from sympy.concrete.expr_with_limits import ExprWithLimits from sympy.core.singleton import S from sympy.core.relational import Eq class ReorderError(NotImplementedError): """ Exception raised when trying to reorder dependent limits. """ def __init__(self, expr, msg): super().__init__( "%s could not be reordered: %s." % (expr, msg)) class ExprWithIntLimits(ExprWithLimits): """ Superclass for Product and Sum. See Also ======== sympy.concrete.expr_with_limits.ExprWithLimits sympy.concrete.products.Product sympy.concrete.summations.Sum """ __slots__ = () def change_index(self, var, trafo, newvar=None): r""" Change index of a Sum or Product. Perform a linear transformation `x \mapsto a x + b` on the index variable `x`. For `a` the only values allowed are `\pm 1`. A new variable to be used after the change of index can also be specified. Explanation =========== ``change_index(expr, var, trafo, newvar=None)`` where ``var`` specifies the index variable `x` to transform. The transformation ``trafo`` must be linear and given in terms of ``var``. If the optional argument ``newvar`` is provided then ``var`` gets replaced by ``newvar`` in the final expression. Examples ======== >>> from sympy import Sum, Product, simplify >>> from sympy.abc import x, y, a, b, c, d, u, v, i, j, k, l >>> S = Sum(x, (x, a, b)) >>> S.doit() -a**2/2 + a/2 + b**2/2 + b/2 >>> Sn = S.change_index(x, x + 1, y) >>> Sn Sum(y - 1, (y, a + 1, b + 1)) >>> Sn.doit() -a**2/2 + a/2 + b**2/2 + b/2 >>> Sn = S.change_index(x, -x, y) >>> Sn Sum(-y, (y, -b, -a)) >>> Sn.doit() -a**2/2 + a/2 + b**2/2 + b/2 >>> Sn = S.change_index(x, x+u) >>> Sn Sum(-u + x, (x, a + u, b + u)) >>> Sn.doit() -a**2/2 - a*u + a/2 + b**2/2 + b*u + b/2 - u*(-a + b + 1) + u >>> simplify(Sn.doit()) -a**2/2 + a/2 + b**2/2 + b/2 >>> Sn = S.change_index(x, -x - u, y) >>> Sn Sum(-u - y, (y, -b - u, -a - u)) >>> Sn.doit() -a**2/2 - a*u + a/2 + b**2/2 + b*u + b/2 - u*(-a + b + 1) + u >>> simplify(Sn.doit()) -a**2/2 + a/2 + b**2/2 + b/2 >>> P = Product(i*j**2, (i, a, b), (j, c, d)) >>> P Product(i*j**2, (i, a, b), (j, c, d)) >>> P2 = P.change_index(i, i+3, k) >>> P2 Product(j**2*(k - 3), (k, a + 3, b + 3), (j, c, d)) >>> P3 = P2.change_index(j, -j, l) >>> P3 Product(l**2*(k - 3), (k, a + 3, b + 3), (l, -d, -c)) When dealing with symbols only, we can make a general linear transformation: >>> Sn = S.change_index(x, u*x+v, y) >>> Sn Sum((-v + y)/u, (y, b*u + v, a*u + v)) >>> Sn.doit() -v*(a*u - b*u + 1)/u + (a**2*u**2/2 + a*u*v + a*u/2 - b**2*u**2/2 - b*u*v + b*u/2 + v)/u >>> simplify(Sn.doit()) a**2*u/2 + a/2 - b**2*u/2 + b/2 However, the last result can be inconsistent with usual summation where the index increment is always 1. This is obvious as we get back the original value only for ``u`` equal +1 or -1. See Also ======== sympy.concrete.expr_with_intlimits.ExprWithIntLimits.index, reorder_limit, sympy.concrete.expr_with_intlimits.ExprWithIntLimits.reorder, sympy.concrete.summations.Sum.reverse_order, sympy.concrete.products.Product.reverse_order """ if newvar is None: newvar = var limits = [] for limit in self.limits: if limit[0] == var: p = trafo.as_poly(var) if p.degree() != 1: raise ValueError("Index transformation is not linear") alpha = p.coeff_monomial(var) beta = p.coeff_monomial(S.One) if alpha.is_number: if alpha == S.One: limits.append((newvar, alpha*limit[1] + beta, alpha*limit[2] + beta)) elif alpha == S.NegativeOne: limits.append((newvar, alpha*limit[2] + beta, alpha*limit[1] + beta)) else: raise ValueError("Linear transformation results in non-linear summation stepsize") else: # Note that the case of alpha being symbolic can give issues if alpha < 0. limits.append((newvar, alpha*limit[2] + beta, alpha*limit[1] + beta)) else: limits.append(limit) function = self.function.subs(var, (var - beta)/alpha) function = function.subs(var, newvar) return self.func(function, *limits) def index(expr, x): """ Return the index of a dummy variable in the list of limits. Explanation =========== ``index(expr, x)`` returns the index of the dummy variable ``x`` in the limits of ``expr``. Note that we start counting with 0 at the inner-most limits tuple. Examples ======== >>> from sympy.abc import x, y, a, b, c, d >>> from sympy import Sum, Product >>> Sum(x*y, (x, a, b), (y, c, d)).index(x) 0 >>> Sum(x*y, (x, a, b), (y, c, d)).index(y) 1 >>> Product(x*y, (x, a, b), (y, c, d)).index(x) 0 >>> Product(x*y, (x, a, b), (y, c, d)).index(y) 1 See Also ======== reorder_limit, reorder, sympy.concrete.summations.Sum.reverse_order, sympy.concrete.products.Product.reverse_order """ variables = [limit[0] for limit in expr.limits] if variables.count(x) != 1: raise ValueError(expr, "Number of instances of variable not equal to one") else: return variables.index(x) def reorder(expr, *arg): """ Reorder limits in a expression containing a Sum or a Product. Explanation =========== ``expr.reorder(*arg)`` reorders the limits in the expression ``expr`` according to the list of tuples given by ``arg``. These tuples can contain numerical indices or index variable names or involve both. Examples ======== >>> from sympy import Sum, Product >>> from sympy.abc import x, y, z, a, b, c, d, e, f >>> Sum(x*y, (x, a, b), (y, c, d)).reorder((x, y)) Sum(x*y, (y, c, d), (x, a, b)) >>> Sum(x*y*z, (x, a, b), (y, c, d), (z, e, f)).reorder((x, y), (x, z), (y, z)) Sum(x*y*z, (z, e, f), (y, c, d), (x, a, b)) >>> P = Product(x*y*z, (x, a, b), (y, c, d), (z, e, f)) >>> P.reorder((x, y), (x, z), (y, z)) Product(x*y*z, (z, e, f), (y, c, d), (x, a, b)) We can also select the index variables by counting them, starting with the inner-most one: >>> Sum(x**2, (x, a, b), (x, c, d)).reorder((0, 1)) Sum(x**2, (x, c, d), (x, a, b)) And of course we can mix both schemes: >>> Sum(x*y, (x, a, b), (y, c, d)).reorder((y, x)) Sum(x*y, (y, c, d), (x, a, b)) >>> Sum(x*y, (x, a, b), (y, c, d)).reorder((y, 0)) Sum(x*y, (y, c, d), (x, a, b)) See Also ======== reorder_limit, index, sympy.concrete.summations.Sum.reverse_order, sympy.concrete.products.Product.reverse_order """ new_expr = expr for r in arg: if len(r) != 2: raise ValueError(r, "Invalid number of arguments") index1 = r[0] index2 = r[1] if not isinstance(r[0], int): index1 = expr.index(r[0]) if not isinstance(r[1], int): index2 = expr.index(r[1]) new_expr = new_expr.reorder_limit(index1, index2) return new_expr def reorder_limit(expr, x, y): """ Interchange two limit tuples of a Sum or Product expression. Explanation =========== ``expr.reorder_limit(x, y)`` interchanges two limit tuples. The arguments ``x`` and ``y`` are integers corresponding to the index variables of the two limits which are to be interchanged. The expression ``expr`` has to be either a Sum or a Product. Examples ======== >>> from sympy.abc import x, y, z, a, b, c, d, e, f >>> from sympy import Sum, Product >>> Sum(x*y*z, (x, a, b), (y, c, d), (z, e, f)).reorder_limit(0, 2) Sum(x*y*z, (z, e, f), (y, c, d), (x, a, b)) >>> Sum(x**2, (x, a, b), (x, c, d)).reorder_limit(1, 0) Sum(x**2, (x, c, d), (x, a, b)) >>> Product(x*y*z, (x, a, b), (y, c, d), (z, e, f)).reorder_limit(0, 2) Product(x*y*z, (z, e, f), (y, c, d), (x, a, b)) See Also ======== index, reorder, sympy.concrete.summations.Sum.reverse_order, sympy.concrete.products.Product.reverse_order """ var = {limit[0] for limit in expr.limits} limit_x = expr.limits[x] limit_y = expr.limits[y] if (len(set(limit_x[1].free_symbols).intersection(var)) == 0 and len(set(limit_x[2].free_symbols).intersection(var)) == 0 and len(set(limit_y[1].free_symbols).intersection(var)) == 0 and len(set(limit_y[2].free_symbols).intersection(var)) == 0): limits = [] for i, limit in enumerate(expr.limits): if i == x: limits.append(limit_y) elif i == y: limits.append(limit_x) else: limits.append(limit) return type(expr)(expr.function, *limits) else: raise ReorderError(expr, "could not interchange the two limits specified") @property def has_empty_sequence(self): """ Returns True if the Sum or Product is computed for an empty sequence. Examples ======== >>> from sympy import Sum, Product, Symbol >>> m = Symbol('m') >>> Sum(m, (m, 1, 0)).has_empty_sequence True >>> Sum(m, (m, 1, 1)).has_empty_sequence False >>> M = Symbol('M', integer=True, positive=True) >>> Product(m, (m, 1, M)).has_empty_sequence False >>> Product(m, (m, 2, M)).has_empty_sequence >>> Product(m, (m, M + 1, M)).has_empty_sequence True >>> N = Symbol('N', integer=True, positive=True) >>> Sum(m, (m, N, M)).has_empty_sequence >>> N = Symbol('N', integer=True, negative=True) >>> Sum(m, (m, N, M)).has_empty_sequence False See Also ======== has_reversed_limits has_finite_limits """ ret_None = False for lim in self.limits: dif = lim[1] - lim[2] eq = Eq(dif, 1) if eq == True: return True elif eq == False: continue else: ret_None = True if ret_None: return None return False