from sympy.physics.secondquant import ( Dagger, Bd, VarBosonicBasis, BBra, B, BKet, FixedBosonicBasis, matrix_rep, apply_operators, InnerProduct, Commutator, KroneckerDelta, AnnihilateBoson, CreateBoson, BosonicOperator, F, Fd, FKet, BosonState, CreateFermion, AnnihilateFermion, evaluate_deltas, AntiSymmetricTensor, contraction, NO, wicks, PermutationOperator, simplify_index_permutations, _sort_anticommuting_fermions, _get_ordered_dummies, substitute_dummies, FockStateBosonKet, ContractionAppliesOnlyToFermions ) from sympy.concrete.summations import Sum from sympy.core.function import (Function, expand) from sympy.core.numbers import (I, Rational) from sympy.core.singleton import S from sympy.core.symbol import (Dummy, Symbol, symbols) from sympy.functions.elementary.miscellaneous import sqrt from sympy.printing.repr import srepr from sympy.simplify.simplify import simplify from sympy.testing.pytest import slow, raises from sympy.printing.latex import latex def test_PermutationOperator(): p, q, r, s = symbols('p,q,r,s') f, g, h, i = map(Function, 'fghi') P = PermutationOperator assert P(p, q).get_permuted(f(p)*g(q)) == -f(q)*g(p) assert P(p, q).get_permuted(f(p, q)) == -f(q, p) assert P(p, q).get_permuted(f(p)) == f(p) expr = (f(p)*g(q)*h(r)*i(s) - f(q)*g(p)*h(r)*i(s) - f(p)*g(q)*h(s)*i(r) + f(q)*g(p)*h(s)*i(r)) perms = [P(p, q), P(r, s)] assert (simplify_index_permutations(expr, perms) == P(p, q)*P(r, s)*f(p)*g(q)*h(r)*i(s)) assert latex(P(p, q)) == 'P(pq)' def test_index_permutations_with_dummies(): a, b, c, d = symbols('a b c d') p, q, r, s = symbols('p q r s', cls=Dummy) f, g = map(Function, 'fg') P = PermutationOperator # No dummy substitution necessary expr = f(a, b, p, q) - f(b, a, p, q) assert simplify_index_permutations( expr, [P(a, b)]) == P(a, b)*f(a, b, p, q) # Cases where dummy substitution is needed expected = P(a, b)*substitute_dummies(f(a, b, p, q)) expr = f(a, b, p, q) - f(b, a, q, p) result = simplify_index_permutations(expr, [P(a, b)]) assert expected == substitute_dummies(result) expr = f(a, b, q, p) - f(b, a, p, q) result = simplify_index_permutations(expr, [P(a, b)]) assert expected == substitute_dummies(result) # A case where nothing can be done expr = f(a, b, q, p) - g(b, a, p, q) result = simplify_index_permutations(expr, [P(a, b)]) assert expr == result def test_dagger(): i, j, n, m = symbols('i,j,n,m') assert Dagger(1) == 1 assert Dagger(1.0) == 1.0 assert Dagger(2*I) == -2*I assert Dagger(S.Half*I/3.0) == I*Rational(-1, 2)/3.0 assert Dagger(BKet([n])) == BBra([n]) assert Dagger(B(0)) == Bd(0) assert Dagger(Bd(0)) == B(0) assert Dagger(B(n)) == Bd(n) assert Dagger(Bd(n)) == B(n) assert Dagger(B(0) + B(1)) == Bd(0) + Bd(1) assert Dagger(n*m) == Dagger(n)*Dagger(m) # n, m commute assert Dagger(B(n)*B(m)) == Bd(m)*Bd(n) assert Dagger(B(n)**10) == Dagger(B(n))**10 assert Dagger('a') == Dagger(Symbol('a')) assert Dagger(Dagger('a')) == Symbol('a') def test_operator(): i, j = symbols('i,j') o = BosonicOperator(i) assert o.state == i assert o.is_symbolic o = BosonicOperator(1) assert o.state == 1 assert not o.is_symbolic def test_create(): i, j, n, m = symbols('i,j,n,m') o = Bd(i) assert latex(o) == "{b^\\dagger_{i}}" assert isinstance(o, CreateBoson) o = o.subs(i, j) assert o.atoms(Symbol) == {j} o = Bd(0) assert o.apply_operator(BKet([n])) == sqrt(n + 1)*BKet([n + 1]) o = Bd(n) assert o.apply_operator(BKet([n])) == o*BKet([n]) def test_annihilate(): i, j, n, m = symbols('i,j,n,m') o = B(i) assert latex(o) == "b_{i}" assert isinstance(o, AnnihilateBoson) o = o.subs(i, j) assert o.atoms(Symbol) == {j} o = B(0) assert o.apply_operator(BKet([n])) == sqrt(n)*BKet([n - 1]) o = B(n) assert o.apply_operator(BKet([n])) == o*BKet([n]) def test_basic_state(): i, j, n, m = symbols('i,j,n,m') s = BosonState([0, 1, 2, 3, 4]) assert len(s) == 5 assert s.args[0] == tuple(range(5)) assert s.up(0) == BosonState([1, 1, 2, 3, 4]) assert s.down(4) == BosonState([0, 1, 2, 3, 3]) for i in range(5): assert s.up(i).down(i) == s assert s.down(0) == 0 for i in range(5): assert s[i] == i s = BosonState([n, m]) assert s.down(0) == BosonState([n - 1, m]) assert s.up(0) == BosonState([n + 1, m]) def test_basic_apply(): n = symbols("n") e = B(0)*BKet([n]) assert apply_operators(e) == sqrt(n)*BKet([n - 1]) e = Bd(0)*BKet([n]) assert apply_operators(e) == sqrt(n + 1)*BKet([n + 1]) def test_complex_apply(): n, m = symbols("n,m") o = Bd(0)*B(0)*Bd(1)*B(0) e = apply_operators(o*BKet([n, m])) answer = sqrt(n)*sqrt(m + 1)*(-1 + n)*BKet([-1 + n, 1 + m]) assert expand(e) == expand(answer) def test_number_operator(): n = symbols("n") o = Bd(0)*B(0) e = apply_operators(o*BKet([n])) assert e == n*BKet([n]) def test_inner_product(): i, j, k, l = symbols('i,j,k,l') s1 = BBra([0]) s2 = BKet([1]) assert InnerProduct(s1, Dagger(s1)) == 1 assert InnerProduct(s1, s2) == 0 s1 = BBra([i, j]) s2 = BKet([k, l]) r = InnerProduct(s1, s2) assert r == KroneckerDelta(i, k)*KroneckerDelta(j, l) def test_symbolic_matrix_elements(): n, m = symbols('n,m') s1 = BBra([n]) s2 = BKet([m]) o = B(0) e = apply_operators(s1*o*s2) assert e == sqrt(m)*KroneckerDelta(n, m - 1) def test_matrix_elements(): b = VarBosonicBasis(5) o = B(0) m = matrix_rep(o, b) for i in range(4): assert m[i, i + 1] == sqrt(i + 1) o = Bd(0) m = matrix_rep(o, b) for i in range(4): assert m[i + 1, i] == sqrt(i + 1) def test_fixed_bosonic_basis(): b = FixedBosonicBasis(2, 2) # assert b == [FockState((2, 0)), FockState((1, 1)), FockState((0, 2))] state = b.state(1) assert state == FockStateBosonKet((1, 1)) assert b.index(state) == 1 assert b.state(1) == b[1] assert len(b) == 3 assert str(b) == '[FockState((2, 0)), FockState((1, 1)), FockState((0, 2))]' assert repr(b) == '[FockState((2, 0)), FockState((1, 1)), FockState((0, 2))]' assert srepr(b) == '[FockState((2, 0)), FockState((1, 1)), FockState((0, 2))]' @slow def test_sho(): n, m = symbols('n,m') h_n = Bd(n)*B(n)*(n + S.Half) H = Sum(h_n, (n, 0, 5)) o = H.doit(deep=False) b = FixedBosonicBasis(2, 6) m = matrix_rep(o, b) # We need to double check these energy values to make sure that they # are correct and have the proper degeneracies! diag = [1, 2, 3, 3, 4, 5, 4, 5, 6, 7, 5, 6, 7, 8, 9, 6, 7, 8, 9, 10, 11] for i in range(len(diag)): assert diag[i] == m[i, i] def test_commutation(): n, m = symbols("n,m", above_fermi=True) c = Commutator(B(0), Bd(0)) assert c == 1 c = Commutator(Bd(0), B(0)) assert c == -1 c = Commutator(B(n), Bd(0)) assert c == KroneckerDelta(n, 0) c = Commutator(B(0), B(0)) assert c == 0 c = Commutator(B(0), Bd(0)) e = simplify(apply_operators(c*BKet([n]))) assert e == BKet([n]) c = Commutator(B(0), B(1)) e = simplify(apply_operators(c*BKet([n, m]))) assert e == 0 c = Commutator(F(m), Fd(m)) assert c == +1 - 2*NO(Fd(m)*F(m)) c = Commutator(Fd(m), F(m)) assert c.expand() == -1 + 2*NO(Fd(m)*F(m)) C = Commutator X, Y, Z = symbols('X,Y,Z', commutative=False) assert C(C(X, Y), Z) != 0 assert C(C(X, Z), Y) != 0 assert C(Y, C(X, Z)) != 0 i, j, k, l = symbols('i,j,k,l', below_fermi=True) a, b, c, d = symbols('a,b,c,d', above_fermi=True) p, q, r, s = symbols('p,q,r,s') D = KroneckerDelta assert C(Fd(a), F(i)) == -2*NO(F(i)*Fd(a)) assert C(Fd(j), NO(Fd(a)*F(i))).doit(wicks=True) == -D(j, i)*Fd(a) assert C(Fd(a)*F(i), Fd(b)*F(j)).doit(wicks=True) == 0 c1 = Commutator(F(a), Fd(a)) assert Commutator.eval(c1, c1) == 0 c = Commutator(Fd(a)*F(i),Fd(b)*F(j)) assert latex(c) == r'\left[{a^\dagger_{a}} a_{i},{a^\dagger_{b}} a_{j}\right]' assert repr(c) == 'Commutator(CreateFermion(a)*AnnihilateFermion(i),CreateFermion(b)*AnnihilateFermion(j))' assert str(c) == '[CreateFermion(a)*AnnihilateFermion(i),CreateFermion(b)*AnnihilateFermion(j)]' def test_create_f(): i, j, n, m = symbols('i,j,n,m') o = Fd(i) assert isinstance(o, CreateFermion) o = o.subs(i, j) assert o.atoms(Symbol) == {j} o = Fd(1) assert o.apply_operator(FKet([n])) == FKet([1, n]) assert o.apply_operator(FKet([n])) == -FKet([n, 1]) o = Fd(n) assert o.apply_operator(FKet([])) == FKet([n]) vacuum = FKet([], fermi_level=4) assert vacuum == FKet([], fermi_level=4) i, j, k, l = symbols('i,j,k,l', below_fermi=True) a, b, c, d = symbols('a,b,c,d', above_fermi=True) p, q, r, s = symbols('p,q,r,s') assert Fd(i).apply_operator(FKet([i, j, k], 4)) == FKet([j, k], 4) assert Fd(a).apply_operator(FKet([i, b, k], 4)) == FKet([a, i, b, k], 4) assert Dagger(B(p)).apply_operator(q) == q*CreateBoson(p) assert repr(Fd(p)) == 'CreateFermion(p)' assert srepr(Fd(p)) == "CreateFermion(Symbol('p'))" assert latex(Fd(p)) == r'{a^\dagger_{p}}' def test_annihilate_f(): i, j, n, m = symbols('i,j,n,m') o = F(i) assert isinstance(o, AnnihilateFermion) o = o.subs(i, j) assert o.atoms(Symbol) == {j} o = F(1) assert o.apply_operator(FKet([1, n])) == FKet([n]) assert o.apply_operator(FKet([n, 1])) == -FKet([n]) o = F(n) assert o.apply_operator(FKet([n])) == FKet([]) i, j, k, l = symbols('i,j,k,l', below_fermi=True) a, b, c, d = symbols('a,b,c,d', above_fermi=True) p, q, r, s = symbols('p,q,r,s') assert F(i).apply_operator(FKet([i, j, k], 4)) == 0 assert F(a).apply_operator(FKet([i, b, k], 4)) == 0 assert F(l).apply_operator(FKet([i, j, k], 3)) == 0 assert F(l).apply_operator(FKet([i, j, k], 4)) == FKet([l, i, j, k], 4) assert str(F(p)) == 'f(p)' assert repr(F(p)) == 'AnnihilateFermion(p)' assert srepr(F(p)) == "AnnihilateFermion(Symbol('p'))" assert latex(F(p)) == 'a_{p}' def test_create_b(): i, j, n, m = symbols('i,j,n,m') o = Bd(i) assert isinstance(o, CreateBoson) o = o.subs(i, j) assert o.atoms(Symbol) == {j} o = Bd(0) assert o.apply_operator(BKet([n])) == sqrt(n + 1)*BKet([n + 1]) o = Bd(n) assert o.apply_operator(BKet([n])) == o*BKet([n]) def test_annihilate_b(): i, j, n, m = symbols('i,j,n,m') o = B(i) assert isinstance(o, AnnihilateBoson) o = o.subs(i, j) assert o.atoms(Symbol) == {j} o = B(0) def test_wicks(): p, q, r, s = symbols('p,q,r,s', above_fermi=True) # Testing for particles only str = F(p)*Fd(q) assert wicks(str) == NO(F(p)*Fd(q)) + KroneckerDelta(p, q) str = Fd(p)*F(q) assert wicks(str) == NO(Fd(p)*F(q)) str = F(p)*Fd(q)*F(r)*Fd(s) nstr = wicks(str) fasit = NO( KroneckerDelta(p, q)*KroneckerDelta(r, s) + KroneckerDelta(p, q)*AnnihilateFermion(r)*CreateFermion(s) + KroneckerDelta(r, s)*AnnihilateFermion(p)*CreateFermion(q) - KroneckerDelta(p, s)*AnnihilateFermion(r)*CreateFermion(q) - AnnihilateFermion(p)*AnnihilateFermion(r)*CreateFermion(q)*CreateFermion(s)) assert nstr == fasit assert (p*q*nstr).expand() == wicks(p*q*str) assert (nstr*p*q*2).expand() == wicks(str*p*q*2) # Testing CC equations particles and holes i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy) a, b, c, d = symbols('a b c d', above_fermi=True, cls=Dummy) p, q, r, s = symbols('p q r s', cls=Dummy) assert (wicks(F(a)*NO(F(i)*F(j))*Fd(b)) == NO(F(a)*F(i)*F(j)*Fd(b)) + KroneckerDelta(a, b)*NO(F(i)*F(j))) assert (wicks(F(a)*NO(F(i)*F(j)*F(k))*Fd(b)) == NO(F(a)*F(i)*F(j)*F(k)*Fd(b)) - KroneckerDelta(a, b)*NO(F(i)*F(j)*F(k))) expr = wicks(Fd(i)*NO(Fd(j)*F(k))*F(l)) assert (expr == -KroneckerDelta(i, k)*NO(Fd(j)*F(l)) - KroneckerDelta(j, l)*NO(Fd(i)*F(k)) - KroneckerDelta(i, k)*KroneckerDelta(j, l) + KroneckerDelta(i, l)*NO(Fd(j)*F(k)) + NO(Fd(i)*Fd(j)*F(k)*F(l))) expr = wicks(F(a)*NO(F(b)*Fd(c))*Fd(d)) assert (expr == -KroneckerDelta(a, c)*NO(F(b)*Fd(d)) - KroneckerDelta(b, d)*NO(F(a)*Fd(c)) - KroneckerDelta(a, c)*KroneckerDelta(b, d) + KroneckerDelta(a, d)*NO(F(b)*Fd(c)) + NO(F(a)*F(b)*Fd(c)*Fd(d))) def test_NO(): i, j, k, l = symbols('i j k l', below_fermi=True) a, b, c, d = symbols('a b c d', above_fermi=True) p, q, r, s = symbols('p q r s', cls=Dummy) assert (NO(Fd(p)*F(q) + Fd(a)*F(b)) == NO(Fd(p)*F(q)) + NO(Fd(a)*F(b))) assert (NO(Fd(i)*NO(F(j)*Fd(a))) == NO(Fd(i)*F(j)*Fd(a))) assert NO(1) == 1 assert NO(i) == i assert (NO(Fd(a)*Fd(b)*(F(c) + F(d))) == NO(Fd(a)*Fd(b)*F(c)) + NO(Fd(a)*Fd(b)*F(d))) assert NO(Fd(a)*F(b))._remove_brackets() == Fd(a)*F(b) assert NO(F(j)*Fd(i))._remove_brackets() == F(j)*Fd(i) assert (NO(Fd(p)*F(q)).subs(Fd(p), Fd(a) + Fd(i)) == NO(Fd(a)*F(q)) + NO(Fd(i)*F(q))) assert (NO(Fd(p)*F(q)).subs(F(q), F(a) + F(i)) == NO(Fd(p)*F(a)) + NO(Fd(p)*F(i))) expr = NO(Fd(p)*F(q))._remove_brackets() assert wicks(expr) == NO(expr) assert NO(Fd(a)*F(b)) == - NO(F(b)*Fd(a)) no = NO(Fd(a)*F(i)*F(b)*Fd(j)) l1 = list(no.iter_q_creators()) assert l1 == [0, 1] l2 = list(no.iter_q_annihilators()) assert l2 == [3, 2] no = NO(Fd(a)*Fd(i)) assert no.has_q_creators == 1 assert no.has_q_annihilators == -1 assert str(no) == ':CreateFermion(a)*CreateFermion(i):' assert repr(no) == 'NO(CreateFermion(a)*CreateFermion(i))' assert latex(no) == r'\left\{{a^\dagger_{a}} {a^\dagger_{i}}\right\}' raises(NotImplementedError, lambda: NO(Bd(p)*F(q))) def test_sorting(): i, j = symbols('i,j', below_fermi=True) a, b = symbols('a,b', above_fermi=True) p, q = symbols('p,q') # p, q assert _sort_anticommuting_fermions([Fd(p), F(q)]) == ([Fd(p), F(q)], 0) assert _sort_anticommuting_fermions([F(p), Fd(q)]) == ([Fd(q), F(p)], 1) # i, p assert _sort_anticommuting_fermions([F(p), Fd(i)]) == ([F(p), Fd(i)], 0) assert _sort_anticommuting_fermions([Fd(i), F(p)]) == ([F(p), Fd(i)], 1) assert _sort_anticommuting_fermions([Fd(p), Fd(i)]) == ([Fd(p), Fd(i)], 0) assert _sort_anticommuting_fermions([Fd(i), Fd(p)]) == ([Fd(p), Fd(i)], 1) assert _sort_anticommuting_fermions([F(p), F(i)]) == ([F(i), F(p)], 1) assert _sort_anticommuting_fermions([F(i), F(p)]) == ([F(i), F(p)], 0) assert _sort_anticommuting_fermions([Fd(p), F(i)]) == ([F(i), Fd(p)], 1) assert _sort_anticommuting_fermions([F(i), Fd(p)]) == ([F(i), Fd(p)], 0) # a, p assert _sort_anticommuting_fermions([F(p), Fd(a)]) == ([Fd(a), F(p)], 1) assert _sort_anticommuting_fermions([Fd(a), F(p)]) == ([Fd(a), F(p)], 0) assert _sort_anticommuting_fermions([Fd(p), Fd(a)]) == ([Fd(a), Fd(p)], 1) assert _sort_anticommuting_fermions([Fd(a), Fd(p)]) == ([Fd(a), Fd(p)], 0) assert _sort_anticommuting_fermions([F(p), F(a)]) == ([F(p), F(a)], 0) assert _sort_anticommuting_fermions([F(a), F(p)]) == ([F(p), F(a)], 1) assert _sort_anticommuting_fermions([Fd(p), F(a)]) == ([Fd(p), F(a)], 0) assert _sort_anticommuting_fermions([F(a), Fd(p)]) == ([Fd(p), F(a)], 1) # i, a assert _sort_anticommuting_fermions([F(i), Fd(j)]) == ([F(i), Fd(j)], 0) assert _sort_anticommuting_fermions([Fd(j), F(i)]) == ([F(i), Fd(j)], 1) assert _sort_anticommuting_fermions([Fd(a), Fd(i)]) == ([Fd(a), Fd(i)], 0) assert _sort_anticommuting_fermions([Fd(i), Fd(a)]) == ([Fd(a), Fd(i)], 1) assert _sort_anticommuting_fermions([F(a), F(i)]) == ([F(i), F(a)], 1) assert _sort_anticommuting_fermions([F(i), F(a)]) == ([F(i), F(a)], 0) def test_contraction(): i, j, k, l = symbols('i,j,k,l', below_fermi=True) a, b, c, d = symbols('a,b,c,d', above_fermi=True) p, q, r, s = symbols('p,q,r,s') assert contraction(Fd(i), F(j)) == KroneckerDelta(i, j) assert contraction(F(a), Fd(b)) == KroneckerDelta(a, b) assert contraction(F(a), Fd(i)) == 0 assert contraction(Fd(a), F(i)) == 0 assert contraction(F(i), Fd(a)) == 0 assert contraction(Fd(i), F(a)) == 0 assert contraction(Fd(i), F(p)) == KroneckerDelta(i, p) restr = evaluate_deltas(contraction(Fd(p), F(q))) assert restr.is_only_below_fermi restr = evaluate_deltas(contraction(F(p), Fd(q))) assert restr.is_only_above_fermi raises(ContractionAppliesOnlyToFermions, lambda: contraction(B(a), Fd(b))) def test_evaluate_deltas(): i, j, k = symbols('i,j,k') r = KroneckerDelta(i, j) * KroneckerDelta(j, k) assert evaluate_deltas(r) == KroneckerDelta(i, k) r = KroneckerDelta(i, 0) * KroneckerDelta(j, k) assert evaluate_deltas(r) == KroneckerDelta(i, 0) * KroneckerDelta(j, k) r = KroneckerDelta(1, j) * KroneckerDelta(j, k) assert evaluate_deltas(r) == KroneckerDelta(1, k) r = KroneckerDelta(j, 2) * KroneckerDelta(k, j) assert evaluate_deltas(r) == KroneckerDelta(2, k) r = KroneckerDelta(i, 0) * KroneckerDelta(i, j) * KroneckerDelta(j, 1) assert evaluate_deltas(r) == 0 r = (KroneckerDelta(0, i) * KroneckerDelta(0, j) * KroneckerDelta(1, j) * KroneckerDelta(1, j)) assert evaluate_deltas(r) == 0 def test_Tensors(): i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy) a, b, c, d = symbols('a b c d', above_fermi=True, cls=Dummy) p, q, r, s = symbols('p q r s') AT = AntiSymmetricTensor assert AT('t', (a, b), (i, j)) == -AT('t', (b, a), (i, j)) assert AT('t', (a, b), (i, j)) == AT('t', (b, a), (j, i)) assert AT('t', (a, b), (i, j)) == -AT('t', (a, b), (j, i)) assert AT('t', (a, a), (i, j)) == 0 assert AT('t', (a, b), (i, i)) == 0 assert AT('t', (a, b, c), (i, j)) == -AT('t', (b, a, c), (i, j)) assert AT('t', (a, b, c), (i, j, k)) == AT('t', (b, a, c), (i, k, j)) tabij = AT('t', (a, b), (i, j)) assert tabij.has(a) assert tabij.has(b) assert tabij.has(i) assert tabij.has(j) assert tabij.subs(b, c) == AT('t', (a, c), (i, j)) assert (2*tabij).subs(i, c) == 2*AT('t', (a, b), (c, j)) assert tabij.symbol == Symbol('t') assert latex(tabij) == '{t^{ab}_{ij}}' assert str(tabij) == 't((_a, _b),(_i, _j))' assert AT('t', (a, a), (i, j)).subs(a, b) == AT('t', (b, b), (i, j)) assert AT('t', (a, i), (a, j)).subs(a, b) == AT('t', (b, i), (b, j)) def test_fully_contracted(): i, j, k, l = symbols('i j k l', below_fermi=True) a, b, c, d = symbols('a b c d', above_fermi=True) p, q, r, s = symbols('p q r s', cls=Dummy) Fock = (AntiSymmetricTensor('f', (p,), (q,))* NO(Fd(p)*F(q))) V = (AntiSymmetricTensor('v', (p, q), (r, s))* NO(Fd(p)*Fd(q)*F(s)*F(r)))/4 Fai = wicks(NO(Fd(i)*F(a))*Fock, keep_only_fully_contracted=True, simplify_kronecker_deltas=True) assert Fai == AntiSymmetricTensor('f', (a,), (i,)) Vabij = wicks(NO(Fd(i)*Fd(j)*F(b)*F(a))*V, keep_only_fully_contracted=True, simplify_kronecker_deltas=True) assert Vabij == AntiSymmetricTensor('v', (a, b), (i, j)) def test_substitute_dummies_without_dummies(): i, j = symbols('i,j') assert substitute_dummies(att(i, j) + 2) == att(i, j) + 2 assert substitute_dummies(att(i, j) + 1) == att(i, j) + 1 def test_substitute_dummies_NO_operator(): i, j = symbols('i j', cls=Dummy) assert substitute_dummies(att(i, j)*NO(Fd(i)*F(j)) - att(j, i)*NO(Fd(j)*F(i))) == 0 def test_substitute_dummies_SQ_operator(): i, j = symbols('i j', cls=Dummy) assert substitute_dummies(att(i, j)*Fd(i)*F(j) - att(j, i)*Fd(j)*F(i)) == 0 def test_substitute_dummies_new_indices(): i, j = symbols('i j', below_fermi=True, cls=Dummy) a, b = symbols('a b', above_fermi=True, cls=Dummy) p, q = symbols('p q', cls=Dummy) f = Function('f') assert substitute_dummies(f(i, a, p) - f(j, b, q), new_indices=True) == 0 def test_substitute_dummies_substitution_order(): i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy) f = Function('f') from sympy.utilities.iterables import variations for permut in variations([i, j, k, l], 4): assert substitute_dummies(f(*permut) - f(i, j, k, l)) == 0 def test_dummy_order_inner_outer_lines_VT1T1T1(): ii = symbols('i', below_fermi=True) aa = symbols('a', above_fermi=True) k, l = symbols('k l', below_fermi=True, cls=Dummy) c, d = symbols('c d', above_fermi=True, cls=Dummy) v = Function('v') t = Function('t') dums = _get_ordered_dummies # Coupled-Cluster T1 terms with V*T1*T1*T1 # t^{a}_{k} t^{c}_{i} t^{d}_{l} v^{lk}_{dc} exprs = [ # permut v and t <=> swapping internal lines, equivalent # irrespective of symmetries in v v(k, l, c, d)*t(c, ii)*t(d, l)*t(aa, k), v(l, k, c, d)*t(c, ii)*t(d, k)*t(aa, l), v(k, l, d, c)*t(d, ii)*t(c, l)*t(aa, k), v(l, k, d, c)*t(d, ii)*t(c, k)*t(aa, l), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_dummy_order_inner_outer_lines_VT1T1T1T1(): ii, jj = symbols('i j', below_fermi=True) aa, bb = symbols('a b', above_fermi=True) k, l = symbols('k l', below_fermi=True, cls=Dummy) c, d = symbols('c d', above_fermi=True, cls=Dummy) v = Function('v') t = Function('t') dums = _get_ordered_dummies # Coupled-Cluster T2 terms with V*T1*T1*T1*T1 exprs = [ # permut t <=> swapping external lines, not equivalent # except if v has certain symmetries. v(k, l, c, d)*t(c, ii)*t(d, jj)*t(aa, k)*t(bb, l), v(k, l, c, d)*t(c, jj)*t(d, ii)*t(aa, k)*t(bb, l), v(k, l, c, d)*t(c, ii)*t(d, jj)*t(bb, k)*t(aa, l), v(k, l, c, d)*t(c, jj)*t(d, ii)*t(bb, k)*t(aa, l), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) != substitute_dummies(permut) exprs = [ # permut v <=> swapping external lines, not equivalent # except if v has certain symmetries. # # Note that in contrast to above, these permutations have identical # dummy order. That is because the proximity to external indices # has higher influence on the canonical dummy ordering than the # position of a dummy on the factors. In fact, the terms here are # similar in structure as the result of the dummy substitutions above. v(k, l, c, d)*t(c, ii)*t(d, jj)*t(aa, k)*t(bb, l), v(l, k, c, d)*t(c, ii)*t(d, jj)*t(aa, k)*t(bb, l), v(k, l, d, c)*t(c, ii)*t(d, jj)*t(aa, k)*t(bb, l), v(l, k, d, c)*t(c, ii)*t(d, jj)*t(aa, k)*t(bb, l), ] for permut in exprs[1:]: assert dums(exprs[0]) == dums(permut) assert substitute_dummies(exprs[0]) != substitute_dummies(permut) exprs = [ # permut t and v <=> swapping internal lines, equivalent. # Canonical dummy order is different, and a consistent # substitution reveals the equivalence. v(k, l, c, d)*t(c, ii)*t(d, jj)*t(aa, k)*t(bb, l), v(k, l, d, c)*t(c, jj)*t(d, ii)*t(aa, k)*t(bb, l), v(l, k, c, d)*t(c, ii)*t(d, jj)*t(bb, k)*t(aa, l), v(l, k, d, c)*t(c, jj)*t(d, ii)*t(bb, k)*t(aa, l), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_get_subNO(): p, q, r = symbols('p,q,r') assert NO(F(p)*F(q)*F(r)).get_subNO(1) == NO(F(p)*F(r)) assert NO(F(p)*F(q)*F(r)).get_subNO(0) == NO(F(q)*F(r)) assert NO(F(p)*F(q)*F(r)).get_subNO(2) == NO(F(p)*F(q)) def test_equivalent_internal_lines_VT1T1(): i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy) a, b, c, d = symbols('a b c d', above_fermi=True, cls=Dummy) v = Function('v') t = Function('t') dums = _get_ordered_dummies exprs = [ # permute v. Different dummy order. Not equivalent. v(i, j, a, b)*t(a, i)*t(b, j), v(j, i, a, b)*t(a, i)*t(b, j), v(i, j, b, a)*t(a, i)*t(b, j), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) != substitute_dummies(permut) exprs = [ # permute v. Different dummy order. Equivalent v(i, j, a, b)*t(a, i)*t(b, j), v(j, i, b, a)*t(a, i)*t(b, j), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) == substitute_dummies(permut) exprs = [ # permute t. Same dummy order, not equivalent. v(i, j, a, b)*t(a, i)*t(b, j), v(i, j, a, b)*t(b, i)*t(a, j), ] for permut in exprs[1:]: assert dums(exprs[0]) == dums(permut) assert substitute_dummies(exprs[0]) != substitute_dummies(permut) exprs = [ # permute v and t. Different dummy order, equivalent v(i, j, a, b)*t(a, i)*t(b, j), v(j, i, a, b)*t(a, j)*t(b, i), v(i, j, b, a)*t(b, i)*t(a, j), v(j, i, b, a)*t(b, j)*t(a, i), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_equivalent_internal_lines_VT2conjT2(): # this diagram requires special handling in TCE i, j, k, l, m, n = symbols('i j k l m n', below_fermi=True, cls=Dummy) a, b, c, d, e, f = symbols('a b c d e f', above_fermi=True, cls=Dummy) p1, p2, p3, p4 = symbols('p1 p2 p3 p4', above_fermi=True, cls=Dummy) h1, h2, h3, h4 = symbols('h1 h2 h3 h4', below_fermi=True, cls=Dummy) from sympy.utilities.iterables import variations v = Function('v') t = Function('t') dums = _get_ordered_dummies # v(abcd)t(abij)t(ijcd) template = v(p1, p2, p3, p4)*t(p1, p2, i, j)*t(i, j, p3, p4) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert dums(base) != dums(expr) assert substitute_dummies(expr) == substitute_dummies(base) template = v(p1, p2, p3, p4)*t(p1, p2, j, i)*t(j, i, p3, p4) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert dums(base) != dums(expr) assert substitute_dummies(expr) == substitute_dummies(base) # v(abcd)t(abij)t(jicd) template = v(p1, p2, p3, p4)*t(p1, p2, i, j)*t(j, i, p3, p4) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert dums(base) != dums(expr) assert substitute_dummies(expr) == substitute_dummies(base) template = v(p1, p2, p3, p4)*t(p1, p2, j, i)*t(i, j, p3, p4) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert dums(base) != dums(expr) assert substitute_dummies(expr) == substitute_dummies(base) def test_equivalent_internal_lines_VT2conjT2_ambiguous_order(): # These diagrams invokes _determine_ambiguous() because the # dummies can not be ordered unambiguously by the key alone i, j, k, l, m, n = symbols('i j k l m n', below_fermi=True, cls=Dummy) a, b, c, d, e, f = symbols('a b c d e f', above_fermi=True, cls=Dummy) p1, p2, p3, p4 = symbols('p1 p2 p3 p4', above_fermi=True, cls=Dummy) h1, h2, h3, h4 = symbols('h1 h2 h3 h4', below_fermi=True, cls=Dummy) from sympy.utilities.iterables import variations v = Function('v') t = Function('t') dums = _get_ordered_dummies # v(abcd)t(abij)t(cdij) template = v(p1, p2, p3, p4)*t(p1, p2, i, j)*t(p3, p4, i, j) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert dums(base) != dums(expr) assert substitute_dummies(expr) == substitute_dummies(base) template = v(p1, p2, p3, p4)*t(p1, p2, j, i)*t(p3, p4, i, j) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert dums(base) != dums(expr) assert substitute_dummies(expr) == substitute_dummies(base) def test_equivalent_internal_lines_VT2(): i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy) a, b, c, d = symbols('a b c d', above_fermi=True, cls=Dummy) v = Function('v') t = Function('t') dums = _get_ordered_dummies exprs = [ # permute v. Same dummy order, not equivalent. # # This test show that the dummy order may not be sensitive to all # index permutations. The following expressions have identical # structure as the resulting terms from of the dummy substitutions # in the test above. Here, all expressions have the same dummy # order, so they cannot be simplified by means of dummy # substitution. In order to simplify further, it is necessary to # exploit symmetries in the objects, for instance if t or v is # antisymmetric. v(i, j, a, b)*t(a, b, i, j), v(j, i, a, b)*t(a, b, i, j), v(i, j, b, a)*t(a, b, i, j), v(j, i, b, a)*t(a, b, i, j), ] for permut in exprs[1:]: assert dums(exprs[0]) == dums(permut) assert substitute_dummies(exprs[0]) != substitute_dummies(permut) exprs = [ # permute t. v(i, j, a, b)*t(a, b, i, j), v(i, j, a, b)*t(b, a, i, j), v(i, j, a, b)*t(a, b, j, i), v(i, j, a, b)*t(b, a, j, i), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) != substitute_dummies(permut) exprs = [ # permute v and t. Relabelling of dummies should be equivalent. v(i, j, a, b)*t(a, b, i, j), v(j, i, a, b)*t(a, b, j, i), v(i, j, b, a)*t(b, a, i, j), v(j, i, b, a)*t(b, a, j, i), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_internal_external_VT2T2(): ii, jj = symbols('i j', below_fermi=True) aa, bb = symbols('a b', above_fermi=True) k, l = symbols('k l', below_fermi=True, cls=Dummy) c, d = symbols('c d', above_fermi=True, cls=Dummy) v = Function('v') t = Function('t') dums = _get_ordered_dummies exprs = [ v(k, l, c, d)*t(aa, c, ii, k)*t(bb, d, jj, l), v(l, k, c, d)*t(aa, c, ii, l)*t(bb, d, jj, k), v(k, l, d, c)*t(aa, d, ii, k)*t(bb, c, jj, l), v(l, k, d, c)*t(aa, d, ii, l)*t(bb, c, jj, k), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) == substitute_dummies(permut) exprs = [ v(k, l, c, d)*t(aa, c, ii, k)*t(d, bb, jj, l), v(l, k, c, d)*t(aa, c, ii, l)*t(d, bb, jj, k), v(k, l, d, c)*t(aa, d, ii, k)*t(c, bb, jj, l), v(l, k, d, c)*t(aa, d, ii, l)*t(c, bb, jj, k), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) == substitute_dummies(permut) exprs = [ v(k, l, c, d)*t(c, aa, ii, k)*t(bb, d, jj, l), v(l, k, c, d)*t(c, aa, ii, l)*t(bb, d, jj, k), v(k, l, d, c)*t(d, aa, ii, k)*t(bb, c, jj, l), v(l, k, d, c)*t(d, aa, ii, l)*t(bb, c, jj, k), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_internal_external_pqrs(): ii, jj = symbols('i j') aa, bb = symbols('a b') k, l = symbols('k l', cls=Dummy) c, d = symbols('c d', cls=Dummy) v = Function('v') t = Function('t') dums = _get_ordered_dummies exprs = [ v(k, l, c, d)*t(aa, c, ii, k)*t(bb, d, jj, l), v(l, k, c, d)*t(aa, c, ii, l)*t(bb, d, jj, k), v(k, l, d, c)*t(aa, d, ii, k)*t(bb, c, jj, l), v(l, k, d, c)*t(aa, d, ii, l)*t(bb, c, jj, k), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_dummy_order_well_defined(): aa, bb = symbols('a b', above_fermi=True) k, l, m = symbols('k l m', below_fermi=True, cls=Dummy) c, d = symbols('c d', above_fermi=True, cls=Dummy) p, q = symbols('p q', cls=Dummy) A = Function('A') B = Function('B') C = Function('C') dums = _get_ordered_dummies # We go through all key components in the order of increasing priority, # and consider only fully orderable expressions. Non-orderable expressions # are tested elsewhere. # pos in first factor determines sort order assert dums(A(k, l)*B(l, k)) == [k, l] assert dums(A(l, k)*B(l, k)) == [l, k] assert dums(A(k, l)*B(k, l)) == [k, l] assert dums(A(l, k)*B(k, l)) == [l, k] # factors involving the index assert dums(A(k, l)*B(l, m)*C(k, m)) == [l, k, m] assert dums(A(k, l)*B(l, m)*C(m, k)) == [l, k, m] assert dums(A(l, k)*B(l, m)*C(k, m)) == [l, k, m] assert dums(A(l, k)*B(l, m)*C(m, k)) == [l, k, m] assert dums(A(k, l)*B(m, l)*C(k, m)) == [l, k, m] assert dums(A(k, l)*B(m, l)*C(m, k)) == [l, k, m] assert dums(A(l, k)*B(m, l)*C(k, m)) == [l, k, m] assert dums(A(l, k)*B(m, l)*C(m, k)) == [l, k, m] # same, but with factor order determined by non-dummies assert dums(A(k, aa, l)*A(l, bb, m)*A(bb, k, m)) == [l, k, m] assert dums(A(k, aa, l)*A(l, bb, m)*A(bb, m, k)) == [l, k, m] assert dums(A(k, aa, l)*A(m, bb, l)*A(bb, k, m)) == [l, k, m] assert dums(A(k, aa, l)*A(m, bb, l)*A(bb, m, k)) == [l, k, m] assert dums(A(l, aa, k)*A(l, bb, m)*A(bb, k, m)) == [l, k, m] assert dums(A(l, aa, k)*A(l, bb, m)*A(bb, m, k)) == [l, k, m] assert dums(A(l, aa, k)*A(m, bb, l)*A(bb, k, m)) == [l, k, m] assert dums(A(l, aa, k)*A(m, bb, l)*A(bb, m, k)) == [l, k, m] # index range assert dums(A(p, c, k)*B(p, c, k)) == [k, c, p] assert dums(A(p, k, c)*B(p, c, k)) == [k, c, p] assert dums(A(c, k, p)*B(p, c, k)) == [k, c, p] assert dums(A(c, p, k)*B(p, c, k)) == [k, c, p] assert dums(A(k, c, p)*B(p, c, k)) == [k, c, p] assert dums(A(k, p, c)*B(p, c, k)) == [k, c, p] assert dums(B(p, c, k)*A(p, c, k)) == [k, c, p] assert dums(B(p, k, c)*A(p, c, k)) == [k, c, p] assert dums(B(c, k, p)*A(p, c, k)) == [k, c, p] assert dums(B(c, p, k)*A(p, c, k)) == [k, c, p] assert dums(B(k, c, p)*A(p, c, k)) == [k, c, p] assert dums(B(k, p, c)*A(p, c, k)) == [k, c, p] def test_dummy_order_ambiguous(): aa, bb = symbols('a b', above_fermi=True) i, j, k, l, m = symbols('i j k l m', below_fermi=True, cls=Dummy) a, b, c, d, e = symbols('a b c d e', above_fermi=True, cls=Dummy) p, q = symbols('p q', cls=Dummy) p1, p2, p3, p4 = symbols('p1 p2 p3 p4', above_fermi=True, cls=Dummy) p5, p6, p7, p8 = symbols('p5 p6 p7 p8', above_fermi=True, cls=Dummy) h1, h2, h3, h4 = symbols('h1 h2 h3 h4', below_fermi=True, cls=Dummy) h5, h6, h7, h8 = symbols('h5 h6 h7 h8', below_fermi=True, cls=Dummy) A = Function('A') B = Function('B') from sympy.utilities.iterables import variations # A*A*A*A*B -- ordering of p5 and p4 is used to figure out the rest template = A(p1, p2)*A(p4, p1)*A(p2, p3)*A(p3, p5)*B(p5, p4) permutator = variations([a, b, c, d, e], 5) base = template.subs(zip([p1, p2, p3, p4, p5], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4, p5], permut) expr = template.subs(subslist) assert substitute_dummies(expr) == substitute_dummies(base) # A*A*A*A*A -- an arbitrary index is assigned and the rest are figured out template = A(p1, p2)*A(p4, p1)*A(p2, p3)*A(p3, p5)*A(p5, p4) permutator = variations([a, b, c, d, e], 5) base = template.subs(zip([p1, p2, p3, p4, p5], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4, p5], permut) expr = template.subs(subslist) assert substitute_dummies(expr) == substitute_dummies(base) # A*A*A -- ordering of p5 and p4 is used to figure out the rest template = A(p1, p2, p4, p1)*A(p2, p3, p3, p5)*A(p5, p4) permutator = variations([a, b, c, d, e], 5) base = template.subs(zip([p1, p2, p3, p4, p5], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4, p5], permut) expr = template.subs(subslist) assert substitute_dummies(expr) == substitute_dummies(base) def atv(*args): return AntiSymmetricTensor('v', args[:2], args[2:] ) def att(*args): if len(args) == 4: return AntiSymmetricTensor('t', args[:2], args[2:] ) elif len(args) == 2: return AntiSymmetricTensor('t', (args[0],), (args[1],)) def test_dummy_order_inner_outer_lines_VT1T1T1_AT(): ii = symbols('i', below_fermi=True) aa = symbols('a', above_fermi=True) k, l = symbols('k l', below_fermi=True, cls=Dummy) c, d = symbols('c d', above_fermi=True, cls=Dummy) # Coupled-Cluster T1 terms with V*T1*T1*T1 # t^{a}_{k} t^{c}_{i} t^{d}_{l} v^{lk}_{dc} exprs = [ # permut v and t <=> swapping internal lines, equivalent # irrespective of symmetries in v atv(k, l, c, d)*att(c, ii)*att(d, l)*att(aa, k), atv(l, k, c, d)*att(c, ii)*att(d, k)*att(aa, l), atv(k, l, d, c)*att(d, ii)*att(c, l)*att(aa, k), atv(l, k, d, c)*att(d, ii)*att(c, k)*att(aa, l), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_dummy_order_inner_outer_lines_VT1T1T1T1_AT(): ii, jj = symbols('i j', below_fermi=True) aa, bb = symbols('a b', above_fermi=True) k, l = symbols('k l', below_fermi=True, cls=Dummy) c, d = symbols('c d', above_fermi=True, cls=Dummy) # Coupled-Cluster T2 terms with V*T1*T1*T1*T1 # non-equivalent substitutions (change of sign) exprs = [ # permut t <=> swapping external lines atv(k, l, c, d)*att(c, ii)*att(d, jj)*att(aa, k)*att(bb, l), atv(k, l, c, d)*att(c, jj)*att(d, ii)*att(aa, k)*att(bb, l), atv(k, l, c, d)*att(c, ii)*att(d, jj)*att(bb, k)*att(aa, l), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) == -substitute_dummies(permut) # equivalent substitutions exprs = [ atv(k, l, c, d)*att(c, ii)*att(d, jj)*att(aa, k)*att(bb, l), # permut t <=> swapping external lines atv(k, l, c, d)*att(c, jj)*att(d, ii)*att(bb, k)*att(aa, l), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_equivalent_internal_lines_VT1T1_AT(): i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy) a, b, c, d = symbols('a b c d', above_fermi=True, cls=Dummy) exprs = [ # permute v. Different dummy order. Not equivalent. atv(i, j, a, b)*att(a, i)*att(b, j), atv(j, i, a, b)*att(a, i)*att(b, j), atv(i, j, b, a)*att(a, i)*att(b, j), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) != substitute_dummies(permut) exprs = [ # permute v. Different dummy order. Equivalent atv(i, j, a, b)*att(a, i)*att(b, j), atv(j, i, b, a)*att(a, i)*att(b, j), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) == substitute_dummies(permut) exprs = [ # permute t. Same dummy order, not equivalent. atv(i, j, a, b)*att(a, i)*att(b, j), atv(i, j, a, b)*att(b, i)*att(a, j), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) != substitute_dummies(permut) exprs = [ # permute v and t. Different dummy order, equivalent atv(i, j, a, b)*att(a, i)*att(b, j), atv(j, i, a, b)*att(a, j)*att(b, i), atv(i, j, b, a)*att(b, i)*att(a, j), atv(j, i, b, a)*att(b, j)*att(a, i), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_equivalent_internal_lines_VT2conjT2_AT(): # this diagram requires special handling in TCE i, j, k, l, m, n = symbols('i j k l m n', below_fermi=True, cls=Dummy) a, b, c, d, e, f = symbols('a b c d e f', above_fermi=True, cls=Dummy) p1, p2, p3, p4 = symbols('p1 p2 p3 p4', above_fermi=True, cls=Dummy) h1, h2, h3, h4 = symbols('h1 h2 h3 h4', below_fermi=True, cls=Dummy) from sympy.utilities.iterables import variations # atv(abcd)att(abij)att(ijcd) template = atv(p1, p2, p3, p4)*att(p1, p2, i, j)*att(i, j, p3, p4) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert substitute_dummies(expr) == substitute_dummies(base) template = atv(p1, p2, p3, p4)*att(p1, p2, j, i)*att(j, i, p3, p4) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert substitute_dummies(expr) == substitute_dummies(base) # atv(abcd)att(abij)att(jicd) template = atv(p1, p2, p3, p4)*att(p1, p2, i, j)*att(j, i, p3, p4) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert substitute_dummies(expr) == substitute_dummies(base) template = atv(p1, p2, p3, p4)*att(p1, p2, j, i)*att(i, j, p3, p4) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert substitute_dummies(expr) == substitute_dummies(base) def test_equivalent_internal_lines_VT2conjT2_ambiguous_order_AT(): # These diagrams invokes _determine_ambiguous() because the # dummies can not be ordered unambiguously by the key alone i, j, k, l, m, n = symbols('i j k l m n', below_fermi=True, cls=Dummy) a, b, c, d, e, f = symbols('a b c d e f', above_fermi=True, cls=Dummy) p1, p2, p3, p4 = symbols('p1 p2 p3 p4', above_fermi=True, cls=Dummy) h1, h2, h3, h4 = symbols('h1 h2 h3 h4', below_fermi=True, cls=Dummy) from sympy.utilities.iterables import variations # atv(abcd)att(abij)att(cdij) template = atv(p1, p2, p3, p4)*att(p1, p2, i, j)*att(p3, p4, i, j) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert substitute_dummies(expr) == substitute_dummies(base) template = atv(p1, p2, p3, p4)*att(p1, p2, j, i)*att(p3, p4, i, j) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert substitute_dummies(expr) == substitute_dummies(base) def test_equivalent_internal_lines_VT2_AT(): i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy) a, b, c, d = symbols('a b c d', above_fermi=True, cls=Dummy) exprs = [ # permute v. Same dummy order, not equivalent. atv(i, j, a, b)*att(a, b, i, j), atv(j, i, a, b)*att(a, b, i, j), atv(i, j, b, a)*att(a, b, i, j), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) != substitute_dummies(permut) exprs = [ # permute t. atv(i, j, a, b)*att(a, b, i, j), atv(i, j, a, b)*att(b, a, i, j), atv(i, j, a, b)*att(a, b, j, i), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) != substitute_dummies(permut) exprs = [ # permute v and t. Relabelling of dummies should be equivalent. atv(i, j, a, b)*att(a, b, i, j), atv(j, i, a, b)*att(a, b, j, i), atv(i, j, b, a)*att(b, a, i, j), atv(j, i, b, a)*att(b, a, j, i), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_internal_external_VT2T2_AT(): ii, jj = symbols('i j', below_fermi=True) aa, bb = symbols('a b', above_fermi=True) k, l = symbols('k l', below_fermi=True, cls=Dummy) c, d = symbols('c d', above_fermi=True, cls=Dummy) exprs = [ atv(k, l, c, d)*att(aa, c, ii, k)*att(bb, d, jj, l), atv(l, k, c, d)*att(aa, c, ii, l)*att(bb, d, jj, k), atv(k, l, d, c)*att(aa, d, ii, k)*att(bb, c, jj, l), atv(l, k, d, c)*att(aa, d, ii, l)*att(bb, c, jj, k), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) == substitute_dummies(permut) exprs = [ atv(k, l, c, d)*att(aa, c, ii, k)*att(d, bb, jj, l), atv(l, k, c, d)*att(aa, c, ii, l)*att(d, bb, jj, k), atv(k, l, d, c)*att(aa, d, ii, k)*att(c, bb, jj, l), atv(l, k, d, c)*att(aa, d, ii, l)*att(c, bb, jj, k), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) == substitute_dummies(permut) exprs = [ atv(k, l, c, d)*att(c, aa, ii, k)*att(bb, d, jj, l), atv(l, k, c, d)*att(c, aa, ii, l)*att(bb, d, jj, k), atv(k, l, d, c)*att(d, aa, ii, k)*att(bb, c, jj, l), atv(l, k, d, c)*att(d, aa, ii, l)*att(bb, c, jj, k), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_internal_external_pqrs_AT(): ii, jj = symbols('i j') aa, bb = symbols('a b') k, l = symbols('k l', cls=Dummy) c, d = symbols('c d', cls=Dummy) exprs = [ atv(k, l, c, d)*att(aa, c, ii, k)*att(bb, d, jj, l), atv(l, k, c, d)*att(aa, c, ii, l)*att(bb, d, jj, k), atv(k, l, d, c)*att(aa, d, ii, k)*att(bb, c, jj, l), atv(l, k, d, c)*att(aa, d, ii, l)*att(bb, c, jj, k), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_issue_19661(): a = Symbol('0') assert latex(Commutator(Bd(a)**2, B(a)) ) == '- \\left[b_{0},{b^\\dagger_{0}}^{2}\\right]' def test_canonical_ordering_AntiSymmetricTensor(): v = symbols("v") c, d = symbols(('c','d'), above_fermi=True, cls=Dummy) k, l = symbols(('k','l'), below_fermi=True, cls=Dummy) # formerly, the left gave either the left or the right assert AntiSymmetricTensor(v, (k, l), (d, c) ) == -AntiSymmetricTensor(v, (l, k), (d, c))