""" C code printer The C89CodePrinter & C99CodePrinter converts single SymPy expressions into single C expressions, using the functions defined in math.h where possible. A complete code generator, which uses ccode extensively, can be found in sympy.utilities.codegen. The codegen module can be used to generate complete source code files that are compilable without further modifications. """ from __future__ import annotations from typing import Any from functools import wraps from itertools import chain from sympy.core import S from sympy.core.numbers import equal_valued from sympy.codegen.ast import ( Assignment, Pointer, Variable, Declaration, Type, real, complex_, integer, bool_, float32, float64, float80, complex64, complex128, intc, value_const, pointer_const, int8, int16, int32, int64, uint8, uint16, uint32, uint64, untyped, none ) from sympy.printing.codeprinter import CodePrinter, requires from sympy.printing.precedence import precedence, PRECEDENCE from sympy.sets.fancysets import Range # These are defined in the other file so we can avoid importing sympy.codegen # from the top-level 'import sympy'. Export them here as well. from sympy.printing.codeprinter import ccode, print_ccode # noqa:F401 # dictionary mapping SymPy function to (argument_conditions, C_function). # Used in C89CodePrinter._print_Function(self) known_functions_C89 = { "Abs": [(lambda x: not x.is_integer, "fabs"), (lambda x: x.is_integer, "abs")], "sin": "sin", "cos": "cos", "tan": "tan", "asin": "asin", "acos": "acos", "atan": "atan", "atan2": "atan2", "exp": "exp", "log": "log", "sinh": "sinh", "cosh": "cosh", "tanh": "tanh", "floor": "floor", "ceiling": "ceil", "sqrt": "sqrt", # To enable automatic rewrites } known_functions_C99 = dict(known_functions_C89, **{ 'exp2': 'exp2', 'expm1': 'expm1', 'log10': 'log10', 'log2': 'log2', 'log1p': 'log1p', 'Cbrt': 'cbrt', 'hypot': 'hypot', 'fma': 'fma', 'loggamma': 'lgamma', 'erfc': 'erfc', 'Max': 'fmax', 'Min': 'fmin', "asinh": "asinh", "acosh": "acosh", "atanh": "atanh", "erf": "erf", "gamma": "tgamma", }) # These are the core reserved words in the C language. Taken from: # https://en.cppreference.com/w/c/keyword reserved_words = [ 'auto', 'break', 'case', 'char', 'const', 'continue', 'default', 'do', 'double', 'else', 'enum', 'extern', 'float', 'for', 'goto', 'if', 'int', 'long', 'register', 'return', 'short', 'signed', 'sizeof', 'static', 'struct', 'entry', # never standardized, we'll leave it here anyway 'switch', 'typedef', 'union', 'unsigned', 'void', 'volatile', 'while' ] reserved_words_c99 = ['inline', 'restrict'] def get_math_macros(): """ Returns a dictionary with math-related macros from math.h/cmath Note that these macros are not strictly required by the C/C++-standard. For MSVC they are enabled by defining "_USE_MATH_DEFINES" (preferably via a compilation flag). Returns ======= Dictionary mapping SymPy expressions to strings (macro names) """ from sympy.codegen.cfunctions import log2, Sqrt from sympy.functions.elementary.exponential import log from sympy.functions.elementary.miscellaneous import sqrt return { S.Exp1: 'M_E', log2(S.Exp1): 'M_LOG2E', 1/log(2): 'M_LOG2E', log(2): 'M_LN2', log(10): 'M_LN10', S.Pi: 'M_PI', S.Pi/2: 'M_PI_2', S.Pi/4: 'M_PI_4', 1/S.Pi: 'M_1_PI', 2/S.Pi: 'M_2_PI', 2/sqrt(S.Pi): 'M_2_SQRTPI', 2/Sqrt(S.Pi): 'M_2_SQRTPI', sqrt(2): 'M_SQRT2', Sqrt(2): 'M_SQRT2', 1/sqrt(2): 'M_SQRT1_2', 1/Sqrt(2): 'M_SQRT1_2' } def _as_macro_if_defined(meth): """ Decorator for printer methods When a Printer's method is decorated using this decorator the expressions printed will first be looked for in the attribute ``math_macros``, and if present it will print the macro name in ``math_macros`` followed by a type suffix for the type ``real``. e.g. printing ``sympy.pi`` would print ``M_PIl`` if real is mapped to float80. """ @wraps(meth) def _meth_wrapper(self, expr, **kwargs): if expr in self.math_macros: return '%s%s' % (self.math_macros[expr], self._get_math_macro_suffix(real)) else: return meth(self, expr, **kwargs) return _meth_wrapper class C89CodePrinter(CodePrinter): """A printer to convert Python expressions to strings of C code""" printmethod = "_ccode" language = "C" standard = "C89" reserved_words = set(reserved_words) _default_settings: dict[str, Any] = { 'order': None, 'full_prec': 'auto', 'precision': 17, 'user_functions': {}, 'human': True, 'allow_unknown_functions': False, 'contract': True, 'dereference': set(), 'error_on_reserved': False, 'reserved_word_suffix': '_', } type_aliases = { real: float64, complex_: complex128, integer: intc } type_mappings: dict[Type, Any] = { real: 'double', intc: 'int', float32: 'float', float64: 'double', integer: 'int', bool_: 'bool', int8: 'int8_t', int16: 'int16_t', int32: 'int32_t', int64: 'int64_t', uint8: 'int8_t', uint16: 'int16_t', uint32: 'int32_t', uint64: 'int64_t', } type_headers = { bool_: {'stdbool.h'}, int8: {'stdint.h'}, int16: {'stdint.h'}, int32: {'stdint.h'}, int64: {'stdint.h'}, uint8: {'stdint.h'}, uint16: {'stdint.h'}, uint32: {'stdint.h'}, uint64: {'stdint.h'}, } # Macros needed to be defined when using a Type type_macros: dict[Type, tuple[str, ...]] = {} type_func_suffixes = { float32: 'f', float64: '', float80: 'l' } type_literal_suffixes = { float32: 'F', float64: '', float80: 'L' } type_math_macro_suffixes = { float80: 'l' } math_macros = None _ns = '' # namespace, C++ uses 'std::' # known_functions-dict to copy _kf: dict[str, Any] = known_functions_C89 def __init__(self, settings=None): settings = settings or {} if self.math_macros is None: self.math_macros = settings.pop('math_macros', get_math_macros()) self.type_aliases = dict(chain(self.type_aliases.items(), settings.pop('type_aliases', {}).items())) self.type_mappings = dict(chain(self.type_mappings.items(), settings.pop('type_mappings', {}).items())) self.type_headers = dict(chain(self.type_headers.items(), settings.pop('type_headers', {}).items())) self.type_macros = dict(chain(self.type_macros.items(), settings.pop('type_macros', {}).items())) self.type_func_suffixes = dict(chain(self.type_func_suffixes.items(), settings.pop('type_func_suffixes', {}).items())) self.type_literal_suffixes = dict(chain(self.type_literal_suffixes.items(), settings.pop('type_literal_suffixes', {}).items())) self.type_math_macro_suffixes = dict(chain(self.type_math_macro_suffixes.items(), settings.pop('type_math_macro_suffixes', {}).items())) super().__init__(settings) self.known_functions = dict(self._kf, **settings.get('user_functions', {})) self._dereference = set(settings.get('dereference', [])) self.headers = set() self.libraries = set() self.macros = set() def _rate_index_position(self, p): return p*5 def _get_statement(self, codestring): """ Get code string as a statement - i.e. ending with a semicolon. """ return codestring if codestring.endswith(';') else codestring + ';' def _get_comment(self, text): return "/* {} */".format(text) def _declare_number_const(self, name, value): type_ = self.type_aliases[real] var = Variable(name, type=type_, value=value.evalf(type_.decimal_dig), attrs={value_const}) decl = Declaration(var) return self._get_statement(self._print(decl)) def _format_code(self, lines): return self.indent_code(lines) def _traverse_matrix_indices(self, mat): rows, cols = mat.shape return ((i, j) for i in range(rows) for j in range(cols)) @_as_macro_if_defined def _print_Mul(self, expr, **kwargs): return super()._print_Mul(expr, **kwargs) @_as_macro_if_defined def _print_Pow(self, expr): if "Pow" in self.known_functions: return self._print_Function(expr) PREC = precedence(expr) suffix = self._get_func_suffix(real) if equal_valued(expr.exp, -1): literal_suffix = self._get_literal_suffix(real) return '1.0%s/%s' % (literal_suffix, self.parenthesize(expr.base, PREC)) elif equal_valued(expr.exp, 0.5): return '%ssqrt%s(%s)' % (self._ns, suffix, self._print(expr.base)) elif expr.exp == S.One/3 and self.standard != 'C89': return '%scbrt%s(%s)' % (self._ns, suffix, self._print(expr.base)) else: return '%spow%s(%s, %s)' % (self._ns, suffix, self._print(expr.base), self._print(expr.exp)) def _print_Mod(self, expr): num, den = expr.args if num.is_integer and den.is_integer: PREC = precedence(expr) snum, sden = [self.parenthesize(arg, PREC) for arg in expr.args] # % is remainder (same sign as numerator), not modulo (same sign as # denominator), in C. Hence, % only works as modulo if both numbers # have the same sign if (num.is_nonnegative and den.is_nonnegative or num.is_nonpositive and den.is_nonpositive): return f"{snum} % {sden}" return f"(({snum} % {sden}) + {sden}) % {sden}" # Not guaranteed integer return self._print_math_func(expr, known='fmod') def _print_Rational(self, expr): p, q = int(expr.p), int(expr.q) suffix = self._get_literal_suffix(real) return '%d.0%s/%d.0%s' % (p, suffix, q, suffix) def _print_Indexed(self, expr): # calculate index for 1d array offset = getattr(expr.base, 'offset', S.Zero) strides = getattr(expr.base, 'strides', None) indices = expr.indices if strides is None or isinstance(strides, str): dims = expr.shape shift = S.One temp = () if strides == 'C' or strides is None: traversal = reversed(range(expr.rank)) indices = indices[::-1] elif strides == 'F': traversal = range(expr.rank) for i in traversal: temp += (shift,) shift *= dims[i] strides = temp flat_index = sum([x[0]*x[1] for x in zip(indices, strides)]) + offset return "%s[%s]" % (self._print(expr.base.label), self._print(flat_index)) def _print_Idx(self, expr): return self._print(expr.label) @_as_macro_if_defined def _print_NumberSymbol(self, expr): return super()._print_NumberSymbol(expr) def _print_Infinity(self, expr): return 'HUGE_VAL' def _print_NegativeInfinity(self, expr): return '-HUGE_VAL' def _print_Piecewise(self, expr): if expr.args[-1].cond != True: # We need the last conditional to be a True, otherwise the resulting # function may not return a result. raise ValueError("All Piecewise expressions must contain an " "(expr, True) statement to be used as a default " "condition. Without one, the generated " "expression may not evaluate to anything under " "some condition.") lines = [] if expr.has(Assignment): for i, (e, c) in enumerate(expr.args): if i == 0: lines.append("if (%s) {" % self._print(c)) elif i == len(expr.args) - 1 and c == True: lines.append("else {") else: lines.append("else if (%s) {" % self._print(c)) code0 = self._print(e) lines.append(code0) lines.append("}") return "\n".join(lines) else: # The piecewise was used in an expression, need to do inline # operators. This has the downside that inline operators will # not work for statements that span multiple lines (Matrix or # Indexed expressions). ecpairs = ["((%s) ? (\n%s\n)\n" % (self._print(c), self._print(e)) for e, c in expr.args[:-1]] last_line = ": (\n%s\n)" % self._print(expr.args[-1].expr) return ": ".join(ecpairs) + last_line + " ".join([")"*len(ecpairs)]) def _print_ITE(self, expr): from sympy.functions import Piecewise return self._print(expr.rewrite(Piecewise, deep=False)) def _print_MatrixElement(self, expr): return "{}[{}]".format(self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True), expr.j + expr.i*expr.parent.shape[1]) def _print_Symbol(self, expr): name = super()._print_Symbol(expr) if expr in self._settings['dereference']: return '(*{})'.format(name) else: return name def _print_Relational(self, expr): lhs_code = self._print(expr.lhs) rhs_code = self._print(expr.rhs) op = expr.rel_op return "{} {} {}".format(lhs_code, op, rhs_code) def _print_For(self, expr): target = self._print(expr.target) if isinstance(expr.iterable, Range): start, stop, step = expr.iterable.args else: raise NotImplementedError("Only iterable currently supported is Range") body = self._print(expr.body) return ('for ({target} = {start}; {target} < {stop}; {target} += ' '{step}) {{\n{body}\n}}').format(target=target, start=start, stop=stop, step=step, body=body) def _print_sign(self, func): return '((({0}) > 0) - (({0}) < 0))'.format(self._print(func.args[0])) def _print_Max(self, expr): if "Max" in self.known_functions: return self._print_Function(expr) def inner_print_max(args): # The more natural abstraction of creating if len(args) == 1: # and printing smaller Max objects is slow return self._print(args[0]) # when there are many arguments. half = len(args) // 2 return "((%(a)s > %(b)s) ? %(a)s : %(b)s)" % { 'a': inner_print_max(args[:half]), 'b': inner_print_max(args[half:]) } return inner_print_max(expr.args) def _print_Min(self, expr): if "Min" in self.known_functions: return self._print_Function(expr) def inner_print_min(args): # The more natural abstraction of creating if len(args) == 1: # and printing smaller Min objects is slow return self._print(args[0]) # when there are many arguments. half = len(args) // 2 return "((%(a)s < %(b)s) ? %(a)s : %(b)s)" % { 'a': inner_print_min(args[:half]), 'b': inner_print_min(args[half:]) } return inner_print_min(expr.args) def indent_code(self, code): """Accepts a string of code or a list of code lines""" if isinstance(code, str): code_lines = self.indent_code(code.splitlines(True)) return ''.join(code_lines) tab = " " inc_token = ('{', '(', '{\n', '(\n') dec_token = ('}', ')') code = [line.lstrip(' \t') for line in code] increase = [int(any(map(line.endswith, inc_token))) for line in code] decrease = [int(any(map(line.startswith, dec_token))) for line in code] pretty = [] level = 0 for n, line in enumerate(code): if line in ('', '\n'): pretty.append(line) continue level -= decrease[n] pretty.append("%s%s" % (tab*level, line)) level += increase[n] return pretty def _get_func_suffix(self, type_): return self.type_func_suffixes[self.type_aliases.get(type_, type_)] def _get_literal_suffix(self, type_): return self.type_literal_suffixes[self.type_aliases.get(type_, type_)] def _get_math_macro_suffix(self, type_): alias = self.type_aliases.get(type_, type_) dflt = self.type_math_macro_suffixes.get(alias, '') return self.type_math_macro_suffixes.get(type_, dflt) def _print_Tuple(self, expr): return '{'+', '.join(self._print(e) for e in expr)+'}' _print_List = _print_Tuple def _print_Type(self, type_): self.headers.update(self.type_headers.get(type_, set())) self.macros.update(self.type_macros.get(type_, set())) return self._print(self.type_mappings.get(type_, type_.name)) def _print_Declaration(self, decl): from sympy.codegen.cnodes import restrict var = decl.variable val = var.value if var.type == untyped: raise ValueError("C does not support untyped variables") if isinstance(var, Pointer): result = '{vc}{t} *{pc} {r}{s}'.format( vc='const ' if value_const in var.attrs else '', t=self._print(var.type), pc=' const' if pointer_const in var.attrs else '', r='restrict ' if restrict in var.attrs else '', s=self._print(var.symbol) ) elif isinstance(var, Variable): result = '{vc}{t} {s}'.format( vc='const ' if value_const in var.attrs else '', t=self._print(var.type), s=self._print(var.symbol) ) else: raise NotImplementedError("Unknown type of var: %s" % type(var)) if val != None: # Must be "!= None", cannot be "is not None" result += ' = %s' % self._print(val) return result def _print_Float(self, flt): type_ = self.type_aliases.get(real, real) self.macros.update(self.type_macros.get(type_, set())) suffix = self._get_literal_suffix(type_) num = str(flt.evalf(type_.decimal_dig)) if 'e' not in num and '.' not in num: num += '.0' num_parts = num.split('e') num_parts[0] = num_parts[0].rstrip('0') if num_parts[0].endswith('.'): num_parts[0] += '0' return 'e'.join(num_parts) + suffix @requires(headers={'stdbool.h'}) def _print_BooleanTrue(self, expr): return 'true' @requires(headers={'stdbool.h'}) def _print_BooleanFalse(self, expr): return 'false' def _print_Element(self, elem): if elem.strides == None: # Must be "== None", cannot be "is None" if elem.offset != None: # Must be "!= None", cannot be "is not None" raise ValueError("Expected strides when offset is given") idxs = ']['.join((self._print(arg) for arg in elem.indices)) else: global_idx = sum([i*s for i, s in zip(elem.indices, elem.strides)]) if elem.offset != None: # Must be "!= None", cannot be "is not None" global_idx += elem.offset idxs = self._print(global_idx) return "{symb}[{idxs}]".format( symb=self._print(elem.symbol), idxs=idxs ) def _print_CodeBlock(self, expr): """ Elements of code blocks printed as statements. """ return '\n'.join([self._get_statement(self._print(i)) for i in expr.args]) def _print_While(self, expr): return 'while ({condition}) {{\n{body}\n}}'.format(**expr.kwargs( apply=lambda arg: self._print(arg))) def _print_Scope(self, expr): return '{\n%s\n}' % self._print_CodeBlock(expr.body) @requires(headers={'stdio.h'}) def _print_Print(self, expr): return 'printf({fmt}, {pargs})'.format( fmt=self._print(expr.format_string), pargs=', '.join((self._print(arg) for arg in expr.print_args)) ) def _print_FunctionPrototype(self, expr): pars = ', '.join((self._print(Declaration(arg)) for arg in expr.parameters)) return "%s %s(%s)" % ( tuple((self._print(arg) for arg in (expr.return_type, expr.name))) + (pars,) ) def _print_FunctionDefinition(self, expr): return "%s%s" % (self._print_FunctionPrototype(expr), self._print_Scope(expr)) def _print_Return(self, expr): arg, = expr.args return 'return %s' % self._print(arg) def _print_CommaOperator(self, expr): return '(%s)' % ', '.join((self._print(arg) for arg in expr.args)) def _print_Label(self, expr): if expr.body == none: return '%s:' % str(expr.name) if len(expr.body.args) == 1: return '%s:\n%s' % (str(expr.name), self._print_CodeBlock(expr.body)) return '%s:\n{\n%s\n}' % (str(expr.name), self._print_CodeBlock(expr.body)) def _print_goto(self, expr): return 'goto %s' % expr.label.name def _print_PreIncrement(self, expr): arg, = expr.args return '++(%s)' % self._print(arg) def _print_PostIncrement(self, expr): arg, = expr.args return '(%s)++' % self._print(arg) def _print_PreDecrement(self, expr): arg, = expr.args return '--(%s)' % self._print(arg) def _print_PostDecrement(self, expr): arg, = expr.args return '(%s)--' % self._print(arg) def _print_struct(self, expr): return "%(keyword)s %(name)s {\n%(lines)s}" % { "keyword": expr.__class__.__name__, "name": expr.name, "lines": ';\n'.join( [self._print(decl) for decl in expr.declarations] + ['']) } def _print_BreakToken(self, _): return 'break' def _print_ContinueToken(self, _): return 'continue' _print_union = _print_struct class C99CodePrinter(C89CodePrinter): standard = 'C99' reserved_words = set(reserved_words + reserved_words_c99) type_mappings=dict(chain(C89CodePrinter.type_mappings.items(), { complex64: 'float complex', complex128: 'double complex', }.items())) type_headers = dict(chain(C89CodePrinter.type_headers.items(), { complex64: {'complex.h'}, complex128: {'complex.h'} }.items())) # known_functions-dict to copy _kf: dict[str, Any] = known_functions_C99 # functions with versions with 'f' and 'l' suffixes: _prec_funcs = ('fabs fmod remainder remquo fma fmax fmin fdim nan exp exp2' ' expm1 log log10 log2 log1p pow sqrt cbrt hypot sin cos tan' ' asin acos atan atan2 sinh cosh tanh asinh acosh atanh erf' ' erfc tgamma lgamma ceil floor trunc round nearbyint rint' ' frexp ldexp modf scalbn ilogb logb nextafter copysign').split() def _print_Infinity(self, expr): return 'INFINITY' def _print_NegativeInfinity(self, expr): return '-INFINITY' def _print_NaN(self, expr): return 'NAN' # tgamma was already covered by 'known_functions' dict @requires(headers={'math.h'}, libraries={'m'}) @_as_macro_if_defined def _print_math_func(self, expr, nest=False, known=None): if known is None: known = self.known_functions[expr.__class__.__name__] if not isinstance(known, str): for cb, name in known: if cb(*expr.args): known = name break else: raise ValueError("No matching printer") try: return known(self, *expr.args) except TypeError: suffix = self._get_func_suffix(real) if self._ns + known in self._prec_funcs else '' if nest: args = self._print(expr.args[0]) if len(expr.args) > 1: paren_pile = '' for curr_arg in expr.args[1:-1]: paren_pile += ')' args += ', {ns}{name}{suffix}({next}'.format( ns=self._ns, name=known, suffix=suffix, next = self._print(curr_arg) ) args += ', %s%s' % ( self._print(expr.func(expr.args[-1])), paren_pile ) else: args = ', '.join((self._print(arg) for arg in expr.args)) return '{ns}{name}{suffix}({args})'.format( ns=self._ns, name=known, suffix=suffix, args=args ) def _print_Max(self, expr): return self._print_math_func(expr, nest=True) def _print_Min(self, expr): return self._print_math_func(expr, nest=True) def _get_loop_opening_ending(self, indices): open_lines = [] close_lines = [] loopstart = "for (int %(var)s=%(start)s; %(var)s<%(end)s; %(var)s++){" # C99 for i in indices: # C arrays start at 0 and end at dimension-1 open_lines.append(loopstart % { 'var': self._print(i.label), 'start': self._print(i.lower), 'end': self._print(i.upper + 1)}) close_lines.append("}") return open_lines, close_lines for k in ('Abs Sqrt exp exp2 expm1 log log10 log2 log1p Cbrt hypot fma' ' loggamma sin cos tan asin acos atan atan2 sinh cosh tanh asinh acosh ' 'atanh erf erfc loggamma gamma ceiling floor').split(): setattr(C99CodePrinter, '_print_%s' % k, C99CodePrinter._print_math_func) class C11CodePrinter(C99CodePrinter): @requires(headers={'stdalign.h'}) def _print_alignof(self, expr): arg, = expr.args return 'alignof(%s)' % self._print(arg) c_code_printers = { 'c89': C89CodePrinter, 'c99': C99CodePrinter, 'c11': C11CodePrinter }