"""Tests for sparse distributed modules. """ from sympy.polys.distributedmodules import ( sdm_monomial_mul, sdm_monomial_deg, sdm_monomial_divides, sdm_add, sdm_LM, sdm_LT, sdm_mul_term, sdm_zero, sdm_deg, sdm_LC, sdm_from_dict, sdm_spoly, sdm_ecart, sdm_nf_mora, sdm_groebner, sdm_from_vector, sdm_to_vector, sdm_monomial_lcm ) from sympy.polys.orderings import lex, grlex, InverseOrder from sympy.polys.domains import QQ from sympy.abc import x, y, z def test_sdm_monomial_mul(): assert sdm_monomial_mul((1, 1, 0), (1, 3)) == (1, 2, 3) def test_sdm_monomial_deg(): assert sdm_monomial_deg((5, 2, 1)) == 3 def test_sdm_monomial_lcm(): assert sdm_monomial_lcm((1, 2, 3), (1, 5, 0)) == (1, 5, 3) def test_sdm_monomial_divides(): assert sdm_monomial_divides((1, 0, 0), (1, 0, 0)) is True assert sdm_monomial_divides((1, 0, 0), (1, 2, 1)) is True assert sdm_monomial_divides((5, 1, 1), (5, 2, 1)) is True assert sdm_monomial_divides((1, 0, 0), (2, 0, 0)) is False assert sdm_monomial_divides((1, 1, 0), (1, 0, 0)) is False assert sdm_monomial_divides((5, 1, 2), (5, 0, 1)) is False def test_sdm_LC(): assert sdm_LC([((1, 2, 3), QQ(5))], QQ) == QQ(5) def test_sdm_from_dict(): dic = {(1, 2, 1, 1): QQ(1), (1, 1, 2, 1): QQ(1), (1, 0, 2, 1): QQ(1), (1, 0, 0, 3): QQ(1), (1, 1, 1, 0): QQ(1)} assert sdm_from_dict(dic, grlex) == \ [((1, 2, 1, 1), QQ(1)), ((1, 1, 2, 1), QQ(1)), ((1, 0, 2, 1), QQ(1)), ((1, 0, 0, 3), QQ(1)), ((1, 1, 1, 0), QQ(1))] # TODO test to_dict? def test_sdm_add(): assert sdm_add([((1, 1, 1), QQ(1))], [((2, 0, 0), QQ(1))], lex, QQ) == \ [((2, 0, 0), QQ(1)), ((1, 1, 1), QQ(1))] assert sdm_add([((1, 1, 1), QQ(1))], [((1, 1, 1), QQ(-1))], lex, QQ) == [] assert sdm_add([((1, 0, 0), QQ(1))], [((1, 0, 0), QQ(2))], lex, QQ) == \ [((1, 0, 0), QQ(3))] assert sdm_add([((1, 0, 1), QQ(1))], [((1, 1, 0), QQ(1))], lex, QQ) == \ [((1, 1, 0), QQ(1)), ((1, 0, 1), QQ(1))] def test_sdm_LM(): dic = {(1, 2, 3): QQ(1), (4, 0, 0): QQ(1), (4, 0, 1): QQ(1)} assert sdm_LM(sdm_from_dict(dic, lex)) == (4, 0, 1) def test_sdm_LT(): dic = {(1, 2, 3): QQ(1), (4, 0, 0): QQ(2), (4, 0, 1): QQ(3)} assert sdm_LT(sdm_from_dict(dic, lex)) == ((4, 0, 1), QQ(3)) def test_sdm_mul_term(): assert sdm_mul_term([((1, 0, 0), QQ(1))], ((0, 0), QQ(0)), lex, QQ) == [] assert sdm_mul_term([], ((1, 0), QQ(1)), lex, QQ) == [] assert sdm_mul_term([((1, 0, 0), QQ(1))], ((1, 0), QQ(1)), lex, QQ) == \ [((1, 1, 0), QQ(1))] f = [((2, 0, 1), QQ(4)), ((1, 1, 0), QQ(3))] assert sdm_mul_term(f, ((1, 1), QQ(2)), lex, QQ) == \ [((2, 1, 2), QQ(8)), ((1, 2, 1), QQ(6))] def test_sdm_zero(): assert sdm_zero() == [] def test_sdm_deg(): assert sdm_deg([((1, 2, 3), 1), ((10, 0, 1), 1), ((2, 3, 4), 4)]) == 7 def test_sdm_spoly(): f = [((2, 1, 1), QQ(1)), ((1, 0, 1), QQ(1))] g = [((2, 3, 0), QQ(1))] h = [((1, 2, 3), QQ(1))] assert sdm_spoly(f, h, lex, QQ) == [] assert sdm_spoly(f, g, lex, QQ) == [((1, 2, 1), QQ(1))] def test_sdm_ecart(): assert sdm_ecart([((1, 2, 3), 1), ((1, 0, 1), 1)]) == 0 assert sdm_ecart([((2, 2, 1), 1), ((1, 5, 1), 1)]) == 3 def test_sdm_nf_mora(): f = sdm_from_dict({(1, 2, 1, 1): QQ(1), (1, 1, 2, 1): QQ(1), (1, 0, 2, 1): QQ(1), (1, 0, 0, 3): QQ(1), (1, 1, 1, 0): QQ(1)}, grlex) f1 = sdm_from_dict({(1, 1, 1, 0): QQ(1), (1, 0, 2, 0): QQ(1), (1, 0, 0, 0): QQ(-1)}, grlex) f2 = sdm_from_dict({(1, 1, 1, 0): QQ(1)}, grlex) (id0, id1, id2) = [sdm_from_dict({(i, 0, 0, 0): QQ(1)}, grlex) for i in range(3)] assert sdm_nf_mora(f, [f1, f2], grlex, QQ, phantom=(id0, [id1, id2])) == \ ([((1, 0, 2, 1), QQ(1)), ((1, 0, 0, 3), QQ(1)), ((1, 1, 1, 0), QQ(1)), ((1, 1, 0, 1), QQ(1))], [((1, 1, 0, 1), QQ(-1)), ((0, 0, 0, 0), QQ(1))]) assert sdm_nf_mora(f, [f2, f1], grlex, QQ, phantom=(id0, [id2, id1])) == \ ([((1, 0, 2, 1), QQ(1)), ((1, 0, 0, 3), QQ(1)), ((1, 1, 1, 0), QQ(1))], [((2, 1, 0, 1), QQ(-1)), ((2, 0, 1, 1), QQ(-1)), ((0, 0, 0, 0), QQ(1))]) f = sdm_from_vector([x*z, y**2 + y*z - z, y], lex, QQ, gens=[x, y, z]) f1 = sdm_from_vector([x, y, 1], lex, QQ, gens=[x, y, z]) f2 = sdm_from_vector([x*y, z, z**2], lex, QQ, gens=[x, y, z]) assert sdm_nf_mora(f, [f1, f2], lex, QQ) == \ sdm_nf_mora(f, [f2, f1], lex, QQ) == \ [((1, 0, 1, 1), QQ(1)), ((1, 0, 0, 1), QQ(-1)), ((0, 1, 1, 0), QQ(-1)), ((0, 1, 0, 1), QQ(1))] def test_conversion(): f = [x**2 + y**2, 2*z] g = [((1, 0, 0, 1), QQ(2)), ((0, 2, 0, 0), QQ(1)), ((0, 0, 2, 0), QQ(1))] assert sdm_to_vector(g, [x, y, z], QQ) == f assert sdm_from_vector(f, lex, QQ) == g assert sdm_from_vector( [x, 1], lex, QQ) == [((1, 0), QQ(1)), ((0, 1), QQ(1))] assert sdm_to_vector([((1, 1, 0, 0), 1)], [x, y, z], QQ, n=3) == [0, x, 0] assert sdm_from_vector([0, 0], lex, QQ, gens=[x, y]) == sdm_zero() def test_nontrivial(): gens = [x, y, z] def contains(I, f): S = [sdm_from_vector([g], lex, QQ, gens=gens) for g in I] G = sdm_groebner(S, sdm_nf_mora, lex, QQ) return sdm_nf_mora(sdm_from_vector([f], lex, QQ, gens=gens), G, lex, QQ) == sdm_zero() assert contains([x, y], x) assert contains([x, y], x + y) assert not contains([x, y], 1) assert not contains([x, y], z) assert contains([x**2 + y, x**2 + x], x - y) assert not contains([x + y + z, x*y + x*z + y*z, x*y*z], x**2) assert contains([x + y + z, x*y + x*z + y*z, x*y*z], x**3) assert contains([x + y + z, x*y + x*z + y*z, x*y*z], x**4) assert not contains([x + y + z, x*y + x*z + y*z, x*y*z], x*y**2) assert contains([x + y + z, x*y + x*z + y*z, x*y*z], x**4 + y**3 + 2*z*y*x) assert contains([x + y + z, x*y + x*z + y*z, x*y*z], x*y*z) assert contains([x, 1 + x + y, 5 - 7*y], 1) assert contains( [x**3 + y**3, y**3 + z**3, z**3 + x**3, x**2*y + x**2*z + y**2*z], x**3) assert not contains( [x**3 + y**3, y**3 + z**3, z**3 + x**3, x**2*y + x**2*z + y**2*z], x**2 + y**2) # compare local order assert not contains([x*(1 + x + y), y*(1 + z)], x) assert not contains([x*(1 + x + y), y*(1 + z)], x + y) def test_local(): igrlex = InverseOrder(grlex) gens = [x, y, z] def contains(I, f): S = [sdm_from_vector([g], igrlex, QQ, gens=gens) for g in I] G = sdm_groebner(S, sdm_nf_mora, igrlex, QQ) return sdm_nf_mora(sdm_from_vector([f], lex, QQ, gens=gens), G, lex, QQ) == sdm_zero() assert contains([x, y], x) assert contains([x, y], x + y) assert not contains([x, y], 1) assert not contains([x, y], z) assert contains([x**2 + y, x**2 + x], x - y) assert not contains([x + y + z, x*y + x*z + y*z, x*y*z], x**2) assert contains([x*(1 + x + y), y*(1 + z)], x) assert contains([x*(1 + x + y), y*(1 + z)], x + y) def test_uncovered_line(): gens = [x, y] f1 = sdm_zero() f2 = sdm_from_vector([x, 0], lex, QQ, gens=gens) f3 = sdm_from_vector([0, y], lex, QQ, gens=gens) assert sdm_spoly(f1, f2, lex, QQ) == sdm_zero() assert sdm_spoly(f3, f2, lex, QQ) == sdm_zero() def test_chain_criterion(): gens = [x] f1 = sdm_from_vector([1, x], grlex, QQ, gens=gens) f2 = sdm_from_vector([0, x - 2], grlex, QQ, gens=gens) assert len(sdm_groebner([f1, f2], sdm_nf_mora, grlex, QQ)) == 2