import numbers import sys import warnings from collections import UserList from itertools import compress, islice import numpy as np from scipy.sparse import issparse from ._array_api import _is_numpy_namespace, get_namespace from ._param_validation import Interval, validate_params from .extmath import _approximate_mode from .validation import ( _is_arraylike_not_scalar, _is_pandas_df, _is_polars_df_or_series, _use_interchange_protocol, check_array, check_consistent_length, check_random_state, ) def _array_indexing(array, key, key_dtype, axis): """Index an array or scipy.sparse consistently across NumPy version.""" xp, is_array_api = get_namespace(array) if is_array_api: return xp.take(array, key, axis=axis) if issparse(array) and key_dtype == "bool": key = np.asarray(key) if isinstance(key, tuple): key = list(key) return array[key, ...] if axis == 0 else array[:, key] def _pandas_indexing(X, key, key_dtype, axis): """Index a pandas dataframe or a series.""" if _is_arraylike_not_scalar(key): key = np.asarray(key) if key_dtype == "int" and not (isinstance(key, slice) or np.isscalar(key)): # using take() instead of iloc[] ensures the return value is a "proper" # copy that will not raise SettingWithCopyWarning return X.take(key, axis=axis) else: # check whether we should index with loc or iloc indexer = X.iloc if key_dtype == "int" else X.loc return indexer[:, key] if axis else indexer[key] def _list_indexing(X, key, key_dtype): """Index a Python list.""" if np.isscalar(key) or isinstance(key, slice): # key is a slice or a scalar return X[key] if key_dtype == "bool": # key is a boolean array-like return list(compress(X, key)) # key is a integer array-like of key return [X[idx] for idx in key] def _polars_indexing(X, key, key_dtype, axis): """Indexing X with polars interchange protocol.""" # Polars behavior is more consistent with lists if isinstance(key, np.ndarray): # Convert each element of the array to a Python scalar key = key.tolist() elif not (np.isscalar(key) or isinstance(key, slice)): key = list(key) if axis == 1: # Here we are certain to have a polars DataFrame; which can be indexed with # integer and string scalar, and list of integer, string and boolean return X[:, key] if key_dtype == "bool": # Boolean mask can be indexed in the same way for Series and DataFrame (axis=0) return X.filter(key) # Integer scalar and list of integer can be indexed in the same way for Series and # DataFrame (axis=0) X_indexed = X[key] if np.isscalar(key) and len(X.shape) == 2: # `X_indexed` is a DataFrame with a single row; we return a Series to be # consistent with pandas pl = sys.modules["polars"] return pl.Series(X_indexed.row(0)) return X_indexed def _determine_key_type(key, accept_slice=True): """Determine the data type of key. Parameters ---------- key : scalar, slice or array-like The key from which we want to infer the data type. accept_slice : bool, default=True Whether or not to raise an error if the key is a slice. Returns ------- dtype : {'int', 'str', 'bool', None} Returns the data type of key. """ err_msg = ( "No valid specification of the columns. Only a scalar, list or " "slice of all integers or all strings, or boolean mask is " "allowed" ) dtype_to_str = {int: "int", str: "str", bool: "bool", np.bool_: "bool"} array_dtype_to_str = { "i": "int", "u": "int", "b": "bool", "O": "str", "U": "str", "S": "str", } if key is None: return None if isinstance(key, tuple(dtype_to_str.keys())): try: return dtype_to_str[type(key)] except KeyError: raise ValueError(err_msg) if isinstance(key, slice): if not accept_slice: raise TypeError( "Only array-like or scalar are supported. A Python slice was given." ) if key.start is None and key.stop is None: return None key_start_type = _determine_key_type(key.start) key_stop_type = _determine_key_type(key.stop) if key_start_type is not None and key_stop_type is not None: if key_start_type != key_stop_type: raise ValueError(err_msg) if key_start_type is not None: return key_start_type return key_stop_type # TODO(1.9) remove UserList when the force_int_remainder_cols param # of ColumnTransformer is removed if isinstance(key, (list, tuple, UserList)): unique_key = set(key) key_type = {_determine_key_type(elt) for elt in unique_key} if not key_type: return None if len(key_type) != 1: raise ValueError(err_msg) return key_type.pop() if hasattr(key, "dtype"): xp, is_array_api = get_namespace(key) # NumPy arrays are special-cased in their own branch because the Array API # cannot handle object/string-based dtypes that are often used to index # columns of dataframes by names. if is_array_api and not _is_numpy_namespace(xp): if xp.isdtype(key.dtype, "bool"): return "bool" elif xp.isdtype(key.dtype, "integral"): return "int" else: raise ValueError(err_msg) else: try: return array_dtype_to_str[key.dtype.kind] except KeyError: raise ValueError(err_msg) raise ValueError(err_msg) def _safe_indexing(X, indices, *, axis=0): """Return rows, items or columns of X using indices. .. warning:: This utility is documented, but **private**. This means that backward compatibility might be broken without any deprecation cycle. Parameters ---------- X : array-like, sparse-matrix, list, pandas.DataFrame, pandas.Series Data from which to sample rows, items or columns. `list` are only supported when `axis=0`. indices : bool, int, str, slice, array-like - If `axis=0`, boolean and integer array-like, integer slice, and scalar integer are supported. - If `axis=1`: - to select a single column, `indices` can be of `int` type for all `X` types and `str` only for dataframe. The selected subset will be 1D, unless `X` is a sparse matrix in which case it will be 2D. - to select multiples columns, `indices` can be one of the following: `list`, `array`, `slice`. The type used in these containers can be one of the following: `int`, 'bool' and `str`. However, `str` is only supported when `X` is a dataframe. The selected subset will be 2D. axis : int, default=0 The axis along which `X` will be subsampled. `axis=0` will select rows while `axis=1` will select columns. Returns ------- subset Subset of X on axis 0 or 1. Notes ----- CSR, CSC, and LIL sparse matrices are supported. COO sparse matrices are not supported. Examples -------- >>> import numpy as np >>> from sklearn.utils import _safe_indexing >>> data = np.array([[1, 2], [3, 4], [5, 6]]) >>> _safe_indexing(data, 0, axis=0) # select the first row array([1, 2]) >>> _safe_indexing(data, 0, axis=1) # select the first column array([1, 3, 5]) """ if indices is None: return X if axis not in (0, 1): raise ValueError( "'axis' should be either 0 (to index rows) or 1 (to index " " column). Got {} instead.".format(axis) ) indices_dtype = _determine_key_type(indices) if axis == 0 and indices_dtype == "str": raise ValueError("String indexing is not supported with 'axis=0'") if axis == 1 and isinstance(X, list): raise ValueError("axis=1 is not supported for lists") if axis == 1 and hasattr(X, "shape") and len(X.shape) != 2: raise ValueError( "'X' should be a 2D NumPy array, 2D sparse matrix or " "dataframe when indexing the columns (i.e. 'axis=1'). " "Got {} instead with {} dimension(s).".format(type(X), len(X.shape)) ) if ( axis == 1 and indices_dtype == "str" and not (_is_pandas_df(X) or _use_interchange_protocol(X)) ): raise ValueError( "Specifying the columns using strings is only supported for dataframes." ) if hasattr(X, "iloc"): # TODO: we should probably use _is_pandas_df_or_series(X) instead but this # would require updating some tests such as test_train_test_split_mock_pandas. return _pandas_indexing(X, indices, indices_dtype, axis=axis) elif _is_polars_df_or_series(X): return _polars_indexing(X, indices, indices_dtype, axis=axis) elif hasattr(X, "shape"): return _array_indexing(X, indices, indices_dtype, axis=axis) else: return _list_indexing(X, indices, indices_dtype) def _safe_assign(X, values, *, row_indexer=None, column_indexer=None): """Safe assignment to a numpy array, sparse matrix, or pandas dataframe. Parameters ---------- X : {ndarray, sparse-matrix, dataframe} Array to be modified. It is expected to be 2-dimensional. values : ndarray The values to be assigned to `X`. row_indexer : array-like, dtype={int, bool}, default=None A 1-dimensional array to select the rows of interest. If `None`, all rows are selected. column_indexer : array-like, dtype={int, bool}, default=None A 1-dimensional array to select the columns of interest. If `None`, all columns are selected. """ row_indexer = slice(None, None, None) if row_indexer is None else row_indexer column_indexer = ( slice(None, None, None) if column_indexer is None else column_indexer ) if hasattr(X, "iloc"): # pandas dataframe with warnings.catch_warnings(): # pandas >= 1.5 raises a warning when using iloc to set values in a column # that does not have the same type as the column being set. It happens # for instance when setting a categorical column with a string. # In the future the behavior won't change and the warning should disappear. # TODO(1.3): check if the warning is still raised or remove the filter. warnings.simplefilter("ignore", FutureWarning) X.iloc[row_indexer, column_indexer] = values else: # numpy array or sparse matrix X[row_indexer, column_indexer] = values def _get_column_indices_for_bool_or_int(key, n_columns): # Convert key into list of positive integer indexes try: idx = _safe_indexing(np.arange(n_columns), key) except IndexError as e: raise ValueError( f"all features must be in [0, {n_columns - 1}] or [-{n_columns}, 0]" ) from e return np.atleast_1d(idx).tolist() def _get_column_indices(X, key): """Get feature column indices for input data X and key. For accepted values of `key`, see the docstring of :func:`_safe_indexing`. """ key_dtype = _determine_key_type(key) if _use_interchange_protocol(X): return _get_column_indices_interchange(X.__dataframe__(), key, key_dtype) n_columns = X.shape[1] if isinstance(key, (list, tuple)) and not key: # we get an empty list return [] elif key_dtype in ("bool", "int"): return _get_column_indices_for_bool_or_int(key, n_columns) else: try: all_columns = X.columns except AttributeError: raise ValueError( "Specifying the columns using strings is only supported for dataframes." ) if isinstance(key, str): columns = [key] elif isinstance(key, slice): start, stop = key.start, key.stop if start is not None: start = all_columns.get_loc(start) if stop is not None: # pandas indexing with strings is endpoint included stop = all_columns.get_loc(stop) + 1 else: stop = n_columns + 1 return list(islice(range(n_columns), start, stop)) else: columns = list(key) try: column_indices = [] for col in columns: col_idx = all_columns.get_loc(col) if not isinstance(col_idx, numbers.Integral): raise ValueError( f"Selected columns, {columns}, are not unique in dataframe" ) column_indices.append(col_idx) except KeyError as e: raise ValueError("A given column is not a column of the dataframe") from e return column_indices def _get_column_indices_interchange(X_interchange, key, key_dtype): """Same as _get_column_indices but for X with __dataframe__ protocol.""" n_columns = X_interchange.num_columns() if isinstance(key, (list, tuple)) and not key: # we get an empty list return [] elif key_dtype in ("bool", "int"): return _get_column_indices_for_bool_or_int(key, n_columns) else: column_names = list(X_interchange.column_names()) if isinstance(key, slice): if key.step not in [1, None]: raise NotImplementedError("key.step must be 1 or None") start, stop = key.start, key.stop if start is not None: start = column_names.index(start) if stop is not None: stop = column_names.index(stop) + 1 else: stop = n_columns + 1 return list(islice(range(n_columns), start, stop)) selected_columns = [key] if np.isscalar(key) else key try: return [column_names.index(col) for col in selected_columns] except ValueError as e: raise ValueError("A given column is not a column of the dataframe") from e @validate_params( { "replace": ["boolean"], "n_samples": [Interval(numbers.Integral, 1, None, closed="left"), None], "random_state": ["random_state"], "stratify": ["array-like", "sparse matrix", None], }, prefer_skip_nested_validation=True, ) def resample(*arrays, replace=True, n_samples=None, random_state=None, stratify=None): """Resample arrays or sparse matrices in a consistent way. The default strategy implements one step of the bootstrapping procedure. Parameters ---------- *arrays : sequence of array-like of shape (n_samples,) or \ (n_samples, n_outputs) Indexable data-structures can be arrays, lists, dataframes or scipy sparse matrices with consistent first dimension. replace : bool, default=True Implements resampling with replacement. If False, this will implement (sliced) random permutations. n_samples : int, default=None Number of samples to generate. If left to None this is automatically set to the first dimension of the arrays. If replace is False it should not be larger than the length of arrays. random_state : int, RandomState instance or None, default=None Determines random number generation for shuffling the data. Pass an int for reproducible results across multiple function calls. See :term:`Glossary `. stratify : {array-like, sparse matrix} of shape (n_samples,) or \ (n_samples, n_outputs), default=None If not None, data is split in a stratified fashion, using this as the class labels. Returns ------- resampled_arrays : sequence of array-like of shape (n_samples,) or \ (n_samples, n_outputs) Sequence of resampled copies of the collections. The original arrays are not impacted. See Also -------- shuffle : Shuffle arrays or sparse matrices in a consistent way. Examples -------- It is possible to mix sparse and dense arrays in the same run:: >>> import numpy as np >>> X = np.array([[1., 0.], [2., 1.], [0., 0.]]) >>> y = np.array([0, 1, 2]) >>> from scipy.sparse import coo_matrix >>> X_sparse = coo_matrix(X) >>> from sklearn.utils import resample >>> X, X_sparse, y = resample(X, X_sparse, y, random_state=0) >>> X array([[1., 0.], [2., 1.], [1., 0.]]) >>> X_sparse <3x2 sparse matrix of type '<... 'numpy.float64'>' with 4 stored elements in Compressed Sparse Row format> >>> X_sparse.toarray() array([[1., 0.], [2., 1.], [1., 0.]]) >>> y array([0, 1, 0]) >>> resample(y, n_samples=2, random_state=0) array([0, 1]) Example using stratification:: >>> y = [0, 0, 1, 1, 1, 1, 1, 1, 1] >>> resample(y, n_samples=5, replace=False, stratify=y, ... random_state=0) [1, 1, 1, 0, 1] """ max_n_samples = n_samples random_state = check_random_state(random_state) if len(arrays) == 0: return None first = arrays[0] n_samples = first.shape[0] if hasattr(first, "shape") else len(first) if max_n_samples is None: max_n_samples = n_samples elif (max_n_samples > n_samples) and (not replace): raise ValueError( "Cannot sample %d out of arrays with dim %d when replace is False" % (max_n_samples, n_samples) ) check_consistent_length(*arrays) if stratify is None: if replace: indices = random_state.randint(0, n_samples, size=(max_n_samples,)) else: indices = np.arange(n_samples) random_state.shuffle(indices) indices = indices[:max_n_samples] else: # Code adapted from StratifiedShuffleSplit() y = check_array(stratify, ensure_2d=False, dtype=None) if y.ndim == 2: # for multi-label y, map each distinct row to a string repr # using join because str(row) uses an ellipsis if len(row) > 1000 y = np.array([" ".join(row.astype("str")) for row in y]) classes, y_indices = np.unique(y, return_inverse=True) n_classes = classes.shape[0] class_counts = np.bincount(y_indices) # Find the sorted list of instances for each class: # (np.unique above performs a sort, so code is O(n logn) already) class_indices = np.split( np.argsort(y_indices, kind="mergesort"), np.cumsum(class_counts)[:-1] ) n_i = _approximate_mode(class_counts, max_n_samples, random_state) indices = [] for i in range(n_classes): indices_i = random_state.choice(class_indices[i], n_i[i], replace=replace) indices.extend(indices_i) indices = random_state.permutation(indices) # convert sparse matrices to CSR for row-based indexing arrays = [a.tocsr() if issparse(a) else a for a in arrays] resampled_arrays = [_safe_indexing(a, indices) for a in arrays] if len(resampled_arrays) == 1: # syntactic sugar for the unit argument case return resampled_arrays[0] else: return resampled_arrays def shuffle(*arrays, random_state=None, n_samples=None): """Shuffle arrays or sparse matrices in a consistent way. This is a convenience alias to ``resample(*arrays, replace=False)`` to do random permutations of the collections. Parameters ---------- *arrays : sequence of indexable data-structures Indexable data-structures can be arrays, lists, dataframes or scipy sparse matrices with consistent first dimension. random_state : int, RandomState instance or None, default=None Determines random number generation for shuffling the data. Pass an int for reproducible results across multiple function calls. See :term:`Glossary `. n_samples : int, default=None Number of samples to generate. If left to None this is automatically set to the first dimension of the arrays. It should not be larger than the length of arrays. Returns ------- shuffled_arrays : sequence of indexable data-structures Sequence of shuffled copies of the collections. The original arrays are not impacted. See Also -------- resample : Resample arrays or sparse matrices in a consistent way. Examples -------- It is possible to mix sparse and dense arrays in the same run:: >>> import numpy as np >>> X = np.array([[1., 0.], [2., 1.], [0., 0.]]) >>> y = np.array([0, 1, 2]) >>> from scipy.sparse import coo_matrix >>> X_sparse = coo_matrix(X) >>> from sklearn.utils import shuffle >>> X, X_sparse, y = shuffle(X, X_sparse, y, random_state=0) >>> X array([[0., 0.], [2., 1.], [1., 0.]]) >>> X_sparse <3x2 sparse matrix of type '<... 'numpy.float64'>' with 3 stored elements in Compressed Sparse Row format> >>> X_sparse.toarray() array([[0., 0.], [2., 1.], [1., 0.]]) >>> y array([2, 1, 0]) >>> shuffle(y, n_samples=2, random_state=0) array([0, 1]) """ return resample( *arrays, replace=False, n_samples=n_samples, random_state=random_state )