGORIES from ._utils import _ovewrite_named_param, handle_legacy_interface __all__ = [ "ShuffleNetV2", "ShuffleNet_V2_X0_5_Weights", "ShuffleNet_V2_X1_0_Weights", "ShuffleNet_V2_X1_5_Weights", "ShuffleNet_V2_X2_0_Weights", "shufflenet_v2_x0_5", "shufflenet_v2_x1_0", "shufflenet_v2_x1_5", "shufflenet_v2_x2_0", ] def channel_shuffle(x: Tensor, groups: int) -> Tensor: batchsize, num_channels, height, width = x.size() channels_per_group = num_channels // groups # reshape x = x.view(batchsize, groups, channels_per_group, height, width) x = torch.transpose(x, 1, 2).contiguous() # flatten x = x.view(batchsize, num_channels, height, width) return x class InvertedResidual(nn.Module): def __init__(self, inp: int, oup: int, stride: int) -> None: super().__init__() if not (1 <= stride <= 3): raise ValueError("illegal stride value") self.stride = stride branch_features = oup // 2 if (self.stride == 1) and (inp != branch_features << 1): raise ValueError( f"Invalid combination of stride {stride}, inp {inp} and oup {oup} values. If stride == 1 then inp should be equal to oup // 2 << 1." ) if self.stride > 1: self.branch1 = nn.Sequential( self.depthwise_conv(inp, inp, kernel_size=3, stride=self.stride, padding=1), nn.BatchNorm2d(inp), nn.Conv2d(inp, branch_features, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm2d(branch_features), nn.ReLU(inplace=True), ) else: self.branch1 = nn.Sequential() self.branch2 = nn.Sequential( nn.Conv2d( inp if (self.stride > 1) else branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False, ), nn.BatchNorm2d(branch_features), nn.ReLU(inplace=True), self.depthwise_conv(branch_features, branch_features, kernel_size=3, stride=self.stride, padding=1), nn.BatchNorm2d(branch_features), nn.Conv2d(branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm2d(branch_features), nn.ReLU(inplace=True), ) @staticmethod def depthwise_conv( i: int, o: int, kernel_size: int, stride: int = 1, padding: int = 0, bias: bool = False ) -> nn.Conv2d: return nn.Conv2d(i, o, kernel_size, stride, padding, bias=bias, groups=i) def forward(self, x: Tensor) -> Tensor: if self.stride == 1: x1, x2 = x.chunk(2, dim=1) out = torch.cat((x1, self.branch2(x2)), dim=1) else: out = torch.cat((self.branch1(x), self.branch2(x)), dim=1) out = channel_shuffle(out, 2) return out class ShuffleNetV2(nn.Module): def __init__( self, stages_repeats: List[int], stages_out_channels: List[int], num_classes: int = 1000, inverted_residual: Callable[..., nn.Module] = InvertedResidual, ) -> None: super().__init__() _log_api_usage_once(self) if len(stages_repeats) != 3: raise ValueError("expected stages_repeats as list of 3 positive ints") if len(stages_out_channels) != 5: raise ValueError("expected stages_out_channels as list of 5 positive ints") self._stage_out_channels = stages_out_channels input_channels = 3 output_channels = self._stage_out_channels[0] self.conv1 = nn.Sequential( nn.Conv2d(input_channels, output_channels, 3, 2, 1, bias=False), nn.BatchNorm2d(output_channels), nn.ReLU(inplace=True), ) input_channels = output_channels self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) # Static annotations for mypy self.stage2: nn.Sequential self.stage3: nn.Sequential self.stage4: nn.Sequential stage_names = [f"stage{i}" for i in [2, 3, 4]] for name, repeats, output_channels in zip(stage_names, stages_repeats, self._stage_out_channels[1:]): seq = [inverted_residual(input_channels, output_channels, 2)] for i in range(repeats - 1): seq.append(inverted_residual(output_channels, output_channels, 1)) setattr(self, name, nn.Sequential(*seq)) input_channels = output_channels output_channels = self._stage_out_channels[-1] self.conv5 = nn.Sequential( nn.Conv2d(input_channels, output_channels, 1, 1, 0, bias=False), nn.BatchNorm2d(output_channels), nn.ReLU(inplace=True), ) self.fc = nn.Linear(output_channels, num_classes) def _forward_impl(self, x: Tensor) -> Tensor: # See note [TorchScript super()] x = self.conv1(x) x = self.maxpool(x) x = self.stage2(x) x = self.stage3(x) x = self.stage4(x) x = self.conv5(x) x = x.mean([2, 3]) # globalpool x = self.fc(x) return x def forward(self, x: Tensor) -> Tensor: return self._forward_impl(x) def _shufflenetv2( weights: Optional[WeightsEnum], progress: bool, *args: Any, **kwargs: Any, ) -> ShuffleNetV2: if weights is not None: _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"])) model = ShuffleNetV2(*args, **kwargs) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) return model _COMMON_META = { "min_size": (1, 1), "categories": _IMAGENET_CATEGORIES, "recipe": "https://github.com/ericsun99/Shufflenet-v2-Pytorch", } class ShuffleNet_V2_X0_5_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( # Weights ported from https://github.com/ericsun99/Shufflenet-v2-Pytorch url="https://download.pytorch.org/models/shufflenetv2_x0.5-f707e7126e.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 1366792, "_metrics": { "ImageNet-1K": { "acc@1": 60.552, "acc@5": 81.746, } }, "_ops": 0.04, "_file_size": 5.282, "_docs": """These weights were trained from scratch to reproduce closely the results of the paper.""", }, ) DEFAULT = IMAGENET1K_V1 class ShuffleNet_V2_X1_0_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( # Weights ported from https://github.com/ericsun99/Shufflenet-v2-Pytorch url="https://download.pytorch.org/models/shufflenetv2_x1-5666bf0f80.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 2278604, "_metrics": { "ImageNet-1K": { "acc@1": 69.362, "acc@5": 88.316, } }, "_ops": 0.145, "_file_size": 8.791, "_docs": """These weights were trained from scratch to reproduce closely the results of the paper.""", }, ) DEFAULT = IMAGENET1K_V1 class ShuffleNet_V2_X1_5_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/shufflenetv2_x1_5-3c479a10.pth", transforms=partial(ImageClassification, crop_size=224, resize_size=232), meta={ **_COMMON_META, "recipe": "https://github.com/pytorch/vision/pull/5906", "num_params": 3503624, "_metrics": { "ImageNet-1K": { "acc@1": 72.996, "acc@5": 91.086, } }, "_ops": 0.296, "_file_size": 13.557, "_docs": """ These weights were trained from scratch by using TorchVision's `new training recipe `_. """, }, ) DEFAULT = IMAGENET1K_V1 class ShuffleNet_V2_X2_0_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/shufflenetv2_x2_0-8be3c8ee.pth", transforms=partial(ImageClassification, crop_size=224, resize_size=232), meta={ **_COMMON_META, "recipe": "https://github.com/pytorch/vision/pull/5906", "num_params": 7393996, "_metrics": { "ImageNet-1K": { "acc@1": 76.230, "acc@5": 93.006, } }, "_ops": 0.583, "_file_size": 28.433, "_docs": """ These weights were trained from scratch by using TorchVision's `new training recipe `_. """, }, ) DEFAULT = IMAGENET1K_V1 @register_model() @handle_legacy_interface(weights=("pretrained", ShuffleNet_V2_X0_5_Weights.IMAGENET1K_V1)) def shufflenet_v2_x0_5( *, weights: Optional[ShuffleNet_V2_X0_5_Weights] = None, progress: bool = True, **kwargs: Any ) -> ShuffleNetV2: """ Constructs a ShuffleNetV2 architecture with 0.5x output channels, as described in `ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design `__. Args: weights (:class:`~torchvision.models.ShuffleNet_V2_X0_5_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.ShuffleNet_V2_X0_5_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.shufflenetv2.ShuffleNetV2`` base class. Please refer to the `source code `_ for more details about this class. .. autoclass:: torchvision.models.ShuffleNet_V2_X0_5_Weights :members: """ weights = ShuffleNet_V2_X0_5_Weights.verify(weights) return _shufflenetv2(weights, progress, [4, 8, 4], [24, 48, 96, 192, 1024], **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", ShuffleNet_V2_X1_0_Weights.IMAGENET1K_V1)) def shufflenet_v2_x1_0( *, weights: Optional[ShuffleNet_V2_X1_0_Weights] = None, progress: bool = True, **kwargs: Any ) -> ShuffleNetV2: """ Constructs a ShuffleNetV2 architecture with 1.0x output channels, as described in `ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design `__. Args: weights (:class:`~torchvision.models.ShuffleNet_V2_X1_0_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.ShuffleNet_V2_X1_0_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.shufflenetv2.ShuffleNetV2`` base class. Please refer to the `source code `_ for more details about this class. .. autoclass:: torchvision.models.ShuffleNet_V2_X1_0_Weights :members: """ weights = ShuffleNet_V2_X1_0_Weights.verify(weights) return _shufflenetv2(weights, progress, [4, 8, 4], [24, 116, 232, 464, 1024], **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", ShuffleNet_V2_X1_5_Weights.IMAGENET1K_V1)) def shufflenet_v2_x1_5( *, weights: Optional[ShuffleNet_V2_X1_5_Weights] = None, progress: bool = True, **kwargs: Any ) -> ShuffleNetV2: """ Constructs a ShuffleNetV2 architecture with 1.5x output channels, as described in `ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design `__. Args: weights (:class:`~torchvision.models.ShuffleNet_V2_X1_5_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.ShuffleNet_V2_X1_5_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.shufflenetv2.ShuffleNetV2`` base class. Please refer to the `source code `_ for more details about this class. .. autoclass:: torchvision.models.ShuffleNet_V2_X1_5_Weights :members: """ weights = ShuffleNet_V2_X1_5_Weights.verify(weights) return _shufflenetv2(weights, progress, [4, 8, 4], [24, 176, 352, 704, 1024], **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", ShuffleNet_V2_X2_0_Weights.IMAGENET1K_V1)) def shufflenet_v2_x2_0( *, weights: Optional[ShuffleNet_V2_X2_0_Weights] = None, progress: bool = True, **kwargs: Any ) -> ShuffleNetV2: """ Constructs a ShuffleNetV2 architecture with 2.0x output channels, as described in `ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design `__. Args: weights (:class:`~torchvision.models.ShuffleNet_V2_X2_0_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.ShuffleNet_V2_X2_0_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.shufflenetv2.ShuffleNetV2`` base class. Please refer to the `source code `_ for more details about this class. .. autoclass:: torchvision.models.ShuffleNet_V2_X2_0_Weights :members: """ weights = ShuffleNet_V2_X2_0_Weights.verify(weights) return _shufflenetv2(weights, progress, [4, 8, 4], [24, 244, 488, 976, 2048], **kwargs)