import io import os.path import pickle import string from collections.abc import Iterable from pathlib import Path from typing import Any, Callable, cast, List, Optional, Tuple, Union from PIL import Image from .utils import iterable_to_str, verify_str_arg from .vision import VisionDataset class LSUNClass(VisionDataset): def __init__( self, root: str, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None ) -> None: import lmdb super().__init__(root, transform=transform, target_transform=target_transform) self.env = lmdb.open(root, max_readers=1, readonly=True, lock=False, readahead=False, meminit=False) with self.env.begin(write=False) as txn: self.length = txn.stat()["entries"] cache_file = "_cache_" + "".join(c for c in root if c in string.ascii_letters) if os.path.isfile(cache_file): self.keys = pickle.load(open(cache_file, "rb")) else: with self.env.begin(write=False) as txn: self.keys = [key for key in txn.cursor().iternext(keys=True, values=False)] pickle.dump(self.keys, open(cache_file, "wb")) def __getitem__(self, index: int) -> Tuple[Any, Any]: img, target = None, None env = self.env with env.begin(write=False) as txn: imgbuf = txn.get(self.keys[index]) buf = io.BytesIO() buf.write(imgbuf) buf.seek(0) img = Image.open(buf).convert("RGB") if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target def __len__(self) -> int: return self.length class LSUN(VisionDataset): """`LSUN `_ dataset. You will need to install the ``lmdb`` package to use this dataset: run ``pip install lmdb`` Args: root (str or ``pathlib.Path``): Root directory for the database files. classes (string or list): One of {'train', 'val', 'test'} or a list of categories to load. e,g. ['bedroom_train', 'church_outdoor_train']. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. """ def __init__( self, root: Union[str, Path], classes: Union[str, List[str]] = "train", transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, ) -> None: super().__init__(root, transform=transform, target_transform=target_transform) self.classes = self._verify_classes(classes) # for each class, create an LSUNClassDataset self.dbs = [] for c in self.classes: self.dbs.append(LSUNClass(root=os.path.join(root, f"{c}_lmdb"), transform=transform)) self.indices = [] count = 0 for db in self.dbs: count += len(db) self.indices.append(count) self.length = count def _verify_classes(self, classes: Union[str, List[str]]) -> List[str]: categories = [ "bedroom", "bridge", "church_outdoor", "classroom", "conference_room", "dining_room", "kitchen", "living_room", "restaurant", "tower", ] dset_opts = ["train", "val", "test"] try: classes = cast(str, classes) verify_str_arg(classes, "classes", dset_opts) if classes == "test": classes = [classes] else: classes = [c + "_" + classes for c in categories] except ValueError: if not isinstance(classes, Iterable): msg = "Expected type str or Iterable for argument classes, but got type {}." raise ValueError(msg.format(type(classes))) classes = list(classes) msg_fmtstr_type = "Expected type str for elements in argument classes, but got type {}." for c in classes: verify_str_arg(c, custom_msg=msg_fmtstr_type.format(type(c))) c_short = c.split("_") category, dset_opt = "_".join(c_short[:-1]), c_short[-1] msg_fmtstr = "Unknown value '{}' for {}. Valid values are {{{}}}." msg = msg_fmtstr.format(category, "LSUN class", iterable_to_str(categories)) verify_str_arg(category, valid_values=categories, custom_msg=msg) msg = msg_fmtstr.format(dset_opt, "postfix", iterable_to_str(dset_opts)) verify_str_arg(dset_opt, valid_values=dset_opts, custom_msg=msg) return classes def __getitem__(self, index: int) -> Tuple[Any, Any]: """ Args: index (int): Index Returns: tuple: Tuple (image, target) where target is the index of the target category. """ target = 0 sub = 0 for ind in self.indices: if index < ind: break target += 1 sub = ind db = self.dbs[target] index = index - sub if self.target_transform is not None: target = self.target_transform(target) img, _ = db[index] return img, target def __len__(self) -> int: return self.length def extra_repr(self) -> str: return "Classes: {classes}".format(**self.__dict__)