from sympy.core.add import Add from sympy.core.containers import Tuple from sympy.core.expr import Expr from sympy.core.function import AppliedUndef, UndefinedFunction from sympy.core.mul import Mul from sympy.core.relational import Equality, Relational from sympy.core.singleton import S from sympy.core.symbol import Symbol, Dummy from sympy.core.sympify import sympify from sympy.functions.elementary.piecewise import (piecewise_fold, Piecewise) from sympy.logic.boolalg import BooleanFunction from sympy.matrices.matrices import MatrixBase from sympy.sets.sets import Interval, Set from sympy.sets.fancysets import Range from sympy.tensor.indexed import Idx from sympy.utilities import flatten from sympy.utilities.iterables import sift, is_sequence from sympy.utilities.exceptions import sympy_deprecation_warning def _common_new(cls, function, *symbols, discrete, **assumptions): """Return either a special return value or the tuple, (function, limits, orientation). This code is common to both ExprWithLimits and AddWithLimits.""" function = sympify(function) if isinstance(function, Equality): # This transforms e.g. Integral(Eq(x, y)) to Eq(Integral(x), Integral(y)) # but that is only valid for definite integrals. limits, orientation = _process_limits(*symbols, discrete=discrete) if not (limits and all(len(limit) == 3 for limit in limits)): sympy_deprecation_warning( """ Creating a indefinite integral with an Eq() argument is deprecated. This is because indefinite integrals do not preserve equality due to the arbitrary constants. If you want an equality of indefinite integrals, use Eq(Integral(a, x), Integral(b, x)) explicitly. """, deprecated_since_version="1.6", active_deprecations_target="deprecated-indefinite-integral-eq", stacklevel=5, ) lhs = function.lhs rhs = function.rhs return Equality(cls(lhs, *symbols, **assumptions), \ cls(rhs, *symbols, **assumptions)) if function is S.NaN: return S.NaN if symbols: limits, orientation = _process_limits(*symbols, discrete=discrete) for i, li in enumerate(limits): if len(li) == 4: function = function.subs(li[0], li[-1]) limits[i] = Tuple(*li[:-1]) else: # symbol not provided -- we can still try to compute a general form free = function.free_symbols if len(free) != 1: raise ValueError( "specify dummy variables for %s" % function) limits, orientation = [Tuple(s) for s in free], 1 # denest any nested calls while cls == type(function): limits = list(function.limits) + limits function = function.function # Any embedded piecewise functions need to be brought out to the # top level. We only fold Piecewise that contain the integration # variable. reps = {} symbols_of_integration = {i[0] for i in limits} for p in function.atoms(Piecewise): if not p.has(*symbols_of_integration): reps[p] = Dummy() # mask off those that don't function = function.xreplace(reps) # do the fold function = piecewise_fold(function) # remove the masking function = function.xreplace({v: k for k, v in reps.items()}) return function, limits, orientation def _process_limits(*symbols, discrete=None): """Process the list of symbols and convert them to canonical limits, storing them as Tuple(symbol, lower, upper). The orientation of the function is also returned when the upper limit is missing so (x, 1, None) becomes (x, None, 1) and the orientation is changed. In the case that a limit is specified as (symbol, Range), a list of length 4 may be returned if a change of variables is needed; the expression that should replace the symbol in the expression is the fourth element in the list. """ limits = [] orientation = 1 if discrete is None: err_msg = 'discrete must be True or False' elif discrete: err_msg = 'use Range, not Interval or Relational' else: err_msg = 'use Interval or Relational, not Range' for V in symbols: if isinstance(V, (Relational, BooleanFunction)): if discrete: raise TypeError(err_msg) variable = V.atoms(Symbol).pop() V = (variable, V.as_set()) elif isinstance(V, Symbol) or getattr(V, '_diff_wrt', False): if isinstance(V, Idx): if V.lower is None or V.upper is None: limits.append(Tuple(V)) else: limits.append(Tuple(V, V.lower, V.upper)) else: limits.append(Tuple(V)) continue if is_sequence(V) and not isinstance(V, Set): if len(V) == 2 and isinstance(V[1], Set): V = list(V) if isinstance(V[1], Interval): # includes Reals if discrete: raise TypeError(err_msg) V[1:] = V[1].inf, V[1].sup elif isinstance(V[1], Range): if not discrete: raise TypeError(err_msg) lo = V[1].inf hi = V[1].sup dx = abs(V[1].step) # direction doesn't matter if dx == 1: V[1:] = [lo, hi] else: if lo is not S.NegativeInfinity: V = [V[0]] + [0, (hi - lo)//dx, dx*V[0] + lo] else: V = [V[0]] + [0, S.Infinity, -dx*V[0] + hi] else: # more complicated sets would require splitting, e.g. # Union(Interval(1, 3), interval(6,10)) raise NotImplementedError( 'expecting Range' if discrete else 'Relational or single Interval' ) V = sympify(flatten(V)) # list of sympified elements/None if isinstance(V[0], (Symbol, Idx)) or getattr(V[0], '_diff_wrt', False): newsymbol = V[0] if len(V) == 3: # general case if V[2] is None and V[1] is not None: orientation *= -1 V = [newsymbol] + [i for i in V[1:] if i is not None] lenV = len(V) if not isinstance(newsymbol, Idx) or lenV == 3: if lenV == 4: limits.append(Tuple(*V)) continue if lenV == 3: if isinstance(newsymbol, Idx): # Idx represents an integer which may have # specified values it can take on; if it is # given such a value, an error is raised here # if the summation would try to give it a larger # or smaller value than permitted. None and Symbolic # values will not raise an error. lo, hi = newsymbol.lower, newsymbol.upper try: if lo is not None and not bool(V[1] >= lo): raise ValueError("Summation will set Idx value too low.") except TypeError: pass try: if hi is not None and not bool(V[2] <= hi): raise ValueError("Summation will set Idx value too high.") except TypeError: pass limits.append(Tuple(*V)) continue if lenV == 1 or (lenV == 2 and V[1] is None): limits.append(Tuple(newsymbol)) continue elif lenV == 2: limits.append(Tuple(newsymbol, V[1])) continue raise ValueError('Invalid limits given: %s' % str(symbols)) return limits, orientation class ExprWithLimits(Expr): __slots__ = ('is_commutative',) def __new__(cls, function, *symbols, **assumptions): from sympy.concrete.products import Product pre = _common_new(cls, function, *symbols, discrete=issubclass(cls, Product), **assumptions) if isinstance(pre, tuple): function, limits, _ = pre else: return pre # limits must have upper and lower bounds; the indefinite form # is not supported. This restriction does not apply to AddWithLimits if any(len(l) != 3 or None in l for l in limits): raise ValueError('ExprWithLimits requires values for lower and upper bounds.') obj = Expr.__new__(cls, **assumptions) arglist = [function] arglist.extend(limits) obj._args = tuple(arglist) obj.is_commutative = function.is_commutative # limits already checked return obj @property def function(self): """Return the function applied across limits. Examples ======== >>> from sympy import Integral >>> from sympy.abc import x >>> Integral(x**2, (x,)).function x**2 See Also ======== limits, variables, free_symbols """ return self._args[0] @property def kind(self): return self.function.kind @property def limits(self): """Return the limits of expression. Examples ======== >>> from sympy import Integral >>> from sympy.abc import x, i >>> Integral(x**i, (i, 1, 3)).limits ((i, 1, 3),) See Also ======== function, variables, free_symbols """ return self._args[1:] @property def variables(self): """Return a list of the limit variables. >>> from sympy import Sum >>> from sympy.abc import x, i >>> Sum(x**i, (i, 1, 3)).variables [i] See Also ======== function, limits, free_symbols as_dummy : Rename dummy variables sympy.integrals.integrals.Integral.transform : Perform mapping on the dummy variable """ return [l[0] for l in self.limits] @property def bound_symbols(self): """Return only variables that are dummy variables. Examples ======== >>> from sympy import Integral >>> from sympy.abc import x, i, j, k >>> Integral(x**i, (i, 1, 3), (j, 2), k).bound_symbols [i, j] See Also ======== function, limits, free_symbols as_dummy : Rename dummy variables sympy.integrals.integrals.Integral.transform : Perform mapping on the dummy variable """ return [l[0] for l in self.limits if len(l) != 1] @property def free_symbols(self): """ This method returns the symbols in the object, excluding those that take on a specific value (i.e. the dummy symbols). Examples ======== >>> from sympy import Sum >>> from sympy.abc import x, y >>> Sum(x, (x, y, 1)).free_symbols {y} """ # don't test for any special values -- nominal free symbols # should be returned, e.g. don't return set() if the # function is zero -- treat it like an unevaluated expression. function, limits = self.function, self.limits # mask off non-symbol integration variables that have # more than themself as a free symbol reps = {i[0]: i[0] if i[0].free_symbols == {i[0]} else Dummy() for i in self.limits} function = function.xreplace(reps) isyms = function.free_symbols for xab in limits: v = reps[xab[0]] if len(xab) == 1: isyms.add(v) continue # take out the target symbol if v in isyms: isyms.remove(v) # add in the new symbols for i in xab[1:]: isyms.update(i.free_symbols) reps = {v: k for k, v in reps.items()} return {reps.get(_, _) for _ in isyms} @property def is_number(self): """Return True if the Sum has no free symbols, else False.""" return not self.free_symbols def _eval_interval(self, x, a, b): limits = [(i if i[0] != x else (x, a, b)) for i in self.limits] integrand = self.function return self.func(integrand, *limits) def _eval_subs(self, old, new): """ Perform substitutions over non-dummy variables of an expression with limits. Also, can be used to specify point-evaluation of an abstract antiderivative. Examples ======== >>> from sympy import Sum, oo >>> from sympy.abc import s, n >>> Sum(1/n**s, (n, 1, oo)).subs(s, 2) Sum(n**(-2), (n, 1, oo)) >>> from sympy import Integral >>> from sympy.abc import x, a >>> Integral(a*x**2, x).subs(x, 4) Integral(a*x**2, (x, 4)) See Also ======== variables : Lists the integration variables transform : Perform mapping on the dummy variable for integrals change_index : Perform mapping on the sum and product dummy variables """ func, limits = self.function, list(self.limits) # If one of the expressions we are replacing is used as a func index # one of two things happens. # - the old variable first appears as a free variable # so we perform all free substitutions before it becomes # a func index. # - the old variable first appears as a func index, in # which case we ignore. See change_index. # Reorder limits to match standard mathematical practice for scoping limits.reverse() if not isinstance(old, Symbol) or \ old.free_symbols.intersection(self.free_symbols): sub_into_func = True for i, xab in enumerate(limits): if 1 == len(xab) and old == xab[0]: if new._diff_wrt: xab = (new,) else: xab = (old, old) limits[i] = Tuple(xab[0], *[l._subs(old, new) for l in xab[1:]]) if len(xab[0].free_symbols.intersection(old.free_symbols)) != 0: sub_into_func = False break if isinstance(old, (AppliedUndef, UndefinedFunction)): sy2 = set(self.variables).intersection(set(new.atoms(Symbol))) sy1 = set(self.variables).intersection(set(old.args)) if not sy2.issubset(sy1): raise ValueError( "substitution cannot create dummy dependencies") sub_into_func = True if sub_into_func: func = func.subs(old, new) else: # old is a Symbol and a dummy variable of some limit for i, xab in enumerate(limits): if len(xab) == 3: limits[i] = Tuple(xab[0], *[l._subs(old, new) for l in xab[1:]]) if old == xab[0]: break # simplify redundant limits (x, x) to (x, ) for i, xab in enumerate(limits): if len(xab) == 2 and (xab[0] - xab[1]).is_zero: limits[i] = Tuple(xab[0], ) # Reorder limits back to representation-form limits.reverse() return self.func(func, *limits) @property def has_finite_limits(self): """ Returns True if the limits are known to be finite, either by the explicit bounds, assumptions on the bounds, or assumptions on the variables. False if known to be infinite, based on the bounds. None if not enough information is available to determine. Examples ======== >>> from sympy import Sum, Integral, Product, oo, Symbol >>> x = Symbol('x') >>> Sum(x, (x, 1, 8)).has_finite_limits True >>> Integral(x, (x, 1, oo)).has_finite_limits False >>> M = Symbol('M') >>> Sum(x, (x, 1, M)).has_finite_limits >>> N = Symbol('N', integer=True) >>> Product(x, (x, 1, N)).has_finite_limits True See Also ======== has_reversed_limits """ ret_None = False for lim in self.limits: if len(lim) == 3: if any(l.is_infinite for l in lim[1:]): # Any of the bounds are +/-oo return False elif any(l.is_infinite is None for l in lim[1:]): # Maybe there are assumptions on the variable? if lim[0].is_infinite is None: ret_None = True else: if lim[0].is_infinite is None: ret_None = True if ret_None: return None return True @property def has_reversed_limits(self): """ Returns True if the limits are known to be in reversed order, either by the explicit bounds, assumptions on the bounds, or assumptions on the variables. False if known to be in normal order, based on the bounds. None if not enough information is available to determine. Examples ======== >>> from sympy import Sum, Integral, Product, oo, Symbol >>> x = Symbol('x') >>> Sum(x, (x, 8, 1)).has_reversed_limits True >>> Sum(x, (x, 1, oo)).has_reversed_limits False >>> M = Symbol('M') >>> Integral(x, (x, 1, M)).has_reversed_limits >>> N = Symbol('N', integer=True, positive=True) >>> Sum(x, (x, 1, N)).has_reversed_limits False >>> Product(x, (x, 2, N)).has_reversed_limits >>> Product(x, (x, 2, N)).subs(N, N + 2).has_reversed_limits False See Also ======== sympy.concrete.expr_with_intlimits.ExprWithIntLimits.has_empty_sequence """ ret_None = False for lim in self.limits: if len(lim) == 3: var, a, b = lim dif = b - a if dif.is_extended_negative: return True elif dif.is_extended_nonnegative: continue else: ret_None = True else: return None if ret_None: return None return False class AddWithLimits(ExprWithLimits): r"""Represents unevaluated oriented additions. Parent class for Integral and Sum. """ __slots__ = () def __new__(cls, function, *symbols, **assumptions): from sympy.concrete.summations import Sum pre = _common_new(cls, function, *symbols, discrete=issubclass(cls, Sum), **assumptions) if isinstance(pre, tuple): function, limits, orientation = pre else: return pre obj = Expr.__new__(cls, **assumptions) arglist = [orientation*function] # orientation not used in ExprWithLimits arglist.extend(limits) obj._args = tuple(arglist) obj.is_commutative = function.is_commutative # limits already checked return obj def _eval_adjoint(self): if all(x.is_real for x in flatten(self.limits)): return self.func(self.function.adjoint(), *self.limits) return None def _eval_conjugate(self): if all(x.is_real for x in flatten(self.limits)): return self.func(self.function.conjugate(), *self.limits) return None def _eval_transpose(self): if all(x.is_real for x in flatten(self.limits)): return self.func(self.function.transpose(), *self.limits) return None def _eval_factor(self, **hints): if 1 == len(self.limits): summand = self.function.factor(**hints) if summand.is_Mul: out = sift(summand.args, lambda w: w.is_commutative \ and not set(self.variables) & w.free_symbols) return Mul(*out[True])*self.func(Mul(*out[False]), \ *self.limits) else: summand = self.func(self.function, *self.limits[0:-1]).factor() if not summand.has(self.variables[-1]): return self.func(1, [self.limits[-1]]).doit()*summand elif isinstance(summand, Mul): return self.func(summand, self.limits[-1]).factor() return self def _eval_expand_basic(self, **hints): summand = self.function.expand(**hints) force = hints.get('force', False) if (summand.is_Add and (force or summand.is_commutative and self.has_finite_limits is not False)): return Add(*[self.func(i, *self.limits) for i in summand.args]) elif isinstance(summand, MatrixBase): return summand.applyfunc(lambda x: self.func(x, *self.limits)) elif summand != self.function: return self.func(summand, *self.limits) return self