"""This test for the LFW require medium-size data downloading and processing If the data has not been already downloaded by running the examples, the tests won't run (skipped). If the test are run, the first execution will be long (typically a bit more than a couple of minutes) but as the dataset loader is leveraging joblib, successive runs will be fast (less than 200ms). """ import random from functools import partial import numpy as np import pytest from sklearn.datasets import fetch_lfw_pairs, fetch_lfw_people from sklearn.datasets.tests.test_common import check_return_X_y from sklearn.utils._testing import assert_array_equal FAKE_NAMES = [ "Abdelatif_Smith", "Abhati_Kepler", "Camara_Alvaro", "Chen_Dupont", "John_Lee", "Lin_Bauman", "Onur_Lopez", ] @pytest.fixture(scope="module") def mock_empty_data_home(tmp_path_factory): data_dir = tmp_path_factory.mktemp("scikit_learn_empty_test") yield data_dir @pytest.fixture(scope="module") def mock_data_home(tmp_path_factory): """Test fixture run once and common to all tests of this module""" Image = pytest.importorskip("PIL.Image") data_dir = tmp_path_factory.mktemp("scikit_learn_lfw_test") lfw_home = data_dir / "lfw_home" lfw_home.mkdir(parents=True, exist_ok=True) random_state = random.Random(42) np_rng = np.random.RandomState(42) # generate some random jpeg files for each person counts = {} for name in FAKE_NAMES: folder_name = lfw_home / "lfw_funneled" / name folder_name.mkdir(parents=True, exist_ok=True) n_faces = np_rng.randint(1, 5) counts[name] = n_faces for i in range(n_faces): file_path = folder_name / (name + "_%04d.jpg" % i) uniface = np_rng.randint(0, 255, size=(250, 250, 3)) img = Image.fromarray(uniface.astype(np.uint8)) img.save(file_path) # add some random file pollution to test robustness (lfw_home / "lfw_funneled" / ".test.swp").write_bytes( b"Text file to be ignored by the dataset loader." ) # generate some pairing metadata files using the same format as LFW with open(lfw_home / "pairsDevTrain.txt", "wb") as f: f.write(b"10\n") more_than_two = [name for name, count in counts.items() if count >= 2] for i in range(5): name = random_state.choice(more_than_two) first, second = random_state.sample(range(counts[name]), 2) f.write(("%s\t%d\t%d\n" % (name, first, second)).encode()) for i in range(5): first_name, second_name = random_state.sample(FAKE_NAMES, 2) first_index = np_rng.choice(np.arange(counts[first_name])) second_index = np_rng.choice(np.arange(counts[second_name])) f.write( ( "%s\t%d\t%s\t%d\n" % (first_name, first_index, second_name, second_index) ).encode() ) (lfw_home / "pairsDevTest.txt").write_bytes( b"Fake place holder that won't be tested" ) (lfw_home / "pairs.txt").write_bytes(b"Fake place holder that won't be tested") yield data_dir def test_load_empty_lfw_people(mock_empty_data_home): with pytest.raises(OSError): fetch_lfw_people(data_home=mock_empty_data_home, download_if_missing=False) def test_load_fake_lfw_people(mock_data_home): lfw_people = fetch_lfw_people( data_home=mock_data_home, min_faces_per_person=3, download_if_missing=False ) # The data is croped around the center as a rectangular bounding box # around the face. Colors are converted to gray levels: assert lfw_people.images.shape == (10, 62, 47) assert lfw_people.data.shape == (10, 2914) # the target is array of person integer ids assert_array_equal(lfw_people.target, [2, 0, 1, 0, 2, 0, 2, 1, 1, 2]) # names of the persons can be found using the target_names array expected_classes = ["Abdelatif Smith", "Abhati Kepler", "Onur Lopez"] assert_array_equal(lfw_people.target_names, expected_classes) # It is possible to ask for the original data without any croping or color # conversion and not limit on the number of picture per person lfw_people = fetch_lfw_people( data_home=mock_data_home, resize=None, slice_=None, color=True, download_if_missing=False, ) assert lfw_people.images.shape == (17, 250, 250, 3) assert lfw_people.DESCR.startswith(".. _labeled_faces_in_the_wild_dataset:") # the ids and class names are the same as previously assert_array_equal( lfw_people.target, [0, 0, 1, 6, 5, 6, 3, 6, 0, 3, 6, 1, 2, 4, 5, 1, 2] ) assert_array_equal( lfw_people.target_names, [ "Abdelatif Smith", "Abhati Kepler", "Camara Alvaro", "Chen Dupont", "John Lee", "Lin Bauman", "Onur Lopez", ], ) # test return_X_y option fetch_func = partial( fetch_lfw_people, data_home=mock_data_home, resize=None, slice_=None, color=True, download_if_missing=False, ) check_return_X_y(lfw_people, fetch_func) def test_load_fake_lfw_people_too_restrictive(mock_data_home): with pytest.raises(ValueError): fetch_lfw_people( data_home=mock_data_home, min_faces_per_person=100, download_if_missing=False, ) def test_load_empty_lfw_pairs(mock_empty_data_home): with pytest.raises(OSError): fetch_lfw_pairs(data_home=mock_empty_data_home, download_if_missing=False) def test_load_fake_lfw_pairs(mock_data_home): lfw_pairs_train = fetch_lfw_pairs( data_home=mock_data_home, download_if_missing=False ) # The data is croped around the center as a rectangular bounding box # around the face. Colors are converted to gray levels: assert lfw_pairs_train.pairs.shape == (10, 2, 62, 47) # the target is whether the person is the same or not assert_array_equal(lfw_pairs_train.target, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0]) # names of the persons can be found using the target_names array expected_classes = ["Different persons", "Same person"] assert_array_equal(lfw_pairs_train.target_names, expected_classes) # It is possible to ask for the original data without any croping or color # conversion lfw_pairs_train = fetch_lfw_pairs( data_home=mock_data_home, resize=None, slice_=None, color=True, download_if_missing=False, ) assert lfw_pairs_train.pairs.shape == (10, 2, 250, 250, 3) # the ids and class names are the same as previously assert_array_equal(lfw_pairs_train.target, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0]) assert_array_equal(lfw_pairs_train.target_names, expected_classes) assert lfw_pairs_train.DESCR.startswith(".. _labeled_faces_in_the_wild_dataset:") def test_fetch_lfw_people_internal_cropping(mock_data_home): """Check that we properly crop the images. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/24942 """ # If cropping was not done properly and we don't resize the images, the images would # have their original size (250x250) and the image would not fit in the NumPy array # pre-allocated based on `slice_` parameter. slice_ = (slice(70, 195), slice(78, 172)) lfw = fetch_lfw_people( data_home=mock_data_home, min_faces_per_person=3, download_if_missing=False, resize=None, slice_=slice_, ) assert lfw.images[0].shape == ( slice_[0].stop - slice_[0].start, slice_[1].stop - slice_[1].start, )