"""Gosper's algorithm for hypergeometric summation. """ from sympy.core import S, Dummy, symbols from sympy.polys import Poly, parallel_poly_from_expr, factor from sympy.utilities.iterables import is_sequence def gosper_normal(f, g, n, polys=True): r""" Compute the Gosper's normal form of ``f`` and ``g``. Explanation =========== Given relatively prime univariate polynomials ``f`` and ``g``, rewrite their quotient to a normal form defined as follows: .. math:: \frac{f(n)}{g(n)} = Z \cdot \frac{A(n) C(n+1)}{B(n) C(n)} where ``Z`` is an arbitrary constant and ``A``, ``B``, ``C`` are monic polynomials in ``n`` with the following properties: 1. `\gcd(A(n), B(n+h)) = 1 \forall h \in \mathbb{N}` 2. `\gcd(B(n), C(n+1)) = 1` 3. `\gcd(A(n), C(n)) = 1` This normal form, or rational factorization in other words, is a crucial step in Gosper's algorithm and in solving of difference equations. It can be also used to decide if two hypergeometric terms are similar or not. This procedure will return a tuple containing elements of this factorization in the form ``(Z*A, B, C)``. Examples ======== >>> from sympy.concrete.gosper import gosper_normal >>> from sympy.abc import n >>> gosper_normal(4*n+5, 2*(4*n+1)*(2*n+3), n, polys=False) (1/4, n + 3/2, n + 1/4) """ (p, q), opt = parallel_poly_from_expr( (f, g), n, field=True, extension=True) a, A = p.LC(), p.monic() b, B = q.LC(), q.monic() C, Z = A.one, a/b h = Dummy('h') D = Poly(n + h, n, h, domain=opt.domain) R = A.resultant(B.compose(D)) roots = set(R.ground_roots().keys()) for r in set(roots): if not r.is_Integer or r < 0: roots.remove(r) for i in sorted(roots): d = A.gcd(B.shift(+i)) A = A.quo(d) B = B.quo(d.shift(-i)) for j in range(1, i + 1): C *= d.shift(-j) A = A.mul_ground(Z) if not polys: A = A.as_expr() B = B.as_expr() C = C.as_expr() return A, B, C def gosper_term(f, n): r""" Compute Gosper's hypergeometric term for ``f``. Explanation =========== Suppose ``f`` is a hypergeometric term such that: .. math:: s_n = \sum_{k=0}^{n-1} f_k and `f_k` does not depend on `n`. Returns a hypergeometric term `g_n` such that `g_{n+1} - g_n = f_n`. Examples ======== >>> from sympy.concrete.gosper import gosper_term >>> from sympy import factorial >>> from sympy.abc import n >>> gosper_term((4*n + 1)*factorial(n)/factorial(2*n + 1), n) (-n - 1/2)/(n + 1/4) """ from sympy.simplify import hypersimp r = hypersimp(f, n) if r is None: return None # 'f' is *not* a hypergeometric term p, q = r.as_numer_denom() A, B, C = gosper_normal(p, q, n) B = B.shift(-1) N = S(A.degree()) M = S(B.degree()) K = S(C.degree()) if (N != M) or (A.LC() != B.LC()): D = {K - max(N, M)} elif not N: D = {K - N + 1, S.Zero} else: D = {K - N + 1, (B.nth(N - 1) - A.nth(N - 1))/A.LC()} for d in set(D): if not d.is_Integer or d < 0: D.remove(d) if not D: return None # 'f(n)' is *not* Gosper-summable d = max(D) coeffs = symbols('c:%s' % (d + 1), cls=Dummy) domain = A.get_domain().inject(*coeffs) x = Poly(coeffs, n, domain=domain) H = A*x.shift(1) - B*x - C from sympy.solvers.solvers import solve solution = solve(H.coeffs(), coeffs) if solution is None: return None # 'f(n)' is *not* Gosper-summable x = x.as_expr().subs(solution) for coeff in coeffs: if coeff not in solution: x = x.subs(coeff, 0) if x.is_zero: return None # 'f(n)' is *not* Gosper-summable else: return B.as_expr()*x/C.as_expr() def gosper_sum(f, k): r""" Gosper's hypergeometric summation algorithm. Explanation =========== Given a hypergeometric term ``f`` such that: .. math :: s_n = \sum_{k=0}^{n-1} f_k and `f(n)` does not depend on `n`, returns `g_{n} - g(0)` where `g_{n+1} - g_n = f_n`, or ``None`` if `s_n` cannot be expressed in closed form as a sum of hypergeometric terms. Examples ======== >>> from sympy.concrete.gosper import gosper_sum >>> from sympy import factorial >>> from sympy.abc import n, k >>> f = (4*k + 1)*factorial(k)/factorial(2*k + 1) >>> gosper_sum(f, (k, 0, n)) (-factorial(n) + 2*factorial(2*n + 1))/factorial(2*n + 1) >>> _.subs(n, 2) == sum(f.subs(k, i) for i in [0, 1, 2]) True >>> gosper_sum(f, (k, 3, n)) (-60*factorial(n) + factorial(2*n + 1))/(60*factorial(2*n + 1)) >>> _.subs(n, 5) == sum(f.subs(k, i) for i in [3, 4, 5]) True References ========== .. [1] Marko Petkovsek, Herbert S. Wilf, Doron Zeilberger, A = B, AK Peters, Ltd., Wellesley, MA, USA, 1997, pp. 73--100 """ indefinite = False if is_sequence(k): k, a, b = k else: indefinite = True g = gosper_term(f, k) if g is None: return None if indefinite: result = f*g else: result = (f*(g + 1)).subs(k, b) - (f*g).subs(k, a) if result is S.NaN: try: result = (f*(g + 1)).limit(k, b) - (f*g).limit(k, a) except NotImplementedError: result = None return factor(result)