# @generated from torch/_C/_VariableFunctions.pyi.in # mypy: disable-error-code="type-arg" import builtins from typing import ( Any, Callable, ContextManager, Iterator, List, Literal, NamedTuple, Optional, overload, Sequence, Tuple, TypeVar, Union, ) import torch from torch import contiguous_format, Generator, inf, memory_format, strided, SymInt, Tensor from torch.types import ( _bool, _complex, _device, _dtype, _float, _int, _layout, _qscheme, _size, Device, Number, ) from torch._prims_common import DeviceLikeType @overload def __and__(input: Tensor, other: Tensor) -> Tensor: ... @overload def __and__(input: Tensor, other: Union[Number, _complex]) -> Tensor: ... @overload def __lshift__(input: Tensor, other: Tensor) -> Tensor: ... @overload def __lshift__(input: Tensor, other: Union[Number, _complex]) -> Tensor: ... @overload def __or__(input: Tensor, other: Tensor) -> Tensor: ... @overload def __or__(input: Tensor, other: Union[Number, _complex]) -> Tensor: ... @overload def __rshift__(input: Tensor, other: Tensor) -> Tensor: ... @overload def __rshift__(input: Tensor, other: Union[Number, _complex]) -> Tensor: ... @overload def __xor__(input: Tensor, other: Tensor) -> Tensor: ... @overload def __xor__(input: Tensor, other: Union[Number, _complex]) -> Tensor: ... def _adaptive_avg_pool2d(input: Tensor, output_size: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]]) -> Tensor: ... def _adaptive_avg_pool3d(input: Tensor, output_size: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]]) -> Tensor: ... def _add_batch_dim(input: Tensor, batch_dim: _int, level: _int) -> Tensor: ... @overload def _add_relu(input: Tensor, other: Tensor, *, alpha: Union[Number, _complex] = 1, out: Optional[Tensor] = None) -> Tensor: ... @overload def _add_relu(input: Tensor, other: Union[Number, _complex], alpha: Union[Number, _complex] = 1) -> Tensor: ... @overload def _add_relu_(input: Tensor, other: Tensor, *, alpha: Union[Number, _complex] = 1) -> Tensor: ... @overload def _add_relu_(input: Tensor, other: Union[Number, _complex], alpha: Union[Number, _complex] = 1) -> Tensor: ... def _addmm_activation(input: Tensor, mat1: Tensor, mat2: Tensor, *, beta: Union[Number, _complex] = 1, alpha: Union[Number, _complex] = 1, use_gelu: _bool = False, out: Optional[Tensor] = None) -> Tensor: ... @overload def _aminmax(input: Tensor) -> Tuple[Tensor, Tensor]: ... @overload def _aminmax(input: Tensor, dim: _int, keepdim: _bool = False) -> Tuple[Tensor, Tensor]: ... def _amp_foreach_non_finite_check_and_unscale_(self: Union[Tuple[Tensor, ...], List[Tensor]], found_inf: Tensor, inv_scale: Tensor) -> None: ... def _amp_update_scale_(input: Tensor, growth_tracker: Tensor, found_inf: Tensor, scale_growth_factor: _float, scale_backoff_factor: _float, growth_interval: _int) -> Tensor: ... @overload def _assert_async(input: Tensor) -> None: r""" _assert_async(tensor) -> void Asynchronously assert that the contents of tensor are nonzero. For CPU tensors, this is equivalent to ``assert tensor`` or ``assert tensor.is_nonzero()``; for CUDA tensors, we DO NOT synchronize and you may only find out the assertion failed at a later CUDA kernel launch. Asynchronous assertion can be helpful for testing invariants in CUDA tensors without giving up performance. This function is NOT intended to be used for regular error checking, as it will trash your CUDA context if the assert fails (forcing you to restart your PyTorch process.) Args: tensor (Tensor): a one element tensor to test to see if it is nonzero. Zero elements (including False for boolean tensors) cause an assertion failure to be raised. """ ... @overload def _assert_async(input: Tensor, assert_msg: str) -> None: r""" _assert_async(tensor) -> void Asynchronously assert that the contents of tensor are nonzero. For CPU tensors, this is equivalent to ``assert tensor`` or ``assert tensor.is_nonzero()``; for CUDA tensors, we DO NOT synchronize and you may only find out the assertion failed at a later CUDA kernel launch. Asynchronous assertion can be helpful for testing invariants in CUDA tensors without giving up performance. This function is NOT intended to be used for regular error checking, as it will trash your CUDA context if the assert fails (forcing you to restart your PyTorch process.) Args: tensor (Tensor): a one element tensor to test to see if it is nonzero. Zero elements (including False for boolean tensors) cause an assertion failure to be raised. """ ... def _assert_scalar(self: Union[Number, _complex], assert_msg: str) -> None: ... def _assert_tensor_metadata(a: Tensor, size: Optional[Sequence[Union[_int, SymInt]]] = None, stride: Optional[Sequence[Union[_int, SymInt]]] = None, dtype: Optional[_dtype] = None) -> None: ... def _batch_norm_impl_index(input: Tensor, weight: Optional[Tensor], bias: Optional[Tensor], running_mean: Optional[Tensor], running_var: Optional[Tensor], training: _bool, momentum: _float, eps: _float, cudnn_enabled: _bool) -> Tuple[Tensor, Tensor, Tensor, Tensor, _int]: ... def _cast_Byte(input: Tensor, non_blocking: _bool = False) -> Tensor: ... def _cast_Char(input: Tensor, non_blocking: _bool = False) -> Tensor: ... def _cast_Double(input: Tensor, non_blocking: _bool = False) -> Tensor: ... def _cast_Float(input: Tensor, non_blocking: _bool = False) -> Tensor: ... def _cast_Half(input: Tensor, non_blocking: _bool = False) -> Tensor: ... def _cast_Int(input: Tensor, non_blocking: _bool = False) -> Tensor: ... def _cast_Long(input: Tensor, non_blocking: _bool = False) -> Tensor: ... def _cast_Short(input: Tensor, non_blocking: _bool = False) -> Tensor: ... def _choose_qparams_per_tensor(input: Tensor, reduce_range: _bool = False) -> Tuple[_float, _int]: ... def _chunk_cat(tensors: Union[Tuple[Tensor, ...], List[Tensor]], dim: _int, num_chunks: _int, *, out: Optional[Tensor] = None) -> Tensor: ... def _coalesce(input: Tensor) -> Tensor: ... def _compute_linear_combination(input: Tensor, coefficients: Tensor, *, out: Optional[Tensor] = None) -> Tensor: ... def _conj(input: Tensor) -> Tensor: ... def _conj_copy(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: ... def _conj_physical(input: Tensor) -> Tensor: ... def _convert_indices_from_coo_to_csr(input: Tensor, size: _int, *, out_int32: _bool = False, out: Optional[Tensor] = None) -> Tensor: ... def _convert_indices_from_csr_to_coo(crow_indices: Tensor, col_indices: Tensor, *, out_int32: _bool = False, transpose: _bool = False, out: Optional[Tensor] = None) -> Tensor: ... def _convert_weight_to_int4pack(input: Tensor, innerKTiles: _int) -> Tensor: ... @overload def _convolution(input: Tensor, weight: Tensor, bias: Optional[Tensor], stride: Sequence[Union[_int, SymInt]], padding: Sequence[Union[_int, SymInt]], dilation: Sequence[Union[_int, SymInt]], transposed: _bool, output_padding: _size, groups: Union[_int, SymInt], benchmark: _bool, deterministic: _bool, cudnn_enabled: _bool) -> Tensor: ... @overload def _convolution(input: Tensor, weight: Tensor, bias: Optional[Tensor], stride: Sequence[Union[_int, SymInt]], padding: Sequence[Union[_int, SymInt]], dilation: Sequence[Union[_int, SymInt]], transposed: _bool, output_padding: Sequence[Union[_int, SymInt]], groups: Union[_int, SymInt], benchmark: _bool, deterministic: _bool, cudnn_enabled: _bool, allow_tf32: _bool) -> Tensor: ... def _convolution_mode(input: Tensor, weight: Tensor, bias: Optional[Tensor], stride: Sequence[Union[_int, SymInt]], padding: str, dilation: Sequence[Union[_int, SymInt]], groups: Union[_int, SymInt]) -> Tensor: ... def _copy_from(input: Tensor, dst: Tensor, non_blocking: _bool = False) -> Tensor: ... def _copy_from_and_resize(input: Tensor, dst: Tensor) -> Tensor: ... def _cslt_compress(input: Tensor) -> Tensor: ... def _cslt_sparse_mm(compressed_A: Tensor, dense_B: Tensor, bias: Optional[Tensor] = None, alpha: Optional[Tensor] = None, out_dtype: Optional[_dtype] = None, transpose_result: _bool = False, alg_id: _int = 0) -> Tensor: ... def _cslt_sparse_mm_search(compressed_A: Tensor, dense_B: Tensor, bias: Optional[Tensor] = None, alpha: Optional[Tensor] = None, out_dtype: Optional[_dtype] = None, transpose_result: _bool = False) -> _int: ... @overload def _ctc_loss(log_probs: Tensor, targets: Tensor, input_lengths: _size, target_lengths: _size, blank: _int = 0, zero_infinity: _bool = False) -> Tuple[Tensor, Tensor]: ... @overload def _ctc_loss(log_probs: Tensor, targets: Tensor, input_lengths: Tensor, target_lengths: Tensor, blank: _int = 0, zero_infinity: _bool = False) -> Tuple[Tensor, Tensor]: ... @overload def _cudnn_ctc_loss(log_probs: Tensor, targets: Tensor, input_lengths: _size, target_lengths: _size, blank: _int, deterministic: _bool, zero_infinity: _bool) -> Tuple[Tensor, Tensor]: ... @overload def _cudnn_ctc_loss(log_probs: Tensor, targets: Tensor, input_lengths: Tensor, target_lengths: Tensor, blank: _int, deterministic: _bool, zero_infinity: _bool) -> Tuple[Tensor, Tensor]: ... def _cudnn_init_dropout_state(dropout: _float, train: _bool, dropout_seed: _int, *, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: ... def _cudnn_rnn(input: Tensor, weight: Union[Tuple[Tensor, ...], List[Tensor]], weight_stride0: _int, weight_buf: Optional[Tensor], hx: Tensor, cx: Optional[Tensor], mode: _int, hidden_size: Union[_int, SymInt], proj_size: Union[_int, SymInt], num_layers: _int, batch_first: _bool, dropout: _float, train: _bool, bidirectional: _bool, batch_sizes: Sequence[Union[_int, SymInt]], dropout_state: Optional[Tensor]) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]: ... def _cudnn_rnn_flatten_weight(weight_arr: Union[Tuple[Tensor, ...], List[Tensor]], weight_stride0: _int, input_size: Union[_int, SymInt], mode: _int, hidden_size: Union[_int, SymInt], proj_size: Union[_int, SymInt], num_layers: _int, batch_first: _bool, bidirectional: _bool) -> Tensor: ... def _cufft_clear_plan_cache(device_index: _int) -> None: ... def _cufft_get_plan_cache_max_size(device_index: _int) -> _int: ... def _cufft_get_plan_cache_size(device_index: _int) -> _int: ... def _cufft_set_plan_cache_max_size(device_index: _int, max_size: _int) -> None: ... def _cummax_helper(input: Tensor, values: Tensor, indices: Tensor, dim: _int) -> None: ... def _cummin_helper(input: Tensor, values: Tensor, indices: Tensor, dim: _int) -> None: ... def _debug_has_internal_overlap(input: Tensor) -> _int: ... def _dim_arange(like: Tensor, dim: _int) -> Tensor: ... def _dirichlet_grad(x: Tensor, alpha: Tensor, total: Tensor) -> Tensor: ... def _disable_functionalization(): ... @overload def _efficientzerotensor(size: Sequence[Union[_int, SymInt]], *, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: ... @overload def _efficientzerotensor(*size: _int, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: ... def _embedding_bag(weight: Tensor, indices: Tensor, offsets: Tensor, scale_grad_by_freq: _bool = False, mode: _int = 0, sparse: _bool = False, per_sample_weights: Optional[Tensor] = None, include_last_offset: _bool = False, padding_idx: _int = -1) -> Tuple[Tensor, Tensor, Tensor, Tensor]: ... def _embedding_bag_forward_only(weight: Tensor, indices: Tensor, offsets: Tensor, scale_grad_by_freq: _bool = False, mode: _int = 0, sparse: _bool = False, per_sample_weights: Optional[Tensor] = None, include_last_offset: _bool = False, padding_idx: _int = -1) -> Tuple[Tensor, Tensor, Tensor, Tensor]: ... @overload def _empty_affine_quantized(size: Sequence[Union[_int, SymInt]], *, scale: _float = 1, zero_point: _int = 0, memory_format: Optional[memory_format] = contiguous_format, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: ... @overload def _empty_affine_quantized(*size: _int, scale: _float = 1, zero_point: _int = 0, memory_format: Optional[memory_format] = contiguous_format, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: ... @overload def _empty_per_channel_affine_quantized(size: Sequence[Union[_int, SymInt]], *, scales: Tensor, zero_points: Tensor, axis: _int, memory_format: Optional[memory_format] = contiguous_format, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: ... @overload def _empty_per_channel_affine_quantized(*size: _int, scales: Tensor, zero_points: Tensor, axis: _int, memory_format: Optional[memory_format] = contiguous_format, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: ... def _enable_functionalization(*, reapply_views: _bool = False): ... def _euclidean_dist(x1: Tensor, x2: Tensor) -> Tensor: ... def _fake_quantize_learnable_per_channel_affine(input: Tensor, scale: Tensor, zero_point: Tensor, axis: _int, quant_min: _int, quant_max: _int, grad_factor: _float = 1.0) -> Tensor: ... def _fake_quantize_learnable_per_tensor_affine(input: Tensor, scale: Tensor, zero_point: Tensor, quant_min: _int, quant_max: _int, grad_factor: _float = 1.0) -> Tensor: ... def _fake_quantize_per_tensor_affine_cachemask_tensor_qparams(input: Tensor, scale: Tensor, zero_point: Tensor, fake_quant_enabled: Tensor, quant_min: _int, quant_max: _int) -> torch.return_types._fake_quantize_per_tensor_affine_cachemask_tensor_qparams: ... def _fft_c2c(input: Tensor, dim: Sequence[Union[_int, SymInt]], normalization: _int, forward: _bool, *, out: Optional[Tensor] = None) -> Tensor: ... def _fft_c2r(input: Tensor, dim: _size, normalization: _int, last_dim_size: Union[_int, SymInt], *, out: Optional[Tensor] = None) -> Tensor: ... def _fft_r2c(input: Tensor, dim: _size, normalization: _int, onesided: _bool, *, out: Optional[Tensor] = None) -> Tensor: ... def _fill_mem_eff_dropout_mask_(input: Tensor, dropout_p: _float, seed: _int, offset: _int) -> Tensor: ... def _foobar(input: Tensor, arg1: _bool = True, arg2: _bool = True, *, arg3: _bool = True) -> Tensor: ... def _foreach_abs(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: r""" _foreach_abs(self: List[Tensor]) -> List[Tensor] Apply :func:`torch.abs` to each Tensor of the input list. """ ... def _foreach_abs_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: r""" _foreach_abs_(self: List[Tensor]) -> None Apply :func:`torch.abs` to each Tensor of the input list. """ ... def _foreach_acos(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: r""" _foreach_acos(self: List[Tensor]) -> List[Tensor] Apply :func:`torch.acos` to each Tensor of the input list. """ ... def _foreach_acos_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: r""" _foreach_acos_(self: List[Tensor]) -> None Apply :func:`torch.acos` to each Tensor of the input list. """ ... @overload def _foreach_add(self: Union[Tuple[Tensor, ...], List[Tensor]], scalars: Sequence[Union[Number, _complex]]) -> Tuple[Tensor, ...]: ... @overload def _foreach_add(self: Union[Tuple[Tensor, ...], List[Tensor]], other: Union[Tuple[Tensor, ...], List[Tensor]], *, alpha: Union[Number, _complex] = 1) -> Tuple[Tensor, ...]: ... @overload def _foreach_add(self: Union[Tuple[Tensor, ...], List[Tensor]], other: Tensor, *, alpha: Union[Number, _complex] = 1) -> Tuple[Tensor, ...]: ... @overload def _foreach_add(self: Union[Tuple[Tensor, ...], List[Tensor]], scalar: Union[Number, _complex]) -> Tuple[Tensor, ...]: ... @overload def _foreach_add_(self: Union[Tuple[Tensor, ...], List[Tensor]], scalars: Sequence[Union[Number, _complex]]) -> None: ... @overload def _foreach_add_(self: Union[Tuple[Tensor, ...], List[Tensor]], other: Union[Tuple[Tensor, ...], List[Tensor]], *, alpha: Union[Number, _complex] = 1) -> None: ... @overload def _foreach_add_(self: Union[Tuple[Tensor, ...], List[Tensor]], other: Tensor, *, alpha: Union[Number, _complex] = 1) -> None: ... @overload def _foreach_add_(self: Union[Tuple[Tensor, ...], List[Tensor]], scalar: Union[Number, _complex]) -> None: ... @overload def _foreach_addcdiv(self: Union[Tuple[Tensor, ...], List[Tensor]], tensor1: Union[Tuple[Tensor, ...], List[Tensor]], tensor2: Union[Tuple[Tensor, ...], List[Tensor]], scalars: Sequence[Union[Number, _complex]]) -> Tuple[Tensor, ...]: ... @overload def _foreach_addcdiv(self: Union[Tuple[Tensor, ...], List[Tensor]], tensor1: Union[Tuple[Tensor, ...], List[Tensor]], tensor2: Union[Tuple[Tensor, ...], List[Tensor]], scalars: Tensor) -> Tuple[Tensor, ...]: ... @overload def _foreach_addcdiv(self: Union[Tuple[Tensor, ...], List[Tensor]], tensor1: Union[Tuple[Tensor, ...], List[Tensor]], tensor2: Union[Tuple[Tensor, ...], List[Tensor]], value: Union[Number, _complex] = 1) -> Tuple[Tensor, ...]: ... @overload def _foreach_addcdiv_(self: Union[Tuple[Tensor, ...], List[Tensor]], tensor1: Union[Tuple[Tensor, ...], List[Tensor]], tensor2: Union[Tuple[Tensor, ...], List[Tensor]], scalars: Sequence[Union[Number, _complex]]) -> None: ... @overload def _foreach_addcdiv_(self: Union[Tuple[Tensor, ...], List[Tensor]], tensor1: Union[Tuple[Tensor, ...], List[Tensor]], tensor2: Union[Tuple[Tensor, ...], List[Tensor]], scalars: Tensor) -> None: ... @overload def _foreach_addcdiv_(self: Union[Tuple[Tensor, ...], List[Tensor]], tensor1: Union[Tuple[Tensor, ...], List[Tensor]], tensor2: Union[Tuple[Tensor, ...], List[Tensor]], value: Union[Number, _complex] = 1) -> None: ... @overload def _foreach_addcmul(self: Union[Tuple[Tensor, ...], List[Tensor]], tensor1: Union[Tuple[Tensor, ...], List[Tensor]], tensor2: Union[Tuple[Tensor, ...], List[Tensor]], scalars: Sequence[Union[Number, _complex]]) -> Tuple[Tensor, ...]: ... @overload def _foreach_addcmul(self: Union[Tuple[Tensor, ...], List[Tensor]], tensor1: Union[Tuple[Tensor, ...], List[Tensor]], tensor2: Union[Tuple[Tensor, ...], List[Tensor]], scalars: Tensor) -> Tuple[Tensor, ...]: ... @overload def _foreach_addcmul(self: Union[Tuple[Tensor, ...], List[Tensor]], tensor1: Union[Tuple[Tensor, ...], List[Tensor]], tensor2: Union[Tuple[Tensor, ...], List[Tensor]], value: Union[Number, _complex] = 1) -> Tuple[Tensor, ...]: ... @overload def _foreach_addcmul_(self: Union[Tuple[Tensor, ...], List[Tensor]], tensor1: Union[Tuple[Tensor, ...], List[Tensor]], tensor2: Union[Tuple[Tensor, ...], List[Tensor]], scalars: Sequence[Union[Number, _complex]]) -> None: ... @overload def _foreach_addcmul_(self: Union[Tuple[Tensor, ...], List[Tensor]], tensor1: Union[Tuple[Tensor, ...], List[Tensor]], tensor2: Union[Tuple[Tensor, ...], List[Tensor]], scalars: Tensor) -> None: ... @overload def _foreach_addcmul_(self: Union[Tuple[Tensor, ...], List[Tensor]], tensor1: Union[Tuple[Tensor, ...], List[Tensor]], tensor2: Union[Tuple[Tensor, ...], List[Tensor]], value: Union[Number, _complex] = 1) -> None: ... def _foreach_asin(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: r""" _foreach_asin(self: List[Tensor]) -> List[Tensor] Apply :func:`torch.asin` to each Tensor of the input list. """ ... def _foreach_asin_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: r""" _foreach_asin_(self: List[Tensor]) -> None Apply :func:`torch.asin` to each Tensor of the input list. """ ... def _foreach_atan(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: r""" _foreach_atan(self: List[Tensor]) -> List[Tensor] Apply :func:`torch.atan` to each Tensor of the input list. """ ... def _foreach_atan_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: r""" _foreach_atan_(self: List[Tensor]) -> None Apply :func:`torch.atan` to each Tensor of the input list. """ ... def _foreach_ceil(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: r""" _foreach_ceil(self: List[Tensor]) -> List[Tensor] Apply :func:`torch.ceil` to each Tensor of the input list. """ ... def _foreach_ceil_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: r""" _foreach_ceil_(self: List[Tensor]) -> None Apply :func:`torch.ceil` to each Tensor of the input list. """ ... @overload def _foreach_clamp_max(self: Union[Tuple[Tensor, ...], List[Tensor]], scalars: Sequence[Union[Number, _complex]]) -> Tuple[Tensor, ...]: ... @overload def _foreach_clamp_max(self: Union[Tuple[Tensor, ...], List[Tensor]], scalar: Union[Number, _complex]) -> Tuple[Tensor, ...]: ... @overload def _foreach_clamp_max(self: Union[Tuple[Tensor, ...], List[Tensor]], other: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: ... @overload def _foreach_clamp_max_(self: Union[Tuple[Tensor, ...], List[Tensor]], scalars: Sequence[Union[Number, _complex]]) -> None: ... @overload def _foreach_clamp_max_(self: Union[Tuple[Tensor, ...], List[Tensor]], scalar: Union[Number, _complex]) -> None: ... @overload def _foreach_clamp_max_(self: Union[Tuple[Tensor, ...], List[Tensor]], other: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: ... @overload def _foreach_clamp_min(self: Union[Tuple[Tensor, ...], List[Tensor]], scalars: Sequence[Union[Number, _complex]]) -> Tuple[Tensor, ...]: ... @overload def _foreach_clamp_min(self: Union[Tuple[Tensor, ...], List[Tensor]], scalar: Union[Number, _complex]) -> Tuple[Tensor, ...]: ... @overload def _foreach_clamp_min(self: Union[Tuple[Tensor, ...], List[Tensor]], other: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: ... @overload def _foreach_clamp_min_(self: Union[Tuple[Tensor, ...], List[Tensor]], scalars: Sequence[Union[Number, _complex]]) -> None: ... @overload def _foreach_clamp_min_(self: Union[Tuple[Tensor, ...], List[Tensor]], scalar: Union[Number, _complex]) -> None: ... @overload def _foreach_clamp_min_(self: Union[Tuple[Tensor, ...], List[Tensor]], other: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: ... def _foreach_copy_(self: Union[Tuple[Tensor, ...], List[Tensor]], src: Union[Tuple[Tensor, ...], List[Tensor]], non_blocking: _bool = False) -> None: ... def _foreach_cos(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: r""" _foreach_cos(self: List[Tensor]) -> List[Tensor] Apply :func:`torch.cos` to each Tensor of the input list. """ ... def _foreach_cos_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: r""" _foreach_cos_(self: List[Tensor]) -> None Apply :func:`torch.cos` to each Tensor of the input list. """ ... def _foreach_cosh(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: r""" _foreach_cosh(self: List[Tensor]) -> List[Tensor] Apply :func:`torch.cosh` to each Tensor of the input list. """ ... def _foreach_cosh_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: r""" _foreach_cosh_(self: List[Tensor]) -> None Apply :func:`torch.cosh` to each Tensor of the input list. """ ... @overload def _foreach_div(self: Union[Tuple[Tensor, ...], List[Tensor]], scalars: Sequence[Union[Number, _complex]]) -> Tuple[Tensor, ...]: ... @overload def _foreach_div(self: Union[Tuple[Tensor, ...], List[Tensor]], other: Tensor) -> Tuple[Tensor, ...]: ... @overload def _foreach_div(self: Union[Tuple[Tensor, ...], List[Tensor]], scalar: Union[Number, _complex]) -> Tuple[Tensor, ...]: ... @overload def _foreach_div(self: Union[Tuple[Tensor, ...], List[Tensor]], other: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: ... @overload def _foreach_div_(self: Union[Tuple[Tensor, ...], List[Tensor]], scalars: Sequence[Union[Number, _complex]]) -> None: ... @overload def _foreach_div_(self: Union[Tuple[Tensor, ...], List[Tensor]], other: Tensor) -> None: ... @overload def _foreach_div_(self: Union[Tuple[Tensor, ...], List[Tensor]], scalar: Union[Number, _complex]) -> None: ... @overload def _foreach_div_(self: Union[Tuple[Tensor, ...], List[Tensor]], other: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: ... def _foreach_erf(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: r""" _foreach_erf(self: List[Tensor]) -> List[Tensor] Apply :func:`torch.erf` to each Tensor of the input list. """ ... def _foreach_erf_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: r""" _foreach_erf_(self: List[Tensor]) -> None Apply :func:`torch.erf` to each Tensor of the input list. """ ... def _foreach_erfc(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: r""" _foreach_erfc(self: List[Tensor]) -> List[Tensor] Apply :func:`torch.erfc` to each Tensor of the input list. """ ... def _foreach_erfc_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: r""" _foreach_erfc_(self: List[Tensor]) -> None Apply :func:`torch.erfc` to each Tensor of the input list. """ ... def _foreach_exp(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: r""" _foreach_exp(self: List[Tensor]) -> List[Tensor] Apply :func:`torch.exp` to each Tensor of the input list. """ ... def _foreach_exp_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: r""" _foreach_exp_(self: List[Tensor]) -> None Apply :func:`torch.exp` to each Tensor of the input list. """ ... def _foreach_expm1(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: r""" _foreach_expm1(self: List[Tensor]) -> List[Tensor] Apply :func:`torch.expm1` to each Tensor of the input list. """ ... def _foreach_expm1_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: r""" _foreach_expm1_(self: List[Tensor]) -> None Apply :func:`torch.expm1` to each Tensor of the input list. """ ... def _foreach_floor(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: r""" _foreach_floor(self: List[Tensor]) -> List[Tensor] Apply :func:`torch.floor` to each Tensor of the input list. """ ... def _foreach_floor_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: r""" _foreach_floor_(self: List[Tensor]) -> None Apply :func:`torch.floor` to each Tensor of the input list. """ ... def _foreach_frac(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: r""" _foreach_frac(self: List[Tensor]) -> List[Tensor] Apply :func:`torch.frac` to each Tensor of the input list. """ ... def _foreach_frac_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: r""" _foreach_frac_(self: List[Tensor]) -> None Apply :func:`torch.frac` to each Tensor of the input list. """ ... @overload def _foreach_lerp(self: Union[Tuple[Tensor, ...], List[Tensor]], tensors1: Union[Tuple[Tensor, ...], List[Tensor]], weight: Union[Number, _complex]) -> Tuple[Tensor, ...]: ... @overload def _foreach_lerp(self: Union[Tuple[Tensor, ...], List[Tensor]], tensors1: Union[Tuple[Tensor, ...], List[Tensor]], weights: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: ... @overload def _foreach_lerp_(self: Union[Tuple[Tensor, ...], List[Tensor]], tensors1: Union[Tuple[Tensor, ...], List[Tensor]], weight: Union[Number, _complex]) -> None: ... @overload def _foreach_lerp_(self: Union[Tuple[Tensor, ...], List[Tensor]], tensors1: Union[Tuple[Tensor, ...], List[Tensor]], weights: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: ... def _foreach_lgamma(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: r""" _foreach_lgamma(self: List[Tensor]) -> List[Tensor] Apply :func:`torch.lgamma` to each Tensor of the input list. """ ... def _foreach_lgamma_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: r""" _foreach_lgamma_(self: List[Tensor]) -> None Apply :func:`torch.lgamma` to each Tensor of the input list. """ ... def _foreach_log(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: r""" _foreach_log(self: List[Tensor]) -> List[Tensor] Apply :func:`torch.log` to each Tensor of the input list. """ ... def _foreach_log10(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: r""" _foreach_log10(self: List[Tensor]) -> List[Tensor] Apply :func:`torch.log10` to each Tensor of the input list. """ ... def _foreach_log10_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: r""" _foreach_log10_(self: List[Tensor]) -> None Apply :func:`torch.log10` to each Tensor of the input list. """ ... def _foreach_log1p(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: r""" _foreach_log1p(self: List[Tensor]) -> List[Tensor] Apply :func:`torch.log1p` to each Tensor of the input list. """ ... def _foreach_log1p_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: r""" _foreach_log1p_(self: List[Tensor]) -> None Apply :func:`torch.log1p` to each Tensor of the input list. """ ... def _foreach_log2(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: r""" _foreach_log2(self: List[Tensor]) -> List[Tensor] Apply :func:`torch.log2` to each Tensor of the input list. """ ... def _foreach_log2_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: r""" _foreach_log2_(self: List[Tensor]) -> None Apply :func:`torch.log2` to each Tensor of the input list. """ ... def _foreach_log_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: r""" _foreach_log_(self: List[Tensor]) -> None Apply :func:`torch.log` to each Tensor of the input list. """ ... @overload def _foreach_maximum(self: Union[Tuple[Tensor, ...], List[Tensor]], scalars: Sequence[Union[Number, _complex]]) -> Tuple[Tensor, ...]: ... @overload def _foreach_maximum(self: Union[Tuple[Tensor, ...], List[Tensor]], scalar: Union[Number, _complex]) -> Tuple[Tensor, ...]: ... @overload def _foreach_maximum(self: Union[Tuple[Tensor, ...], List[Tensor]], other: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: ... @overload def _foreach_maximum_(self: Union[Tuple[Tensor, ...], List[Tensor]], scalars: Sequence[Union[Number, _complex]]) -> None: ... @overload def _foreach_maximum_(self: Union[Tuple[Tensor, ...], List[Tensor]], scalar: Union[Number, _complex]) -> None: ... @overload def _foreach_maximum_(self: Union[Tuple[Tensor, ...], List[Tensor]], other: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: ... @overload def _foreach_minimum(self: Union[Tuple[Tensor, ...], List[Tensor]], scalars: Sequence[Union[Number, _complex]]) -> Tuple[Tensor, ...]: ... @overload def _foreach_minimum(self: Union[Tuple[Tensor, ...], List[Tensor]], scalar: Union[Number, _complex]) -> Tuple[Tensor, ...]: ... @overload def _foreach_minimum(self: Union[Tuple[Tensor, ...], List[Tensor]], other: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: ... @overload def _foreach_minimum_(self: Union[Tuple[Tensor, ...], List[Tensor]], scalars: Sequence[Union[Number, _complex]]) -> None: ... @overload def _foreach_minimum_(self: Union[Tuple[Tensor, ...], List[Tensor]], scalar: Union[Number, _complex]) -> None: ... @overload def _foreach_minimum_(self: Union[Tuple[Tensor, ...], List[Tensor]], other: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: ... @overload def _foreach_mul(self: Union[Tuple[Tensor, ...], List[Tensor]], scalars: Sequence[Union[Number, _complex]]) -> Tuple[Tensor, ...]: ... @overload def _foreach_mul(self: Union[Tuple[Tensor, ...], List[Tensor]], other: Tensor) -> Tuple[Tensor, ...]: ... @overload def _foreach_mul(self: Union[Tuple[Tensor, ...], List[Tensor]], scalar: Union[Number, _complex]) -> Tuple[Tensor, ...]: ... @overload def _foreach_mul(self: Union[Tuple[Tensor, ...], List[Tensor]], other: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: ... @overload def _foreach_mul_(self: Union[Tuple[Tensor, ...], List[Tensor]], scalars: Sequence[Union[Number, _complex]]) -> None: ... @overload def _foreach_mul_(self: Union[Tuple[Tensor, ...], List[Tensor]], other: Tensor) -> None: ... @overload def _foreach_mul_(self: Union[Tuple[Tensor, ...], List[Tensor]], scalar: Union[Number, _complex]) -> None: ... @overload def _foreach_mul_(self: Union[Tuple[Tensor, ...], List[Tensor]], other: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: ... def _foreach_neg(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: r""" _foreach_neg(self: List[Tensor]) -> List[Tensor] Apply :func:`torch.neg` to each Tensor of the input list. """ ... def _foreach_neg_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: r""" _foreach_neg_(self: List[Tensor]) -> None Apply :func:`torch.neg` to each Tensor of the input list. """ ... def _foreach_norm(self: Union[Tuple[Tensor, ...], List[Tensor]], ord: Union[Number, _complex] = 2) -> Tuple[Tensor, ...]: ... @overload def _foreach_pow(self: Union[Tuple[Tensor, ...], List[Tensor]], exponent: Sequence[Union[Number, _complex]]) -> Tuple[Tensor, ...]: ... @overload def _foreach_pow(self: Union[Tuple[Tensor, ...], List[Tensor]], exponent: Union[Number, _complex]) -> Tuple[Tensor, ...]: ... @overload def _foreach_pow(self: Union[Tuple[Tensor, ...], List[Tensor]], exponent: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: ... @overload def _foreach_pow(self: Union[Number, _complex], exponent: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: ... @overload def _foreach_pow_(self: Union[Tuple[Tensor, ...], List[Tensor]], exponent: Sequence[Union[Number, _complex]]) -> None: ... @overload def _foreach_pow_(self: Union[Tuple[Tensor, ...], List[Tensor]], exponent: Union[Number, _complex]) -> None: ... @overload def _foreach_pow_(self: Union[Tuple[Tensor, ...], List[Tensor]], exponent: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: ... def _foreach_reciprocal(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: r""" _foreach_reciprocal(self: List[Tensor]) -> List[Tensor] Apply :func:`torch.reciprocal` to each Tensor of the input list. """ ... def _foreach_reciprocal_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: r""" _foreach_reciprocal_(self: List[Tensor]) -> None Apply :func:`torch.reciprocal` to each Tensor of the input list. """ ... def _foreach_round(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: r""" _foreach_round(self: List[Tensor]) -> List[Tensor] Apply :func:`torch.round` to each Tensor of the input list. """ ... def _foreach_round_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: r""" _foreach_round_(self: List[Tensor]) -> None Apply :func:`torch.round` to each Tensor of the input list. """ ... def _foreach_sigmoid(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: r""" _foreach_sigmoid(self: List[Tensor]) -> List[Tensor] Apply :func:`torch.sigmoid` to each Tensor of the input list. """ ... def _foreach_sigmoid_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: r""" _foreach_sigmoid_(self: List[Tensor]) -> None Apply :func:`torch.sigmoid` to each Tensor of the input list. """ ... def _foreach_sign(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: ... def _foreach_sign_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: ... def _foreach_sin(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: r""" _foreach_sin(self: List[Tensor]) -> List[Tensor] Apply :func:`torch.sin` to each Tensor of the input list. """ ... def _foreach_sin_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: r""" _foreach_sin_(self: List[Tensor]) -> None Apply :func:`torch.sin` to each Tensor of the input list. """ ... def _foreach_sinh(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: r""" _foreach_sinh(self: List[Tensor]) -> List[Tensor] Apply :func:`torch.sinh` to each Tensor of the input list. """ ... def _foreach_sinh_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: r""" _foreach_sinh_(self: List[Tensor]) -> None Apply :func:`torch.sinh` to each Tensor of the input list. """ ... def _foreach_sqrt(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: r""" _foreach_sqrt(self: List[Tensor]) -> List[Tensor] Apply :func:`torch.sqrt` to each Tensor of the input list. """ ... def _foreach_sqrt_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: r""" _foreach_sqrt_(self: List[Tensor]) -> None Apply :func:`torch.sqrt` to each Tensor of the input list. """ ... @overload def _foreach_sub(self: Union[Tuple[Tensor, ...], List[Tensor]], scalars: Sequence[Union[Number, _complex]]) -> Tuple[Tensor, ...]: ... @overload def _foreach_sub(self: Union[Tuple[Tensor, ...], List[Tensor]], other: Union[Tuple[Tensor, ...], List[Tensor]], *, alpha: Union[Number, _complex] = 1) -> Tuple[Tensor, ...]: ... @overload def _foreach_sub(self: Union[Tuple[Tensor, ...], List[Tensor]], scalar: Union[Number, _complex]) -> Tuple[Tensor, ...]: ... @overload def _foreach_sub_(self: Union[Tuple[Tensor, ...], List[Tensor]], scalars: Sequence[Union[Number, _complex]]) -> None: ... @overload def _foreach_sub_(self: Union[Tuple[Tensor, ...], List[Tensor]], other: Union[Tuple[Tensor, ...], List[Tensor]], *, alpha: Union[Number, _complex] = 1) -> None: ... @overload def _foreach_sub_(self: Union[Tuple[Tensor, ...], List[Tensor]], scalar: Union[Number, _complex]) -> None: ... def _foreach_tan(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: r""" _foreach_tan(self: List[Tensor]) -> List[Tensor] Apply :func:`torch.tan` to each Tensor of the input list. """ ... def _foreach_tan_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: r""" _foreach_tan_(self: List[Tensor]) -> None Apply :func:`torch.tan` to each Tensor of the input list. """ ... def _foreach_tanh(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: r""" _foreach_tanh(self: List[Tensor]) -> List[Tensor] Apply :func:`torch.tanh` to each Tensor of the input list. """ ... def _foreach_tanh_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: r""" _foreach_tanh_(self: List[Tensor]) -> None Apply :func:`torch.tanh` to each Tensor of the input list. """ ... def _foreach_trunc(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: r""" _foreach_trunc(self: List[Tensor]) -> List[Tensor] Apply :func:`torch.trunc` to each Tensor of the input list. """ ... def _foreach_trunc_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: r""" _foreach_trunc_(self: List[Tensor]) -> None Apply :func:`torch.trunc` to each Tensor of the input list. """ ... def _foreach_zero_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: r""" _foreach_zero_(self: List[Tensor]) -> None Apply :func:`torch.zero` to each Tensor of the input list. """ ... def _from_functional_tensor(t: Tensor) -> Tensor: ... def _functional_assert_async(input: Tensor, assert_msg: str, dep_token: Tensor) -> Tensor: ... def _functional_assert_scalar(self: Union[Number, _complex], assert_msg: str, dep_token: Tensor) -> Tensor: ... def _functional_sym_constrain_range(size: Union[Number, _complex], min: Optional[_int], max: Optional[_int], dep_token: Tensor) -> Tensor: ... def _functional_sym_constrain_range_for_size(size: Union[Number, _complex], min: Optional[_int], max: Optional[_int], dep_token: Tensor) -> Tensor: ... def _functionalize_are_all_mutations_hidden_from_autograd(t: Tensor) -> _bool: ... def _functionalize_are_all_mutations_under_no_grad_or_inference_mode(t: Tensor) -> _bool: ... def _functionalize_commit_update(t: Tensor) -> None: ... def _functionalize_mark_mutation_hidden_from_autograd(t: Tensor) -> None: ... def _functionalize_replace(self_: Tensor, other: Tensor) -> None: ... def _functionalize_sync(t: Tensor) -> None: ... @overload def _fused_adam_(self: Union[Tuple[Tensor, ...], List[Tensor]], grads: Union[Tuple[Tensor, ...], List[Tensor]], exp_avgs: Union[Tuple[Tensor, ...], List[Tensor]], exp_avg_sqs: Union[Tuple[Tensor, ...], List[Tensor]], max_exp_avg_sqs: Union[Tuple[Tensor, ...], List[Tensor]], state_steps: Union[Tuple[Tensor, ...], List[Tensor]], *, lr: Tensor, beta1: _float, beta2: _float, weight_decay: _float, eps: _float, amsgrad: _bool, maximize: _bool, grad_scale: Optional[Tensor] = None, found_inf: Optional[Tensor] = None) -> None: ... @overload def _fused_adam_(self: Union[Tuple[Tensor, ...], List[Tensor]], grads: Union[Tuple[Tensor, ...], List[Tensor]], exp_avgs: Union[Tuple[Tensor, ...], List[Tensor]], exp_avg_sqs: Union[Tuple[Tensor, ...], List[Tensor]], max_exp_avg_sqs: Union[Tuple[Tensor, ...], List[Tensor]], state_steps: Union[Tuple[Tensor, ...], List[Tensor]], *, lr: _float, beta1: _float, beta2: _float, weight_decay: _float, eps: _float, amsgrad: _bool, maximize: _bool, grad_scale: Optional[Tensor] = None, found_inf: Optional[Tensor] = None) -> None: ... @overload def _fused_adamw_(self: Union[Tuple[Tensor, ...], List[Tensor]], grads: Union[Tuple[Tensor, ...], List[Tensor]], exp_avgs: Union[Tuple[Tensor, ...], List[Tensor]], exp_avg_sqs: Union[Tuple[Tensor, ...], List[Tensor]], max_exp_avg_sqs: Union[Tuple[Tensor, ...], List[Tensor]], state_steps: Union[Tuple[Tensor, ...], List[Tensor]], *, lr: Tensor, beta1: _float, beta2: _float, weight_decay: _float, eps: _float, amsgrad: _bool, maximize: _bool, grad_scale: Optional[Tensor] = None, found_inf: Optional[Tensor] = None) -> None: ... @overload def _fused_adamw_(self: Union[Tuple[Tensor, ...], List[Tensor]], grads: Union[Tuple[Tensor, ...], List[Tensor]], exp_avgs: Union[Tuple[Tensor, ...], List[Tensor]], exp_avg_sqs: Union[Tuple[Tensor, ...], List[Tensor]], max_exp_avg_sqs: Union[Tuple[Tensor, ...], List[Tensor]], state_steps: Union[Tuple[Tensor, ...], List[Tensor]], *, lr: _float, beta1: _float, beta2: _float, weight_decay: _float, eps: _float, amsgrad: _bool, maximize: _bool, grad_scale: Optional[Tensor] = None, found_inf: Optional[Tensor] = None) -> None: ... def _fused_dropout(input: Tensor, p: _float, generator: Optional[Generator] = None) -> Tuple[Tensor, Tensor]: ... def _fused_moving_avg_obs_fq_helper(input: Tensor, observer_on: Tensor, fake_quant_on: Tensor, running_min: Tensor, running_max: Tensor, scale: Tensor, zero_point: Tensor, averaging_const: _float, quant_min: _int, quant_max: _int, ch_axis: _int, per_row_fake_quant: _bool = False, symmetric_quant: _bool = False) -> torch.return_types._fused_moving_avg_obs_fq_helper: ... def _fused_sdp_choice(query: Tensor, key: Tensor, value: Tensor, attn_mask: Optional[Tensor] = None, dropout_p: _float = 0.0, is_causal: _bool = False, *, scale: Optional[_float] = None) -> _int: ... @overload def _fused_sgd_(self: Union[Tuple[Tensor, ...], List[Tensor]], grads: Union[Tuple[Tensor, ...], List[Tensor]], momentum_buffer_list: Union[Tuple[Tensor, ...], List[Tensor]], *, weight_decay: _float, momentum: _float, lr: Tensor, dampening: _float, nesterov: _bool, maximize: _bool, is_first_step: _bool, grad_scale: Optional[Tensor] = None, found_inf: Optional[Tensor] = None) -> None: ... @overload def _fused_sgd_(self: Union[Tuple[Tensor, ...], List[Tensor]], grads: Union[Tuple[Tensor, ...], List[Tensor]], momentum_buffer_list: Union[Tuple[Tensor, ...], List[Tensor]], *, weight_decay: _float, momentum: _float, lr: _float, dampening: _float, nesterov: _bool, maximize: _bool, is_first_step: _bool, grad_scale: Optional[Tensor] = None, found_inf: Optional[Tensor] = None) -> None: ... def _fw_primal_copy(input: Tensor, level: _int, *, out: Optional[Tensor] = None) -> Tensor: ... def _grid_sampler_2d_cpu_fallback(input: Tensor, grid: Tensor, interpolation_mode: _int, padding_mode: _int, align_corners: _bool) -> Tensor: ... def _has_compatible_shallow_copy_type(input: Tensor, from_: Tensor) -> _bool: ... def _histogramdd_bin_edges(input: Tensor, bins: _size, *, range: Optional[Sequence[_float]] = None, weight: Optional[Tensor] = None, density: _bool = False) -> Tuple[Tensor, ...]: ... def _histogramdd_from_bin_cts(input: Tensor, bins: _size, *, range: Optional[Sequence[_float]] = None, weight: Optional[Tensor] = None, density: _bool = False) -> Tensor: ... def _histogramdd_from_bin_tensors(input: Tensor, bins: Union[Tuple[Tensor, ...], List[Tensor]], *, weight: Optional[Tensor] = None, density: _bool = False) -> Tensor: ... def _index_put_impl_(input: Tensor, indices: Optional[Union[Tuple[Tensor, ...], List[Tensor]]], values: Tensor, accumulate: _bool = False, unsafe: _bool = False) -> Tensor: ... def _indices_copy(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: ... def _int_mm(input: Tensor, mat2: Tensor, *, out: Optional[Tensor] = None) -> Tensor: ... def _is_all_true(input: Tensor) -> Tensor: ... def _is_any_true(input: Tensor) -> Tensor: ... def _is_functional_tensor(t: Tensor) -> _bool: ... def _is_zerotensor(input: Tensor) -> _bool: ... def _lazy_clone(input: Tensor) -> Tensor: ... def _linalg_check_errors(info: Tensor, api_name: str, *, is_matrix: _bool) -> None: ... def _linalg_det(A: Tensor, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types._linalg_det: ... def _linalg_eigh(A: Tensor, UPLO: str = "L", compute_v: _bool = True, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types._linalg_eigh: ... def _linalg_slogdet(A: Tensor, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types._linalg_slogdet: ... def _linalg_solve_ex(A: Tensor, B: Tensor, *, left: _bool = True, check_errors: _bool = False, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types._linalg_solve_ex: ... def _linalg_svd(A: Tensor, full_matrices: _bool = False, compute_uv: _bool = True, *, driver: Optional[str] = None, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types._linalg_svd: ... def _log_softmax(input: Tensor, dim: _int, half_to_float: _bool, *, out: Optional[Tensor] = None) -> Tensor: ... def _log_softmax_backward_data(grad_output: Tensor, output: Tensor, dim: _int, input_dtype: _dtype, *, out: Optional[Tensor] = None) -> Tensor: ... def _logcumsumexp(input: Tensor, dim: _int, *, out: Optional[Tensor] = None) -> Tensor: ... def _lstm_mps(input: Tensor, hx: Union[Tuple[Tensor, ...], List[Tensor]], params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: _bool, num_layers: _int, dropout: _float, train: _bool, bidirectional: _bool, batch_first: _bool) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor, Tensor]: ... def _lu_with_info(input: Tensor, pivot: _bool = True, check_errors: _bool = True) -> torch.return_types._lu_with_info: ... def _make_dep_token(*, memory_format: Optional[memory_format] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: ... def _make_dual(primal: Tensor, tangent: Tensor, level: _int) -> Tensor: ... def _make_dual_copy(primal: Tensor, tangent: Tensor, level: _int, *, out: Optional[Tensor] = None) -> Tensor: ... def _make_per_channel_quantized_tensor(input: Tensor, scale: Tensor, zero_point: Tensor, axis: _int) -> Tensor: ... def _make_per_tensor_quantized_tensor(input: Tensor, scale: _float, zero_point: _int) -> Tensor: ... def _masked_scale(input: Tensor, mask: Tensor, scale: _float) -> Tensor: ... def _masked_softmax(input: Tensor, mask: Tensor, dim: Optional[_int] = None, mask_type: Optional[_int] = None) -> Tensor: ... def _mixed_dtypes_linear(input: Tensor, weight: Tensor, scale: Tensor, *, bias: Optional[Tensor] = None, activation: Optional[str] = None) -> Tensor: ... def _mkldnn_reshape(input: Tensor, shape: _size) -> Tensor: ... def _mkldnn_transpose(input: Tensor, dim0: _int, dim1: _int) -> Tensor: ... def _mkldnn_transpose_(input: Tensor, dim0: _int, dim1: _int) -> Tensor: ... def _mps_convolution(input: Tensor, weight: Tensor, bias: Optional[Tensor], padding: Sequence[Union[_int, SymInt]], stride: Sequence[Union[_int, SymInt]], dilation: Sequence[Union[_int, SymInt]], groups: Union[_int, SymInt]) -> Tensor: ... def _mps_convolution_transpose(input: Tensor, weight: Tensor, padding: Sequence[Union[_int, SymInt]], output_padding: Sequence[Union[_int, SymInt]], stride: Sequence[Union[_int, SymInt]], dilation: Sequence[Union[_int, SymInt]], groups: Union[_int, SymInt]) -> Tensor: ... @overload def _native_batch_norm_legit(input: Tensor, weight: Optional[Tensor], bias: Optional[Tensor], running_mean: Tensor, running_var: Tensor, training: _bool, momentum: _float, eps: _float, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> Tuple[Tensor, Tensor, Tensor]: ... @overload def _native_batch_norm_legit(input: Tensor, weight: Optional[Tensor], bias: Optional[Tensor], training: _bool, momentum: _float, eps: _float, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> Tuple[Tensor, Tensor, Tensor]: ... def _native_batch_norm_legit_no_training(input: Tensor, weight: Optional[Tensor], bias: Optional[Tensor], running_mean: Tensor, running_var: Tensor, momentum: _float, eps: _float) -> Tuple[Tensor, Tensor, Tensor]: ... def _native_multi_head_attention(query: Tensor, key: Tensor, value: Tensor, embed_dim: _int, num_head: _int, qkv_weight: Tensor, qkv_bias: Tensor, proj_weight: Tensor, proj_bias: Tensor, mask: Optional[Tensor] = None, need_weights: _bool = True, average_attn_weights: _bool = True, mask_type: Optional[_int] = None) -> Tuple[Tensor, Tensor]: ... def _neg_view(input: Tensor) -> Tensor: ... def _neg_view_copy(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: ... def _nested_from_padded(padded: Tensor, cpu_nested_shape_example: Tensor, fuse_transform_0213: _bool = False) -> Tensor: ... def _nested_from_padded_and_nested_example(padded: Tensor, nt_example: Tensor) -> Tensor: ... def _nested_get_jagged_dummy(any: Tensor) -> Tensor: ... def _nested_get_lengths(input: Tensor) -> Tensor: ... def _nested_get_offsets(input: Tensor) -> Tensor: ... def _nested_get_ragged_idx(input: Tensor) -> _int: ... def _nested_get_values(input: Tensor) -> Tensor: ... def _nested_get_values_copy(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: ... def _nested_tensor_from_mask(t: Tensor, mask: Tensor, mask_check: _bool = True) -> Tensor: ... def _nested_tensor_from_mask_left_aligned(t: Tensor, mask: Tensor) -> _bool: ... def _nested_tensor_from_tensor_list(list: Union[Tuple[Tensor, ...], List[Tensor]], dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = None) -> Tensor: ... def _nested_tensor_softmax_with_shape(input: Tensor, query: Tensor) -> Tensor: ... def _nested_view_from_buffer(input: Tensor, nested_size: Tensor, nested_strides: Tensor, offsets: Tensor) -> Tensor: ... def _nested_view_from_buffer_copy(input: Tensor, nested_size: Tensor, nested_strides: Tensor, offsets: Tensor, *, out: Optional[Tensor] = None) -> Tensor: ... def _nested_view_from_jagged(input: Tensor, offsets: Tensor, dummy: Tensor, lengths: Optional[Tensor] = None, ragged_idx: _int = 1) -> Tensor: ... def _nested_view_from_jagged_copy(input: Tensor, offsets: Tensor, dummy: Tensor, lengths: Optional[Tensor] = None, ragged_idx: _int = 1, *, out: Optional[Tensor] = None) -> Tensor: ... def _nnpack_available() -> _bool: ... def _nnpack_spatial_convolution(input: Tensor, weight: Tensor, bias: Optional[Tensor], padding: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]], stride: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]] = 1) -> Tensor: ... def _pack_padded_sequence(input: Tensor, lengths: Tensor, batch_first: _bool) -> Tuple[Tensor, Tensor]: ... def _pad_packed_sequence(data: Tensor, batch_sizes: Tensor, batch_first: _bool, padding_value: Union[Number, _complex], total_length: _int) -> Tuple[Tensor, Tensor]: ... def _pin_memory(input: Tensor, device: Optional[Optional[DeviceLikeType]] = None) -> Tensor: ... def _prelu_kernel(input: Tensor, weight: Tensor) -> Tensor: ... def _print(s: str) -> None: ... def _propagate_xla_data(input: Tensor, output: Tensor) -> None: ... def _remove_batch_dim(input: Tensor, level: _int, batch_size: _int, out_dim: _int) -> Tensor: ... def _reshape_alias_copy(input: Tensor, size: Sequence[Union[_int, SymInt]], stride: Sequence[Union[_int, SymInt]], *, out: Optional[Tensor] = None) -> Tensor: ... def _reshape_from_tensor(input: Tensor, shape: Tensor) -> Tensor: ... def _resize_output_(input: Tensor, size: Sequence[Union[_int, SymInt]], device: Optional[DeviceLikeType]) -> Tensor: ... def _rowwise_prune(weight: Tensor, mask: Tensor, compressed_indices_dtype: _dtype) -> Tuple[Tensor, Tensor]: ... def _sample_dirichlet(input: Tensor, generator: Optional[Generator] = None) -> Tensor: ... def _saturate_weight_to_fp16(weight: Tensor) -> Tensor: ... def _scaled_dot_product_attention_math(query: Tensor, key: Tensor, value: Tensor, attn_mask: Optional[Tensor] = None, dropout_p: _float = 0.0, is_causal: _bool = False, dropout_mask: Optional[Tensor] = None, *, scale: Optional[_float] = None) -> Tuple[Tensor, Tensor]: ... def _scaled_dot_product_cudnn_attention(query: Tensor, key: Tensor, value: Tensor, dropout_p: _float = 0.0, is_causal: _bool = False, return_debug_mask: _bool = False, *, scale: Optional[_float] = None) -> torch.return_types._scaled_dot_product_cudnn_attention: ... def _scaled_dot_product_efficient_attention(query: Tensor, key: Tensor, value: Tensor, attn_bias: Optional[Tensor], compute_log_sumexp: _bool, dropout_p: _float = 0.0, is_causal: _bool = False, *, scale: Optional[_float] = None) -> torch.return_types._scaled_dot_product_efficient_attention: ... def _scaled_dot_product_flash_attention(query: Tensor, key: Tensor, value: Tensor, dropout_p: _float = 0.0, is_causal: _bool = False, return_debug_mask: _bool = False, *, scale: Optional[_float] = None) -> torch.return_types._scaled_dot_product_flash_attention: ... def _scaled_dot_product_flash_attention_for_cpu(query: Tensor, key: Tensor, value: Tensor, dropout_p: _float = 0.0, is_causal: _bool = False, *, attn_mask: Optional[Tensor] = None, scale: Optional[_float] = None) -> torch.return_types._scaled_dot_product_flash_attention_for_cpu: ... def _scaled_mm(input: Tensor, mat2: Tensor, *, bias: Optional[Tensor] = None, out_dtype: Optional[_dtype] = None, scale_a: Optional[Tensor] = None, scale_b: Optional[Tensor] = None, scale_result: Optional[Tensor] = None, use_fast_accum: _bool = False, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> Tuple[Tensor, Tensor]: ... def _shape_as_tensor(input: Tensor) -> Tensor: ... def _sobol_engine_draw(quasi: Tensor, n: _int, sobolstate: Tensor, dimension: _int, num_generated: _int, dtype: Optional[_dtype]) -> Tuple[Tensor, Tensor]: ... def _sobol_engine_ff_(input: Tensor, n: _int, sobolstate: Tensor, dimension: _int, num_generated: _int) -> Tensor: ... def _sobol_engine_initialize_state_(input: Tensor, dimension: _int) -> Tensor: ... def _sobol_engine_scramble_(input: Tensor, ltm: Tensor, dimension: _int) -> Tensor: ... def _softmax(input: Tensor, dim: _int, half_to_float: _bool, *, out: Optional[Tensor] = None) -> Tensor: ... def _softmax_backward_data(grad_output: Tensor, output: Tensor, dim: _int, input_dtype: _dtype, *, grad_input: Optional[Tensor] = None) -> Tensor: ... def _sparse_broadcast_to(input: Tensor, size: _size) -> Tensor: ... def _sparse_broadcast_to_copy(input: Tensor, size: _size, *, out: Optional[Tensor] = None) -> Tensor: ... def _sparse_csr_prod(input: Tensor, dim: Union[_int, _size], keepdim: _bool = False, *, dtype: Optional[_dtype] = None) -> Tensor: ... def _sparse_csr_sum(input: Tensor, dim: Union[_int, _size], keepdim: _bool = False, *, dtype: Optional[_dtype] = None) -> Tensor: ... def _sparse_log_softmax_backward_data(grad_output: Tensor, output: Tensor, dim: _int, input: Tensor) -> Tensor: ... def _sparse_semi_structured_linear(input: Tensor, weight: Tensor, meta: Tensor, *, bias: Optional[Tensor] = None, activation: Optional[str] = None, out_dtype: Optional[_dtype] = None) -> Tensor: ... def _sparse_softmax_backward_data(grad_output: Tensor, output: Tensor, dim: _int, input: Tensor) -> Tensor: ... def _sparse_sparse_matmul(input: Tensor, other: Tensor) -> Tensor: ... @overload def _sparse_sum(input: Tensor) -> Tensor: ... @overload def _sparse_sum(input: Tensor, *, dtype: _dtype) -> Tensor: ... @overload def _sparse_sum(input: Tensor, dim: Union[_int, _size]) -> Tensor: ... @overload def _sparse_sum(input: Tensor, dim: Union[_int, _size], *, dtype: _dtype) -> Tensor: ... def _stack(tensors: Union[Tuple[Tensor, ...], List[Tensor]], dim: _int = 0, *, out: Optional[Tensor] = None) -> Tensor: ... def _standard_gamma(input: Tensor, generator: Optional[Generator] = None) -> Tensor: ... def _standard_gamma_grad(input: Tensor, output: Tensor) -> Tensor: ... def _sync(t: Tensor) -> None: ... @overload def _test_autograd_multiple_dispatch(input: Tensor) -> Tensor: ... @overload def _test_autograd_multiple_dispatch(input: Tensor, b: _bool) -> Tensor: ... def _test_autograd_multiple_dispatch_view(input: Tensor) -> Tensor: ... def _test_autograd_multiple_dispatch_view_copy(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: ... def _test_check_tensor(input: Tensor) -> Tensor: ... def _test_functorch_fallback(input: Tensor, other: Tensor) -> Tensor: ... def _test_parallel_materialize(input: Tensor, num_parallel: _int, skip_first: _bool = False) -> Tensor: ... def _test_serialization_subcmul(input: Tensor, other: Tensor, alpha: Union[Number, _complex] = 1) -> Tensor: ... def _to_cpu(tensors: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: ... def _to_functional_tensor(t: Tensor) -> Tensor: ... def _to_sparse_semi_structured(dense: Tensor) -> Tuple[Tensor, Tensor]: ... def _transform_bias_rescale_qkv(qkv: Tensor, qkv_bias: Tensor, num_heads: _int) -> Tuple[Tensor, Tensor, Tensor]: ... def _transformer_encoder_layer_fwd(src: Tensor, embed_dim: _int, num_heads: _int, qkv_weight: Tensor, qkv_bias: Tensor, proj_weight: Tensor, proj_bias: Tensor, use_gelu: _bool, norm_first: _bool, eps: _float, norm_weight_1: Tensor, norm_bias_1: Tensor, norm_weight_2: Tensor, norm_bias_2: Tensor, ffn_weight_1: Tensor, ffn_bias_1: Tensor, ffn_weight_2: Tensor, ffn_bias_2: Tensor, mask: Optional[Tensor] = None, mask_type: Optional[_int] = None) -> Tensor: ... def _trilinear(i1: Tensor, i2: Tensor, i3: Tensor, expand1: _size, expand2: _size, expand3: _size, sumdim: _size, unroll_dim: _int = 1) -> Tensor: ... def _triton_multi_head_attention(query: Tensor, key: Tensor, value: Tensor, embed_dim: _int, num_head: _int, qkv_weight: Tensor, qkv_bias: Tensor, proj_weight: Tensor, proj_bias: Tensor, mask: Optional[Tensor] = None) -> Tensor: ... def _triton_scaled_dot_attention(q: Tensor, k: Tensor, v: Tensor, dropout_p: _float = 0.0) -> Tensor: ... def _unique(input: Tensor, sorted: _bool = True, return_inverse: _bool = False) -> Tuple[Tensor, Tensor]: ... def _unique2(input: Tensor, sorted: _bool = True, return_inverse: _bool = False, return_counts: _bool = False) -> Tuple[Tensor, Tensor, Tensor]: ... def _unpack_dual(dual: Tensor, level: _int) -> torch.return_types._unpack_dual: ... def _unsafe_index(input: Tensor, indices: Optional[Union[Tuple[Tensor, ...], List[Tensor]]]) -> Tensor: ... def _unsafe_index_put(input: Tensor, indices: Optional[Union[Tuple[Tensor, ...], List[Tensor]]], values: Tensor, accumulate: _bool = False) -> Tensor: ... @overload def _use_cudnn_ctc_loss(log_probs: Tensor, targets: Tensor, input_lengths: Tensor, target_lengths: Tensor, blank: _int) -> _bool: ... @overload def _use_cudnn_ctc_loss(log_probs: Tensor, targets: Tensor, input_lengths: _size, target_lengths: _size, blank: _int) -> _bool: ... def _use_cudnn_rnn_flatten_weight() -> _bool: ... def _validate_compressed_sparse_indices(is_crow: _bool, compressed_idx: Tensor, plain_idx: Tensor, cdim: _int, dim: _int, nnz: _int) -> None: ... def _validate_sparse_bsc_tensor_args(ccol_indices: Tensor, row_indices: Tensor, values: Tensor, size: _size) -> None: ... def _validate_sparse_bsr_tensor_args(crow_indices: Tensor, col_indices: Tensor, values: Tensor, size: _size) -> None: ... def _validate_sparse_compressed_tensor_args(compressed_indices: Tensor, plain_indices: Tensor, values: Tensor, size: _size, layout: _layout) -> None: ... def _validate_sparse_coo_tensor_args(indices: Tensor, values: Tensor, size: _size, is_coalesced: Optional[_bool] = None) -> None: ... def _validate_sparse_csc_tensor_args(ccol_indices: Tensor, row_indices: Tensor, values: Tensor, size: _size) -> None: ... def _validate_sparse_csr_tensor_args(crow_indices: Tensor, col_indices: Tensor, values: Tensor, size: _size) -> None: ... def _values_copy(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: ... def _weight_int4pack_mm(input: Tensor, mat2: Tensor, qGroupSize: _int, qScaleAndZeros: Tensor) -> Tensor: ... def _weight_int8pack_mm(input: Tensor, mat2: Tensor, scales: Tensor) -> Tensor: ... def _weight_norm(v: Tensor, g: Tensor, dim: _int = 0) -> Tensor: ... def _weight_norm_interface(v: Tensor, g: Tensor, dim: _int = 0) -> Tuple[Tensor, Tensor]: ... def abs(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" abs(input, *, out=None) -> Tensor Computes the absolute value of each element in :attr:`input`. .. math:: \text{out}_{i} = |\text{input}_{i}| Args: input (Tensor): the input tensor. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> torch.abs(torch.tensor([-1, -2, 3])) tensor([ 1, 2, 3]) """ ... def abs_(input: Tensor) -> Tensor: ... def absolute(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" absolute(input, *, out=None) -> Tensor Alias for :func:`torch.abs` """ ... def acos(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" acos(input, *, out=None) -> Tensor Computes the inverse cosine of each element in :attr:`input`. .. math:: \text{out}_{i} = \cos^{-1}(\text{input}_{i}) Args: input (Tensor): the input tensor. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.randn(4) >>> a tensor([ 0.3348, -0.5889, 0.2005, -0.1584]) >>> torch.acos(a) tensor([ 1.2294, 2.2004, 1.3690, 1.7298]) """ ... def acos_(input: Tensor) -> Tensor: ... def acosh(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" acosh(input, *, out=None) -> Tensor Returns a new tensor with the inverse hyperbolic cosine of the elements of :attr:`input`. .. math:: \text{out}_{i} = \cosh^{-1}(\text{input}_{i}) Note: The domain of the inverse hyperbolic cosine is `[1, inf)` and values outside this range will be mapped to ``NaN``, except for `+ INF` for which the output is mapped to `+ INF`. Args: input (Tensor): the input tensor. Keyword arguments: out (Tensor, optional): the output tensor. Example:: >>> a = torch.randn(4).uniform_(1, 2) >>> a tensor([ 1.3192, 1.9915, 1.9674, 1.7151 ]) >>> torch.acosh(a) tensor([ 0.7791, 1.3120, 1.2979, 1.1341 ]) """ ... def acosh_(input: Tensor) -> Tensor: ... def adaptive_avg_pool1d(input: Tensor, output_size: Union[_int, _size]) -> Tensor: ... def adaptive_max_pool1d(input: Tensor, output_size: Union[_int, _size]) -> Tuple[Tensor, Tensor]: ... @overload def add(input: Union[Tensor, Number, _complex], other: Union[Tensor, Number, _complex], *, alpha: Optional[Union[Number, _complex]] = 1, out: Optional[Tensor] = None) -> Tensor: r""" add(input, other, *, alpha=1, out=None) -> Tensor Adds :attr:`other`, scaled by :attr:`alpha`, to :attr:`input`. .. math:: \text{{out}}_i = \text{{input}}_i + \text{{alpha}} \times \text{{other}}_i Supports :ref:`broadcasting to a common shape `, :ref:`type promotion `, and integer, float, and complex inputs. Args: input (Tensor): the input tensor. other (Tensor or Number): the tensor or number to add to :attr:`input`. Keyword arguments: alpha (Number): the multiplier for :attr:`other`. out (Tensor, optional): the output tensor. Examples:: >>> a = torch.randn(4) >>> a tensor([ 0.0202, 1.0985, 1.3506, -0.6056]) >>> torch.add(a, 20) tensor([ 20.0202, 21.0985, 21.3506, 19.3944]) >>> b = torch.randn(4) >>> b tensor([-0.9732, -0.3497, 0.6245, 0.4022]) >>> c = torch.randn(4, 1) >>> c tensor([[ 0.3743], [-1.7724], [-0.5811], [-0.8017]]) >>> torch.add(b, c, alpha=10) tensor([[ 2.7695, 3.3930, 4.3672, 4.1450], [-18.6971, -18.0736, -17.0994, -17.3216], [ -6.7845, -6.1610, -5.1868, -5.4090], [ -8.9902, -8.3667, -7.3925, -7.6147]]) """ ... @overload def add(self: Tensor, alpha: Union[Number, _complex], other: Tensor) -> Tensor: r""" add(input, other, *, alpha=1, out=None) -> Tensor Adds :attr:`other`, scaled by :attr:`alpha`, to :attr:`input`. .. math:: \text{{out}}_i = \text{{input}}_i + \text{{alpha}} \times \text{{other}}_i Supports :ref:`broadcasting to a common shape `, :ref:`type promotion `, and integer, float, and complex inputs. Args: input (Tensor): the input tensor. other (Tensor or Number): the tensor or number to add to :attr:`input`. Keyword arguments: alpha (Number): the multiplier for :attr:`other`. out (Tensor, optional): the output tensor. Examples:: >>> a = torch.randn(4) >>> a tensor([ 0.0202, 1.0985, 1.3506, -0.6056]) >>> torch.add(a, 20) tensor([ 20.0202, 21.0985, 21.3506, 19.3944]) >>> b = torch.randn(4) >>> b tensor([-0.9732, -0.3497, 0.6245, 0.4022]) >>> c = torch.randn(4, 1) >>> c tensor([[ 0.3743], [-1.7724], [-0.5811], [-0.8017]]) >>> torch.add(b, c, alpha=10) tensor([[ 2.7695, 3.3930, 4.3672, 4.1450], [-18.6971, -18.0736, -17.0994, -17.3216], [ -6.7845, -6.1610, -5.1868, -5.4090], [ -8.9902, -8.3667, -7.3925, -7.6147]]) """ ... @overload def add(self: Tensor, alpha: Union[Number, _complex], other: Tensor, *, out: Tensor) -> Tensor: r""" add(input, other, *, alpha=1, out=None) -> Tensor Adds :attr:`other`, scaled by :attr:`alpha`, to :attr:`input`. .. math:: \text{{out}}_i = \text{{input}}_i + \text{{alpha}} \times \text{{other}}_i Supports :ref:`broadcasting to a common shape `, :ref:`type promotion `, and integer, float, and complex inputs. Args: input (Tensor): the input tensor. other (Tensor or Number): the tensor or number to add to :attr:`input`. Keyword arguments: alpha (Number): the multiplier for :attr:`other`. out (Tensor, optional): the output tensor. Examples:: >>> a = torch.randn(4) >>> a tensor([ 0.0202, 1.0985, 1.3506, -0.6056]) >>> torch.add(a, 20) tensor([ 20.0202, 21.0985, 21.3506, 19.3944]) >>> b = torch.randn(4) >>> b tensor([-0.9732, -0.3497, 0.6245, 0.4022]) >>> c = torch.randn(4, 1) >>> c tensor([[ 0.3743], [-1.7724], [-0.5811], [-0.8017]]) >>> torch.add(b, c, alpha=10) tensor([[ 2.7695, 3.3930, 4.3672, 4.1450], [-18.6971, -18.0736, -17.0994, -17.3216], [ -6.7845, -6.1610, -5.1868, -5.4090], [ -8.9902, -8.3667, -7.3925, -7.6147]]) """ ... @overload def addbmm(beta: Union[Number, _complex], self: Tensor, alpha: Union[Number, _complex], batch1: Tensor, batch2: Tensor) -> Tensor: r""" addbmm(input, batch1, batch2, *, beta=1, alpha=1, out=None) -> Tensor Performs a batch matrix-matrix product of matrices stored in :attr:`batch1` and :attr:`batch2`, with a reduced add step (all matrix multiplications get accumulated along the first dimension). :attr:`input` is added to the final result. :attr:`batch1` and :attr:`batch2` must be 3-D tensors each containing the same number of matrices. If :attr:`batch1` is a :math:`(b \times n \times m)` tensor, :attr:`batch2` is a :math:`(b \times m \times p)` tensor, :attr:`input` must be :ref:`broadcastable ` with a :math:`(n \times p)` tensor and :attr:`out` will be a :math:`(n \times p)` tensor. .. math:: out = \beta\ \text{input} + \alpha\ (\sum_{i=0}^{b-1} \text{batch1}_i \mathbin{@} \text{batch2}_i) If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in it will not be propagated. For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and :attr:`alpha` must be real numbers, otherwise they should be integers. This operator supports :ref:`TensorFloat32`. On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision` for backward. Args: batch1 (Tensor): the first batch of matrices to be multiplied batch2 (Tensor): the second batch of matrices to be multiplied Keyword args: beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`) input (Tensor): matrix to be added alpha (Number, optional): multiplier for `batch1 @ batch2` (:math:`\alpha`) out (Tensor, optional): the output tensor. Example:: >>> M = torch.randn(3, 5) >>> batch1 = torch.randn(10, 3, 4) >>> batch2 = torch.randn(10, 4, 5) >>> torch.addbmm(M, batch1, batch2) tensor([[ 6.6311, 0.0503, 6.9768, -12.0362, -2.1653], [ -4.8185, -1.4255, -6.6760, 8.9453, 2.5743], [ -3.8202, 4.3691, 1.0943, -1.1109, 5.4730]]) """ ... @overload def addbmm(beta: Union[Number, _complex], self: Tensor, alpha: Union[Number, _complex], batch1: Tensor, batch2: Tensor, *, out: Tensor) -> Tensor: r""" addbmm(input, batch1, batch2, *, beta=1, alpha=1, out=None) -> Tensor Performs a batch matrix-matrix product of matrices stored in :attr:`batch1` and :attr:`batch2`, with a reduced add step (all matrix multiplications get accumulated along the first dimension). :attr:`input` is added to the final result. :attr:`batch1` and :attr:`batch2` must be 3-D tensors each containing the same number of matrices. If :attr:`batch1` is a :math:`(b \times n \times m)` tensor, :attr:`batch2` is a :math:`(b \times m \times p)` tensor, :attr:`input` must be :ref:`broadcastable ` with a :math:`(n \times p)` tensor and :attr:`out` will be a :math:`(n \times p)` tensor. .. math:: out = \beta\ \text{input} + \alpha\ (\sum_{i=0}^{b-1} \text{batch1}_i \mathbin{@} \text{batch2}_i) If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in it will not be propagated. For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and :attr:`alpha` must be real numbers, otherwise they should be integers. This operator supports :ref:`TensorFloat32`. On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision` for backward. Args: batch1 (Tensor): the first batch of matrices to be multiplied batch2 (Tensor): the second batch of matrices to be multiplied Keyword args: beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`) input (Tensor): matrix to be added alpha (Number, optional): multiplier for `batch1 @ batch2` (:math:`\alpha`) out (Tensor, optional): the output tensor. Example:: >>> M = torch.randn(3, 5) >>> batch1 = torch.randn(10, 3, 4) >>> batch2 = torch.randn(10, 4, 5) >>> torch.addbmm(M, batch1, batch2) tensor([[ 6.6311, 0.0503, 6.9768, -12.0362, -2.1653], [ -4.8185, -1.4255, -6.6760, 8.9453, 2.5743], [ -3.8202, 4.3691, 1.0943, -1.1109, 5.4730]]) """ ... @overload def addbmm(input: Tensor, batch1: Tensor, batch2: Tensor, *, beta: Union[Number, _complex] = 1, alpha: Union[Number, _complex] = 1, out: Optional[Tensor] = None) -> Tensor: r""" addbmm(input, batch1, batch2, *, beta=1, alpha=1, out=None) -> Tensor Performs a batch matrix-matrix product of matrices stored in :attr:`batch1` and :attr:`batch2`, with a reduced add step (all matrix multiplications get accumulated along the first dimension). :attr:`input` is added to the final result. :attr:`batch1` and :attr:`batch2` must be 3-D tensors each containing the same number of matrices. If :attr:`batch1` is a :math:`(b \times n \times m)` tensor, :attr:`batch2` is a :math:`(b \times m \times p)` tensor, :attr:`input` must be :ref:`broadcastable ` with a :math:`(n \times p)` tensor and :attr:`out` will be a :math:`(n \times p)` tensor. .. math:: out = \beta\ \text{input} + \alpha\ (\sum_{i=0}^{b-1} \text{batch1}_i \mathbin{@} \text{batch2}_i) If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in it will not be propagated. For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and :attr:`alpha` must be real numbers, otherwise they should be integers. This operator supports :ref:`TensorFloat32`. On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision` for backward. Args: batch1 (Tensor): the first batch of matrices to be multiplied batch2 (Tensor): the second batch of matrices to be multiplied Keyword args: beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`) input (Tensor): matrix to be added alpha (Number, optional): multiplier for `batch1 @ batch2` (:math:`\alpha`) out (Tensor, optional): the output tensor. Example:: >>> M = torch.randn(3, 5) >>> batch1 = torch.randn(10, 3, 4) >>> batch2 = torch.randn(10, 4, 5) >>> torch.addbmm(M, batch1, batch2) tensor([[ 6.6311, 0.0503, 6.9768, -12.0362, -2.1653], [ -4.8185, -1.4255, -6.6760, 8.9453, 2.5743], [ -3.8202, 4.3691, 1.0943, -1.1109, 5.4730]]) """ ... @overload def addbmm(beta: Union[Number, _complex], self: Tensor, batch1: Tensor, batch2: Tensor) -> Tensor: r""" addbmm(input, batch1, batch2, *, beta=1, alpha=1, out=None) -> Tensor Performs a batch matrix-matrix product of matrices stored in :attr:`batch1` and :attr:`batch2`, with a reduced add step (all matrix multiplications get accumulated along the first dimension). :attr:`input` is added to the final result. :attr:`batch1` and :attr:`batch2` must be 3-D tensors each containing the same number of matrices. If :attr:`batch1` is a :math:`(b \times n \times m)` tensor, :attr:`batch2` is a :math:`(b \times m \times p)` tensor, :attr:`input` must be :ref:`broadcastable ` with a :math:`(n \times p)` tensor and :attr:`out` will be a :math:`(n \times p)` tensor. .. math:: out = \beta\ \text{input} + \alpha\ (\sum_{i=0}^{b-1} \text{batch1}_i \mathbin{@} \text{batch2}_i) If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in it will not be propagated. For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and :attr:`alpha` must be real numbers, otherwise they should be integers. This operator supports :ref:`TensorFloat32`. On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision` for backward. Args: batch1 (Tensor): the first batch of matrices to be multiplied batch2 (Tensor): the second batch of matrices to be multiplied Keyword args: beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`) input (Tensor): matrix to be added alpha (Number, optional): multiplier for `batch1 @ batch2` (:math:`\alpha`) out (Tensor, optional): the output tensor. Example:: >>> M = torch.randn(3, 5) >>> batch1 = torch.randn(10, 3, 4) >>> batch2 = torch.randn(10, 4, 5) >>> torch.addbmm(M, batch1, batch2) tensor([[ 6.6311, 0.0503, 6.9768, -12.0362, -2.1653], [ -4.8185, -1.4255, -6.6760, 8.9453, 2.5743], [ -3.8202, 4.3691, 1.0943, -1.1109, 5.4730]]) """ ... @overload def addbmm(beta: Union[Number, _complex], self: Tensor, batch1: Tensor, batch2: Tensor, *, out: Tensor) -> Tensor: r""" addbmm(input, batch1, batch2, *, beta=1, alpha=1, out=None) -> Tensor Performs a batch matrix-matrix product of matrices stored in :attr:`batch1` and :attr:`batch2`, with a reduced add step (all matrix multiplications get accumulated along the first dimension). :attr:`input` is added to the final result. :attr:`batch1` and :attr:`batch2` must be 3-D tensors each containing the same number of matrices. If :attr:`batch1` is a :math:`(b \times n \times m)` tensor, :attr:`batch2` is a :math:`(b \times m \times p)` tensor, :attr:`input` must be :ref:`broadcastable ` with a :math:`(n \times p)` tensor and :attr:`out` will be a :math:`(n \times p)` tensor. .. math:: out = \beta\ \text{input} + \alpha\ (\sum_{i=0}^{b-1} \text{batch1}_i \mathbin{@} \text{batch2}_i) If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in it will not be propagated. For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and :attr:`alpha` must be real numbers, otherwise they should be integers. This operator supports :ref:`TensorFloat32`. On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision` for backward. Args: batch1 (Tensor): the first batch of matrices to be multiplied batch2 (Tensor): the second batch of matrices to be multiplied Keyword args: beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`) input (Tensor): matrix to be added alpha (Number, optional): multiplier for `batch1 @ batch2` (:math:`\alpha`) out (Tensor, optional): the output tensor. Example:: >>> M = torch.randn(3, 5) >>> batch1 = torch.randn(10, 3, 4) >>> batch2 = torch.randn(10, 4, 5) >>> torch.addbmm(M, batch1, batch2) tensor([[ 6.6311, 0.0503, 6.9768, -12.0362, -2.1653], [ -4.8185, -1.4255, -6.6760, 8.9453, 2.5743], [ -3.8202, 4.3691, 1.0943, -1.1109, 5.4730]]) """ ... @overload def addcdiv(self: Tensor, value: Union[Number, _complex], tensor1: Tensor, tensor2: Tensor) -> Tensor: r""" addcdiv(input, tensor1, tensor2, *, value=1, out=None) -> Tensor Performs the element-wise division of :attr:`tensor1` by :attr:`tensor2`, multiplies the result by the scalar :attr:`value` and adds it to :attr:`input`. .. warning:: Integer division with addcdiv is no longer supported, and in a future release addcdiv will perform a true division of tensor1 and tensor2. The historic addcdiv behavior can be implemented as (input + value * torch.trunc(tensor1 / tensor2)).to(input.dtype) for integer inputs and as (input + value * tensor1 / tensor2) for float inputs. The future addcdiv behavior is just the latter implementation: (input + value * tensor1 / tensor2), for all dtypes. .. math:: \text{out}_i = \text{input}_i + \text{value} \times \frac{\text{tensor1}_i}{\text{tensor2}_i} The shapes of :attr:`input`, :attr:`tensor1`, and :attr:`tensor2` must be :ref:`broadcastable `. For inputs of type `FloatTensor` or `DoubleTensor`, :attr:`value` must be a real number, otherwise an integer. Args: input (Tensor): the tensor to be added tensor1 (Tensor): the numerator tensor tensor2 (Tensor): the denominator tensor Keyword args: value (Number, optional): multiplier for :math:`\text{tensor1} / \text{tensor2}` out (Tensor, optional): the output tensor. Example:: >>> t = torch.randn(1, 3) >>> t1 = torch.randn(3, 1) >>> t2 = torch.randn(1, 3) >>> torch.addcdiv(t, t1, t2, value=0.1) tensor([[-0.2312, -3.6496, 0.1312], [-1.0428, 3.4292, -0.1030], [-0.5369, -0.9829, 0.0430]]) """ ... @overload def addcdiv(self: Tensor, value: Union[Number, _complex], tensor1: Tensor, tensor2: Tensor, *, out: Tensor) -> Tensor: r""" addcdiv(input, tensor1, tensor2, *, value=1, out=None) -> Tensor Performs the element-wise division of :attr:`tensor1` by :attr:`tensor2`, multiplies the result by the scalar :attr:`value` and adds it to :attr:`input`. .. warning:: Integer division with addcdiv is no longer supported, and in a future release addcdiv will perform a true division of tensor1 and tensor2. The historic addcdiv behavior can be implemented as (input + value * torch.trunc(tensor1 / tensor2)).to(input.dtype) for integer inputs and as (input + value * tensor1 / tensor2) for float inputs. The future addcdiv behavior is just the latter implementation: (input + value * tensor1 / tensor2), for all dtypes. .. math:: \text{out}_i = \text{input}_i + \text{value} \times \frac{\text{tensor1}_i}{\text{tensor2}_i} The shapes of :attr:`input`, :attr:`tensor1`, and :attr:`tensor2` must be :ref:`broadcastable `. For inputs of type `FloatTensor` or `DoubleTensor`, :attr:`value` must be a real number, otherwise an integer. Args: input (Tensor): the tensor to be added tensor1 (Tensor): the numerator tensor tensor2 (Tensor): the denominator tensor Keyword args: value (Number, optional): multiplier for :math:`\text{tensor1} / \text{tensor2}` out (Tensor, optional): the output tensor. Example:: >>> t = torch.randn(1, 3) >>> t1 = torch.randn(3, 1) >>> t2 = torch.randn(1, 3) >>> torch.addcdiv(t, t1, t2, value=0.1) tensor([[-0.2312, -3.6496, 0.1312], [-1.0428, 3.4292, -0.1030], [-0.5369, -0.9829, 0.0430]]) """ ... @overload def addcdiv(input: Tensor, tensor1: Tensor, tensor2: Tensor, *, value: Union[Number, _complex] = 1, out: Optional[Tensor] = None) -> Tensor: r""" addcdiv(input, tensor1, tensor2, *, value=1, out=None) -> Tensor Performs the element-wise division of :attr:`tensor1` by :attr:`tensor2`, multiplies the result by the scalar :attr:`value` and adds it to :attr:`input`. .. warning:: Integer division with addcdiv is no longer supported, and in a future release addcdiv will perform a true division of tensor1 and tensor2. The historic addcdiv behavior can be implemented as (input + value * torch.trunc(tensor1 / tensor2)).to(input.dtype) for integer inputs and as (input + value * tensor1 / tensor2) for float inputs. The future addcdiv behavior is just the latter implementation: (input + value * tensor1 / tensor2), for all dtypes. .. math:: \text{out}_i = \text{input}_i + \text{value} \times \frac{\text{tensor1}_i}{\text{tensor2}_i} The shapes of :attr:`input`, :attr:`tensor1`, and :attr:`tensor2` must be :ref:`broadcastable `. For inputs of type `FloatTensor` or `DoubleTensor`, :attr:`value` must be a real number, otherwise an integer. Args: input (Tensor): the tensor to be added tensor1 (Tensor): the numerator tensor tensor2 (Tensor): the denominator tensor Keyword args: value (Number, optional): multiplier for :math:`\text{tensor1} / \text{tensor2}` out (Tensor, optional): the output tensor. Example:: >>> t = torch.randn(1, 3) >>> t1 = torch.randn(3, 1) >>> t2 = torch.randn(1, 3) >>> torch.addcdiv(t, t1, t2, value=0.1) tensor([[-0.2312, -3.6496, 0.1312], [-1.0428, 3.4292, -0.1030], [-0.5369, -0.9829, 0.0430]]) """ ... @overload def addcmul(self: Tensor, value: Union[Number, _complex], tensor1: Tensor, tensor2: Tensor) -> Tensor: r""" addcmul(input, tensor1, tensor2, *, value=1, out=None) -> Tensor Performs the element-wise multiplication of :attr:`tensor1` by :attr:`tensor2`, multiplies the result by the scalar :attr:`value` and adds it to :attr:`input`. .. math:: \text{out}_i = \text{input}_i + \text{value} \times \text{tensor1}_i \times \text{tensor2}_i The shapes of :attr:`tensor`, :attr:`tensor1`, and :attr:`tensor2` must be :ref:`broadcastable `. For inputs of type `FloatTensor` or `DoubleTensor`, :attr:`value` must be a real number, otherwise an integer. Args: input (Tensor): the tensor to be added tensor1 (Tensor): the tensor to be multiplied tensor2 (Tensor): the tensor to be multiplied Keyword args: value (Number, optional): multiplier for :math:`tensor1 .* tensor2` out (Tensor, optional): the output tensor. Example:: >>> t = torch.randn(1, 3) >>> t1 = torch.randn(3, 1) >>> t2 = torch.randn(1, 3) >>> torch.addcmul(t, t1, t2, value=0.1) tensor([[-0.8635, -0.6391, 1.6174], [-0.7617, -0.5879, 1.7388], [-0.8353, -0.6249, 1.6511]]) """ ... @overload def addcmul(self: Tensor, value: Union[Number, _complex], tensor1: Tensor, tensor2: Tensor, *, out: Tensor) -> Tensor: r""" addcmul(input, tensor1, tensor2, *, value=1, out=None) -> Tensor Performs the element-wise multiplication of :attr:`tensor1` by :attr:`tensor2`, multiplies the result by the scalar :attr:`value` and adds it to :attr:`input`. .. math:: \text{out}_i = \text{input}_i + \text{value} \times \text{tensor1}_i \times \text{tensor2}_i The shapes of :attr:`tensor`, :attr:`tensor1`, and :attr:`tensor2` must be :ref:`broadcastable `. For inputs of type `FloatTensor` or `DoubleTensor`, :attr:`value` must be a real number, otherwise an integer. Args: input (Tensor): the tensor to be added tensor1 (Tensor): the tensor to be multiplied tensor2 (Tensor): the tensor to be multiplied Keyword args: value (Number, optional): multiplier for :math:`tensor1 .* tensor2` out (Tensor, optional): the output tensor. Example:: >>> t = torch.randn(1, 3) >>> t1 = torch.randn(3, 1) >>> t2 = torch.randn(1, 3) >>> torch.addcmul(t, t1, t2, value=0.1) tensor([[-0.8635, -0.6391, 1.6174], [-0.7617, -0.5879, 1.7388], [-0.8353, -0.6249, 1.6511]]) """ ... @overload def addcmul(input: Tensor, tensor1: Tensor, tensor2: Tensor, *, value: Union[Number, _complex] = 1, out: Optional[Tensor] = None) -> Tensor: r""" addcmul(input, tensor1, tensor2, *, value=1, out=None) -> Tensor Performs the element-wise multiplication of :attr:`tensor1` by :attr:`tensor2`, multiplies the result by the scalar :attr:`value` and adds it to :attr:`input`. .. math:: \text{out}_i = \text{input}_i + \text{value} \times \text{tensor1}_i \times \text{tensor2}_i The shapes of :attr:`tensor`, :attr:`tensor1`, and :attr:`tensor2` must be :ref:`broadcastable `. For inputs of type `FloatTensor` or `DoubleTensor`, :attr:`value` must be a real number, otherwise an integer. Args: input (Tensor): the tensor to be added tensor1 (Tensor): the tensor to be multiplied tensor2 (Tensor): the tensor to be multiplied Keyword args: value (Number, optional): multiplier for :math:`tensor1 .* tensor2` out (Tensor, optional): the output tensor. Example:: >>> t = torch.randn(1, 3) >>> t1 = torch.randn(3, 1) >>> t2 = torch.randn(1, 3) >>> torch.addcmul(t, t1, t2, value=0.1) tensor([[-0.8635, -0.6391, 1.6174], [-0.7617, -0.5879, 1.7388], [-0.8353, -0.6249, 1.6511]]) """ ... @overload def addmm(beta: Union[Number, _complex], self: Tensor, alpha: Union[Number, _complex], mat1: Tensor, mat2: Tensor) -> Tensor: r""" addmm(input, mat1, mat2, *, beta=1, alpha=1, out=None) -> Tensor Performs a matrix multiplication of the matrices :attr:`mat1` and :attr:`mat2`. The matrix :attr:`input` is added to the final result. If :attr:`mat1` is a :math:`(n \times m)` tensor, :attr:`mat2` is a :math:`(m \times p)` tensor, then :attr:`input` must be :ref:`broadcastable ` with a :math:`(n \times p)` tensor and :attr:`out` will be a :math:`(n \times p)` tensor. :attr:`alpha` and :attr:`beta` are scaling factors on matrix-vector product between :attr:`mat1` and :attr:`mat2` and the added matrix :attr:`input` respectively. .. math:: \text{out} = \beta\ \text{input} + \alpha\ (\text{mat1}_i \mathbin{@} \text{mat2}_i) If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in it will not be propagated. For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and :attr:`alpha` must be real numbers, otherwise they should be integers. This operation has support for arguments with :ref:`sparse layouts`. If :attr:`input` is sparse the result will have the same layout and if :attr:`out` is provided it must have the same layout as :attr:`input`. .. warning:: Sparse support is a beta feature and some layout(s)/dtype/device combinations may not be supported, or may not have autograd support. If you notice missing functionality please open a feature request. This operator supports :ref:`TensorFloat32`. On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision` for backward. Args: input (Tensor): matrix to be added mat1 (Tensor): the first matrix to be matrix multiplied mat2 (Tensor): the second matrix to be matrix multiplied Keyword args: beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`) alpha (Number, optional): multiplier for :math:`mat1 @ mat2` (:math:`\alpha`) out (Tensor, optional): the output tensor. Example:: >>> M = torch.randn(2, 3) >>> mat1 = torch.randn(2, 3) >>> mat2 = torch.randn(3, 3) >>> torch.addmm(M, mat1, mat2) tensor([[-4.8716, 1.4671, -1.3746], [ 0.7573, -3.9555, -2.8681]]) """ ... @overload def addmm(beta: Union[Number, _complex], self: Tensor, alpha: Union[Number, _complex], mat1: Tensor, mat2: Tensor, *, out: Tensor) -> Tensor: r""" addmm(input, mat1, mat2, *, beta=1, alpha=1, out=None) -> Tensor Performs a matrix multiplication of the matrices :attr:`mat1` and :attr:`mat2`. The matrix :attr:`input` is added to the final result. If :attr:`mat1` is a :math:`(n \times m)` tensor, :attr:`mat2` is a :math:`(m \times p)` tensor, then :attr:`input` must be :ref:`broadcastable ` with a :math:`(n \times p)` tensor and :attr:`out` will be a :math:`(n \times p)` tensor. :attr:`alpha` and :attr:`beta` are scaling factors on matrix-vector product between :attr:`mat1` and :attr:`mat2` and the added matrix :attr:`input` respectively. .. math:: \text{out} = \beta\ \text{input} + \alpha\ (\text{mat1}_i \mathbin{@} \text{mat2}_i) If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in it will not be propagated. For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and :attr:`alpha` must be real numbers, otherwise they should be integers. This operation has support for arguments with :ref:`sparse layouts`. If :attr:`input` is sparse the result will have the same layout and if :attr:`out` is provided it must have the same layout as :attr:`input`. .. warning:: Sparse support is a beta feature and some layout(s)/dtype/device combinations may not be supported, or may not have autograd support. If you notice missing functionality please open a feature request. This operator supports :ref:`TensorFloat32`. On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision` for backward. Args: input (Tensor): matrix to be added mat1 (Tensor): the first matrix to be matrix multiplied mat2 (Tensor): the second matrix to be matrix multiplied Keyword args: beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`) alpha (Number, optional): multiplier for :math:`mat1 @ mat2` (:math:`\alpha`) out (Tensor, optional): the output tensor. Example:: >>> M = torch.randn(2, 3) >>> mat1 = torch.randn(2, 3) >>> mat2 = torch.randn(3, 3) >>> torch.addmm(M, mat1, mat2) tensor([[-4.8716, 1.4671, -1.3746], [ 0.7573, -3.9555, -2.8681]]) """ ... @overload def addmm(input: Tensor, mat1: Tensor, mat2: Tensor, *, beta: Union[Number, _complex] = 1, alpha: Union[Number, _complex] = 1, out: Optional[Tensor] = None) -> Tensor: r""" addmm(input, mat1, mat2, *, beta=1, alpha=1, out=None) -> Tensor Performs a matrix multiplication of the matrices :attr:`mat1` and :attr:`mat2`. The matrix :attr:`input` is added to the final result. If :attr:`mat1` is a :math:`(n \times m)` tensor, :attr:`mat2` is a :math:`(m \times p)` tensor, then :attr:`input` must be :ref:`broadcastable ` with a :math:`(n \times p)` tensor and :attr:`out` will be a :math:`(n \times p)` tensor. :attr:`alpha` and :attr:`beta` are scaling factors on matrix-vector product between :attr:`mat1` and :attr:`mat2` and the added matrix :attr:`input` respectively. .. math:: \text{out} = \beta\ \text{input} + \alpha\ (\text{mat1}_i \mathbin{@} \text{mat2}_i) If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in it will not be propagated. For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and :attr:`alpha` must be real numbers, otherwise they should be integers. This operation has support for arguments with :ref:`sparse layouts`. If :attr:`input` is sparse the result will have the same layout and if :attr:`out` is provided it must have the same layout as :attr:`input`. .. warning:: Sparse support is a beta feature and some layout(s)/dtype/device combinations may not be supported, or may not have autograd support. If you notice missing functionality please open a feature request. This operator supports :ref:`TensorFloat32`. On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision` for backward. Args: input (Tensor): matrix to be added mat1 (Tensor): the first matrix to be matrix multiplied mat2 (Tensor): the second matrix to be matrix multiplied Keyword args: beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`) alpha (Number, optional): multiplier for :math:`mat1 @ mat2` (:math:`\alpha`) out (Tensor, optional): the output tensor. Example:: >>> M = torch.randn(2, 3) >>> mat1 = torch.randn(2, 3) >>> mat2 = torch.randn(3, 3) >>> torch.addmm(M, mat1, mat2) tensor([[-4.8716, 1.4671, -1.3746], [ 0.7573, -3.9555, -2.8681]]) """ ... @overload def addmm(beta: Union[Number, _complex], self: Tensor, mat1: Tensor, mat2: Tensor) -> Tensor: r""" addmm(input, mat1, mat2, *, beta=1, alpha=1, out=None) -> Tensor Performs a matrix multiplication of the matrices :attr:`mat1` and :attr:`mat2`. The matrix :attr:`input` is added to the final result. If :attr:`mat1` is a :math:`(n \times m)` tensor, :attr:`mat2` is a :math:`(m \times p)` tensor, then :attr:`input` must be :ref:`broadcastable ` with a :math:`(n \times p)` tensor and :attr:`out` will be a :math:`(n \times p)` tensor. :attr:`alpha` and :attr:`beta` are scaling factors on matrix-vector product between :attr:`mat1` and :attr:`mat2` and the added matrix :attr:`input` respectively. .. math:: \text{out} = \beta\ \text{input} + \alpha\ (\text{mat1}_i \mathbin{@} \text{mat2}_i) If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in it will not be propagated. For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and :attr:`alpha` must be real numbers, otherwise they should be integers. This operation has support for arguments with :ref:`sparse layouts`. If :attr:`input` is sparse the result will have the same layout and if :attr:`out` is provided it must have the same layout as :attr:`input`. .. warning:: Sparse support is a beta feature and some layout(s)/dtype/device combinations may not be supported, or may not have autograd support. If you notice missing functionality please open a feature request. This operator supports :ref:`TensorFloat32`. On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision` for backward. Args: input (Tensor): matrix to be added mat1 (Tensor): the first matrix to be matrix multiplied mat2 (Tensor): the second matrix to be matrix multiplied Keyword args: beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`) alpha (Number, optional): multiplier for :math:`mat1 @ mat2` (:math:`\alpha`) out (Tensor, optional): the output tensor. Example:: >>> M = torch.randn(2, 3) >>> mat1 = torch.randn(2, 3) >>> mat2 = torch.randn(3, 3) >>> torch.addmm(M, mat1, mat2) tensor([[-4.8716, 1.4671, -1.3746], [ 0.7573, -3.9555, -2.8681]]) """ ... @overload def addmm(beta: Union[Number, _complex], self: Tensor, mat1: Tensor, mat2: Tensor, *, out: Tensor) -> Tensor: r""" addmm(input, mat1, mat2, *, beta=1, alpha=1, out=None) -> Tensor Performs a matrix multiplication of the matrices :attr:`mat1` and :attr:`mat2`. The matrix :attr:`input` is added to the final result. If :attr:`mat1` is a :math:`(n \times m)` tensor, :attr:`mat2` is a :math:`(m \times p)` tensor, then :attr:`input` must be :ref:`broadcastable ` with a :math:`(n \times p)` tensor and :attr:`out` will be a :math:`(n \times p)` tensor. :attr:`alpha` and :attr:`beta` are scaling factors on matrix-vector product between :attr:`mat1` and :attr:`mat2` and the added matrix :attr:`input` respectively. .. math:: \text{out} = \beta\ \text{input} + \alpha\ (\text{mat1}_i \mathbin{@} \text{mat2}_i) If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in it will not be propagated. For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and :attr:`alpha` must be real numbers, otherwise they should be integers. This operation has support for arguments with :ref:`sparse layouts`. If :attr:`input` is sparse the result will have the same layout and if :attr:`out` is provided it must have the same layout as :attr:`input`. .. warning:: Sparse support is a beta feature and some layout(s)/dtype/device combinations may not be supported, or may not have autograd support. If you notice missing functionality please open a feature request. This operator supports :ref:`TensorFloat32`. On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision` for backward. Args: input (Tensor): matrix to be added mat1 (Tensor): the first matrix to be matrix multiplied mat2 (Tensor): the second matrix to be matrix multiplied Keyword args: beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`) alpha (Number, optional): multiplier for :math:`mat1 @ mat2` (:math:`\alpha`) out (Tensor, optional): the output tensor. Example:: >>> M = torch.randn(2, 3) >>> mat1 = torch.randn(2, 3) >>> mat2 = torch.randn(3, 3) >>> torch.addmm(M, mat1, mat2) tensor([[-4.8716, 1.4671, -1.3746], [ 0.7573, -3.9555, -2.8681]]) """ ... @overload def addmv(beta: Union[Number, _complex], self: Tensor, alpha: Union[Number, _complex], mat: Tensor, vec: Tensor) -> Tensor: r""" addmv(input, mat, vec, *, beta=1, alpha=1, out=None) -> Tensor Performs a matrix-vector product of the matrix :attr:`mat` and the vector :attr:`vec`. The vector :attr:`input` is added to the final result. If :attr:`mat` is a :math:`(n \times m)` tensor, :attr:`vec` is a 1-D tensor of size `m`, then :attr:`input` must be :ref:`broadcastable ` with a 1-D tensor of size `n` and :attr:`out` will be 1-D tensor of size `n`. :attr:`alpha` and :attr:`beta` are scaling factors on matrix-vector product between :attr:`mat` and :attr:`vec` and the added tensor :attr:`input` respectively. .. math:: \text{out} = \beta\ \text{input} + \alpha\ (\text{mat} \mathbin{@} \text{vec}) If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in it will not be propagated. For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and :attr:`alpha` must be real numbers, otherwise they should be integers. Args: input (Tensor): vector to be added mat (Tensor): matrix to be matrix multiplied vec (Tensor): vector to be matrix multiplied Keyword args: beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`) alpha (Number, optional): multiplier for :math:`mat @ vec` (:math:`\alpha`) out (Tensor, optional): the output tensor. Example:: >>> M = torch.randn(2) >>> mat = torch.randn(2, 3) >>> vec = torch.randn(3) >>> torch.addmv(M, mat, vec) tensor([-0.3768, -5.5565]) """ ... @overload def addmv(beta: Union[Number, _complex], self: Tensor, alpha: Union[Number, _complex], mat: Tensor, vec: Tensor, *, out: Tensor) -> Tensor: r""" addmv(input, mat, vec, *, beta=1, alpha=1, out=None) -> Tensor Performs a matrix-vector product of the matrix :attr:`mat` and the vector :attr:`vec`. The vector :attr:`input` is added to the final result. If :attr:`mat` is a :math:`(n \times m)` tensor, :attr:`vec` is a 1-D tensor of size `m`, then :attr:`input` must be :ref:`broadcastable ` with a 1-D tensor of size `n` and :attr:`out` will be 1-D tensor of size `n`. :attr:`alpha` and :attr:`beta` are scaling factors on matrix-vector product between :attr:`mat` and :attr:`vec` and the added tensor :attr:`input` respectively. .. math:: \text{out} = \beta\ \text{input} + \alpha\ (\text{mat} \mathbin{@} \text{vec}) If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in it will not be propagated. For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and :attr:`alpha` must be real numbers, otherwise they should be integers. Args: input (Tensor): vector to be added mat (Tensor): matrix to be matrix multiplied vec (Tensor): vector to be matrix multiplied Keyword args: beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`) alpha (Number, optional): multiplier for :math:`mat @ vec` (:math:`\alpha`) out (Tensor, optional): the output tensor. Example:: >>> M = torch.randn(2) >>> mat = torch.randn(2, 3) >>> vec = torch.randn(3) >>> torch.addmv(M, mat, vec) tensor([-0.3768, -5.5565]) """ ... @overload def addmv(input: Tensor, mat: Tensor, vec: Tensor, *, beta: Union[Number, _complex] = 1, alpha: Union[Number, _complex] = 1, out: Optional[Tensor] = None) -> Tensor: r""" addmv(input, mat, vec, *, beta=1, alpha=1, out=None) -> Tensor Performs a matrix-vector product of the matrix :attr:`mat` and the vector :attr:`vec`. The vector :attr:`input` is added to the final result. If :attr:`mat` is a :math:`(n \times m)` tensor, :attr:`vec` is a 1-D tensor of size `m`, then :attr:`input` must be :ref:`broadcastable ` with a 1-D tensor of size `n` and :attr:`out` will be 1-D tensor of size `n`. :attr:`alpha` and :attr:`beta` are scaling factors on matrix-vector product between :attr:`mat` and :attr:`vec` and the added tensor :attr:`input` respectively. .. math:: \text{out} = \beta\ \text{input} + \alpha\ (\text{mat} \mathbin{@} \text{vec}) If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in it will not be propagated. For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and :attr:`alpha` must be real numbers, otherwise they should be integers. Args: input (Tensor): vector to be added mat (Tensor): matrix to be matrix multiplied vec (Tensor): vector to be matrix multiplied Keyword args: beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`) alpha (Number, optional): multiplier for :math:`mat @ vec` (:math:`\alpha`) out (Tensor, optional): the output tensor. Example:: >>> M = torch.randn(2) >>> mat = torch.randn(2, 3) >>> vec = torch.randn(3) >>> torch.addmv(M, mat, vec) tensor([-0.3768, -5.5565]) """ ... @overload def addmv(beta: Union[Number, _complex], self: Tensor, mat: Tensor, vec: Tensor) -> Tensor: r""" addmv(input, mat, vec, *, beta=1, alpha=1, out=None) -> Tensor Performs a matrix-vector product of the matrix :attr:`mat` and the vector :attr:`vec`. The vector :attr:`input` is added to the final result. If :attr:`mat` is a :math:`(n \times m)` tensor, :attr:`vec` is a 1-D tensor of size `m`, then :attr:`input` must be :ref:`broadcastable ` with a 1-D tensor of size `n` and :attr:`out` will be 1-D tensor of size `n`. :attr:`alpha` and :attr:`beta` are scaling factors on matrix-vector product between :attr:`mat` and :attr:`vec` and the added tensor :attr:`input` respectively. .. math:: \text{out} = \beta\ \text{input} + \alpha\ (\text{mat} \mathbin{@} \text{vec}) If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in it will not be propagated. For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and :attr:`alpha` must be real numbers, otherwise they should be integers. Args: input (Tensor): vector to be added mat (Tensor): matrix to be matrix multiplied vec (Tensor): vector to be matrix multiplied Keyword args: beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`) alpha (Number, optional): multiplier for :math:`mat @ vec` (:math:`\alpha`) out (Tensor, optional): the output tensor. Example:: >>> M = torch.randn(2) >>> mat = torch.randn(2, 3) >>> vec = torch.randn(3) >>> torch.addmv(M, mat, vec) tensor([-0.3768, -5.5565]) """ ... @overload def addmv(beta: Union[Number, _complex], self: Tensor, mat: Tensor, vec: Tensor, *, out: Tensor) -> Tensor: r""" addmv(input, mat, vec, *, beta=1, alpha=1, out=None) -> Tensor Performs a matrix-vector product of the matrix :attr:`mat` and the vector :attr:`vec`. The vector :attr:`input` is added to the final result. If :attr:`mat` is a :math:`(n \times m)` tensor, :attr:`vec` is a 1-D tensor of size `m`, then :attr:`input` must be :ref:`broadcastable ` with a 1-D tensor of size `n` and :attr:`out` will be 1-D tensor of size `n`. :attr:`alpha` and :attr:`beta` are scaling factors on matrix-vector product between :attr:`mat` and :attr:`vec` and the added tensor :attr:`input` respectively. .. math:: \text{out} = \beta\ \text{input} + \alpha\ (\text{mat} \mathbin{@} \text{vec}) If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in it will not be propagated. For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and :attr:`alpha` must be real numbers, otherwise they should be integers. Args: input (Tensor): vector to be added mat (Tensor): matrix to be matrix multiplied vec (Tensor): vector to be matrix multiplied Keyword args: beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`) alpha (Number, optional): multiplier for :math:`mat @ vec` (:math:`\alpha`) out (Tensor, optional): the output tensor. Example:: >>> M = torch.randn(2) >>> mat = torch.randn(2, 3) >>> vec = torch.randn(3) >>> torch.addmv(M, mat, vec) tensor([-0.3768, -5.5565]) """ ... @overload def addmv_(beta: Union[Number, _complex], self: Tensor, alpha: Union[Number, _complex], mat: Tensor, vec: Tensor) -> Tensor: ... @overload def addmv_(input: Tensor, mat: Tensor, vec: Tensor, *, beta: Union[Number, _complex] = 1, alpha: Union[Number, _complex] = 1) -> Tensor: ... @overload def addmv_(beta: Union[Number, _complex], self: Tensor, mat: Tensor, vec: Tensor) -> Tensor: ... @overload def addr(beta: Union[Number, _complex], self: Tensor, alpha: Union[Number, _complex], vec1: Tensor, vec2: Tensor) -> Tensor: r""" addr(input, vec1, vec2, *, beta=1, alpha=1, out=None) -> Tensor Performs the outer-product of vectors :attr:`vec1` and :attr:`vec2` and adds it to the matrix :attr:`input`. Optional values :attr:`beta` and :attr:`alpha` are scaling factors on the outer product between :attr:`vec1` and :attr:`vec2` and the added matrix :attr:`input` respectively. .. math:: \text{out} = \beta\ \text{input} + \alpha\ (\text{vec1} \otimes \text{vec2}) If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in it will not be propagated. If :attr:`vec1` is a vector of size `n` and :attr:`vec2` is a vector of size `m`, then :attr:`input` must be :ref:`broadcastable ` with a matrix of size :math:`(n \times m)` and :attr:`out` will be a matrix of size :math:`(n \times m)`. Args: input (Tensor): matrix to be added vec1 (Tensor): the first vector of the outer product vec2 (Tensor): the second vector of the outer product Keyword args: beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`) alpha (Number, optional): multiplier for :math:`\text{vec1} \otimes \text{vec2}` (:math:`\alpha`) out (Tensor, optional): the output tensor. Example:: >>> vec1 = torch.arange(1., 4.) >>> vec2 = torch.arange(1., 3.) >>> M = torch.zeros(3, 2) >>> torch.addr(M, vec1, vec2) tensor([[ 1., 2.], [ 2., 4.], [ 3., 6.]]) """ ... @overload def addr(beta: Union[Number, _complex], self: Tensor, alpha: Union[Number, _complex], vec1: Tensor, vec2: Tensor, *, out: Tensor) -> Tensor: r""" addr(input, vec1, vec2, *, beta=1, alpha=1, out=None) -> Tensor Performs the outer-product of vectors :attr:`vec1` and :attr:`vec2` and adds it to the matrix :attr:`input`. Optional values :attr:`beta` and :attr:`alpha` are scaling factors on the outer product between :attr:`vec1` and :attr:`vec2` and the added matrix :attr:`input` respectively. .. math:: \text{out} = \beta\ \text{input} + \alpha\ (\text{vec1} \otimes \text{vec2}) If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in it will not be propagated. If :attr:`vec1` is a vector of size `n` and :attr:`vec2` is a vector of size `m`, then :attr:`input` must be :ref:`broadcastable ` with a matrix of size :math:`(n \times m)` and :attr:`out` will be a matrix of size :math:`(n \times m)`. Args: input (Tensor): matrix to be added vec1 (Tensor): the first vector of the outer product vec2 (Tensor): the second vector of the outer product Keyword args: beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`) alpha (Number, optional): multiplier for :math:`\text{vec1} \otimes \text{vec2}` (:math:`\alpha`) out (Tensor, optional): the output tensor. Example:: >>> vec1 = torch.arange(1., 4.) >>> vec2 = torch.arange(1., 3.) >>> M = torch.zeros(3, 2) >>> torch.addr(M, vec1, vec2) tensor([[ 1., 2.], [ 2., 4.], [ 3., 6.]]) """ ... @overload def addr(input: Tensor, vec1: Tensor, vec2: Tensor, *, beta: Union[Number, _complex] = 1, alpha: Union[Number, _complex] = 1, out: Optional[Tensor] = None) -> Tensor: r""" addr(input, vec1, vec2, *, beta=1, alpha=1, out=None) -> Tensor Performs the outer-product of vectors :attr:`vec1` and :attr:`vec2` and adds it to the matrix :attr:`input`. Optional values :attr:`beta` and :attr:`alpha` are scaling factors on the outer product between :attr:`vec1` and :attr:`vec2` and the added matrix :attr:`input` respectively. .. math:: \text{out} = \beta\ \text{input} + \alpha\ (\text{vec1} \otimes \text{vec2}) If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in it will not be propagated. If :attr:`vec1` is a vector of size `n` and :attr:`vec2` is a vector of size `m`, then :attr:`input` must be :ref:`broadcastable ` with a matrix of size :math:`(n \times m)` and :attr:`out` will be a matrix of size :math:`(n \times m)`. Args: input (Tensor): matrix to be added vec1 (Tensor): the first vector of the outer product vec2 (Tensor): the second vector of the outer product Keyword args: beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`) alpha (Number, optional): multiplier for :math:`\text{vec1} \otimes \text{vec2}` (:math:`\alpha`) out (Tensor, optional): the output tensor. Example:: >>> vec1 = torch.arange(1., 4.) >>> vec2 = torch.arange(1., 3.) >>> M = torch.zeros(3, 2) >>> torch.addr(M, vec1, vec2) tensor([[ 1., 2.], [ 2., 4.], [ 3., 6.]]) """ ... @overload def addr(beta: Union[Number, _complex], self: Tensor, vec1: Tensor, vec2: Tensor) -> Tensor: r""" addr(input, vec1, vec2, *, beta=1, alpha=1, out=None) -> Tensor Performs the outer-product of vectors :attr:`vec1` and :attr:`vec2` and adds it to the matrix :attr:`input`. Optional values :attr:`beta` and :attr:`alpha` are scaling factors on the outer product between :attr:`vec1` and :attr:`vec2` and the added matrix :attr:`input` respectively. .. math:: \text{out} = \beta\ \text{input} + \alpha\ (\text{vec1} \otimes \text{vec2}) If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in it will not be propagated. If :attr:`vec1` is a vector of size `n` and :attr:`vec2` is a vector of size `m`, then :attr:`input` must be :ref:`broadcastable ` with a matrix of size :math:`(n \times m)` and :attr:`out` will be a matrix of size :math:`(n \times m)`. Args: input (Tensor): matrix to be added vec1 (Tensor): the first vector of the outer product vec2 (Tensor): the second vector of the outer product Keyword args: beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`) alpha (Number, optional): multiplier for :math:`\text{vec1} \otimes \text{vec2}` (:math:`\alpha`) out (Tensor, optional): the output tensor. Example:: >>> vec1 = torch.arange(1., 4.) >>> vec2 = torch.arange(1., 3.) >>> M = torch.zeros(3, 2) >>> torch.addr(M, vec1, vec2) tensor([[ 1., 2.], [ 2., 4.], [ 3., 6.]]) """ ... @overload def addr(beta: Union[Number, _complex], self: Tensor, vec1: Tensor, vec2: Tensor, *, out: Tensor) -> Tensor: r""" addr(input, vec1, vec2, *, beta=1, alpha=1, out=None) -> Tensor Performs the outer-product of vectors :attr:`vec1` and :attr:`vec2` and adds it to the matrix :attr:`input`. Optional values :attr:`beta` and :attr:`alpha` are scaling factors on the outer product between :attr:`vec1` and :attr:`vec2` and the added matrix :attr:`input` respectively. .. math:: \text{out} = \beta\ \text{input} + \alpha\ (\text{vec1} \otimes \text{vec2}) If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in it will not be propagated. If :attr:`vec1` is a vector of size `n` and :attr:`vec2` is a vector of size `m`, then :attr:`input` must be :ref:`broadcastable ` with a matrix of size :math:`(n \times m)` and :attr:`out` will be a matrix of size :math:`(n \times m)`. Args: input (Tensor): matrix to be added vec1 (Tensor): the first vector of the outer product vec2 (Tensor): the second vector of the outer product Keyword args: beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`) alpha (Number, optional): multiplier for :math:`\text{vec1} \otimes \text{vec2}` (:math:`\alpha`) out (Tensor, optional): the output tensor. Example:: >>> vec1 = torch.arange(1., 4.) >>> vec2 = torch.arange(1., 3.) >>> M = torch.zeros(3, 2) >>> torch.addr(M, vec1, vec2) tensor([[ 1., 2.], [ 2., 4.], [ 3., 6.]]) """ ... def adjoint(input: Tensor) -> Tensor: r""" adjoint(Tensor) -> Tensor Returns a view of the tensor conjugated and with the last two dimensions transposed. ``x.adjoint()`` is equivalent to ``x.transpose(-2, -1).conj()`` for complex tensors and to ``x.transpose(-2, -1)`` for real tensors. Example:: >>> x = torch.arange(4, dtype=torch.float) >>> A = torch.complex(x, x).reshape(2, 2) >>> A tensor([[0.+0.j, 1.+1.j], [2.+2.j, 3.+3.j]]) >>> A.adjoint() tensor([[0.-0.j, 2.-2.j], [1.-1.j, 3.-3.j]]) >>> (A.adjoint() == A.mH).all() tensor(True) """ ... def affine_grid_generator(theta: Tensor, size: Sequence[Union[_int, SymInt]], align_corners: _bool) -> Tensor: ... def alias_copy(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" Performs the same operation as :func:`torch.alias`, but all output tensors are freshly created instead of aliasing the input. """ ... @overload def all(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" all(input) -> Tensor Tests if all elements in :attr:`input` evaluate to `True`. .. note:: This function matches the behaviour of NumPy in returning output of dtype `bool` for all supported dtypes except `uint8`. For `uint8` the dtype of output is `uint8` itself. Example:: >>> a = torch.rand(1, 2).bool() >>> a tensor([[False, True]], dtype=torch.bool) >>> torch.all(a) tensor(False, dtype=torch.bool) >>> a = torch.arange(0, 3) >>> a tensor([0, 1, 2]) >>> torch.all(a) tensor(False) .. function:: all(input, dim, keepdim=False, *, out=None) -> Tensor :noindex: For each row of :attr:`input` in the given dimension :attr:`dim`, returns `True` if all elements in the row evaluate to `True` and `False` otherwise. If :attr:`keepdim` is ``True``, the output tensor is of the same size as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the output tensor having 1 (or ``len(dim)``) fewer dimension(s). Args: input (Tensor): the input tensor. dim (int or tuple of ints): the dimension or dimensions to reduce. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.rand(4, 2).bool() >>> a tensor([[True, True], [True, False], [True, True], [True, True]], dtype=torch.bool) >>> torch.all(a, dim=1) tensor([ True, False, True, True], dtype=torch.bool) >>> torch.all(a, dim=0) tensor([ True, False], dtype=torch.bool) """ ... @overload def all(input: Tensor, dim: Optional[_size] = None, keepdim: _bool = False, *, out: Optional[Tensor] = None) -> Tensor: r""" all(input) -> Tensor Tests if all elements in :attr:`input` evaluate to `True`. .. note:: This function matches the behaviour of NumPy in returning output of dtype `bool` for all supported dtypes except `uint8`. For `uint8` the dtype of output is `uint8` itself. Example:: >>> a = torch.rand(1, 2).bool() >>> a tensor([[False, True]], dtype=torch.bool) >>> torch.all(a) tensor(False, dtype=torch.bool) >>> a = torch.arange(0, 3) >>> a tensor([0, 1, 2]) >>> torch.all(a) tensor(False) .. function:: all(input, dim, keepdim=False, *, out=None) -> Tensor :noindex: For each row of :attr:`input` in the given dimension :attr:`dim`, returns `True` if all elements in the row evaluate to `True` and `False` otherwise. If :attr:`keepdim` is ``True``, the output tensor is of the same size as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the output tensor having 1 (or ``len(dim)``) fewer dimension(s). Args: input (Tensor): the input tensor. dim (int or tuple of ints): the dimension or dimensions to reduce. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.rand(4, 2).bool() >>> a tensor([[True, True], [True, False], [True, True], [True, True]], dtype=torch.bool) >>> torch.all(a, dim=1) tensor([ True, False, True, True], dtype=torch.bool) >>> torch.all(a, dim=0) tensor([ True, False], dtype=torch.bool) """ ... @overload def all(input: Tensor, dim: _int, keepdim: _bool = False, *, out: Optional[Tensor] = None) -> Tensor: r""" all(input) -> Tensor Tests if all elements in :attr:`input` evaluate to `True`. .. note:: This function matches the behaviour of NumPy in returning output of dtype `bool` for all supported dtypes except `uint8`. For `uint8` the dtype of output is `uint8` itself. Example:: >>> a = torch.rand(1, 2).bool() >>> a tensor([[False, True]], dtype=torch.bool) >>> torch.all(a) tensor(False, dtype=torch.bool) >>> a = torch.arange(0, 3) >>> a tensor([0, 1, 2]) >>> torch.all(a) tensor(False) .. function:: all(input, dim, keepdim=False, *, out=None) -> Tensor :noindex: For each row of :attr:`input` in the given dimension :attr:`dim`, returns `True` if all elements in the row evaluate to `True` and `False` otherwise. If :attr:`keepdim` is ``True``, the output tensor is of the same size as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the output tensor having 1 (or ``len(dim)``) fewer dimension(s). Args: input (Tensor): the input tensor. dim (int or tuple of ints): the dimension or dimensions to reduce. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.rand(4, 2).bool() >>> a tensor([[True, True], [True, False], [True, True], [True, True]], dtype=torch.bool) >>> torch.all(a, dim=1) tensor([ True, False, True, True], dtype=torch.bool) >>> torch.all(a, dim=0) tensor([ True, False], dtype=torch.bool) """ ... @overload def all(input: Tensor, dim: Union[str, ellipsis, None], keepdim: _bool = False, *, out: Optional[Tensor] = None) -> Tensor: r""" all(input) -> Tensor Tests if all elements in :attr:`input` evaluate to `True`. .. note:: This function matches the behaviour of NumPy in returning output of dtype `bool` for all supported dtypes except `uint8`. For `uint8` the dtype of output is `uint8` itself. Example:: >>> a = torch.rand(1, 2).bool() >>> a tensor([[False, True]], dtype=torch.bool) >>> torch.all(a) tensor(False, dtype=torch.bool) >>> a = torch.arange(0, 3) >>> a tensor([0, 1, 2]) >>> torch.all(a) tensor(False) .. function:: all(input, dim, keepdim=False, *, out=None) -> Tensor :noindex: For each row of :attr:`input` in the given dimension :attr:`dim`, returns `True` if all elements in the row evaluate to `True` and `False` otherwise. If :attr:`keepdim` is ``True``, the output tensor is of the same size as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the output tensor having 1 (or ``len(dim)``) fewer dimension(s). Args: input (Tensor): the input tensor. dim (int or tuple of ints): the dimension or dimensions to reduce. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.rand(4, 2).bool() >>> a tensor([[True, True], [True, False], [True, True], [True, True]], dtype=torch.bool) >>> torch.all(a, dim=1) tensor([ True, False, True, True], dtype=torch.bool) >>> torch.all(a, dim=0) tensor([ True, False], dtype=torch.bool) """ ... def allclose(input: Tensor, other: Tensor, rtol: _float = 1e-05, atol: _float = 1e-08, equal_nan: _bool = False) -> _bool: r""" allclose(input, other, rtol=1e-05, atol=1e-08, equal_nan=False) -> bool This function checks if :attr:`input` and :attr:`other` satisfy the condition: .. math:: \lvert \text{input} - \text{other} \rvert \leq \texttt{atol} + \texttt{rtol} \times \lvert \text{other} \rvert elementwise, for all elements of :attr:`input` and :attr:`other`. The behaviour of this function is analogous to `numpy.allclose `_ Args: input (Tensor): first tensor to compare other (Tensor): second tensor to compare atol (float, optional): absolute tolerance. Default: 1e-08 rtol (float, optional): relative tolerance. Default: 1e-05 equal_nan (bool, optional): if ``True``, then two ``NaN`` s will be considered equal. Default: ``False`` Example:: >>> torch.allclose(torch.tensor([10000., 1e-07]), torch.tensor([10000.1, 1e-08])) False >>> torch.allclose(torch.tensor([10000., 1e-08]), torch.tensor([10000.1, 1e-09])) True >>> torch.allclose(torch.tensor([1.0, float('nan')]), torch.tensor([1.0, float('nan')])) False >>> torch.allclose(torch.tensor([1.0, float('nan')]), torch.tensor([1.0, float('nan')]), equal_nan=True) True """ ... def alpha_dropout(input: Tensor, p: _float, train: _bool) -> Tensor: ... def alpha_dropout_(input: Tensor, p: _float, train: _bool) -> Tensor: ... def amax(input: Tensor, dim: Union[_int, _size] = (), keepdim: _bool = False, *, out: Optional[Tensor] = None) -> Tensor: r""" amax(input, dim, keepdim=False, *, out=None) -> Tensor Returns the maximum value of each slice of the :attr:`input` tensor in the given dimension(s) :attr:`dim`. .. note:: The difference between ``max``/``min`` and ``amax``/``amin`` is: - ``amax``/``amin`` supports reducing on multiple dimensions, - ``amax``/``amin`` does not return indices, - ``amax``/``amin`` evenly distributes gradient between equal values, while ``max(dim)``/``min(dim)`` propagates gradient only to a single index in the source tensor. If :attr:`keepdim` is ``True``, the output tensor is of the same size as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the output tensor having 1 (or ``len(dim)``) fewer dimension(s). Args: input (Tensor): the input tensor. dim (int or tuple of ints): the dimension or dimensions to reduce. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.randn(4, 4) >>> a tensor([[ 0.8177, 1.4878, -0.2491, 0.9130], [-0.7158, 1.1775, 2.0992, 0.4817], [-0.0053, 0.0164, -1.3738, -0.0507], [ 1.9700, 1.1106, -1.0318, -1.0816]]) >>> torch.amax(a, 1) tensor([1.4878, 2.0992, 0.0164, 1.9700]) """ ... def amin(input: Tensor, dim: Union[_int, _size] = (), keepdim: _bool = False, *, out: Optional[Tensor] = None) -> Tensor: r""" amin(input, dim, keepdim=False, *, out=None) -> Tensor Returns the minimum value of each slice of the :attr:`input` tensor in the given dimension(s) :attr:`dim`. .. note:: The difference between ``max``/``min`` and ``amax``/``amin`` is: - ``amax``/``amin`` supports reducing on multiple dimensions, - ``amax``/``amin`` does not return indices, - ``amax``/``amin`` evenly distributes gradient between equal values, while ``max(dim)``/``min(dim)`` propagates gradient only to a single index in the source tensor. If :attr:`keepdim` is ``True``, the output tensor is of the same size as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the output tensor having 1 (or ``len(dim)``) fewer dimension(s). Args: input (Tensor): the input tensor. dim (int or tuple of ints): the dimension or dimensions to reduce. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.randn(4, 4) >>> a tensor([[ 0.6451, -0.4866, 0.2987, -1.3312], [-0.5744, 1.2980, 1.8397, -0.2713], [ 0.9128, 0.9214, -1.7268, -0.2995], [ 0.9023, 0.4853, 0.9075, -1.6165]]) >>> torch.amin(a, 1) tensor([-1.3312, -0.5744, -1.7268, -1.6165]) """ ... def aminmax(input: Tensor, *, dim: Optional[_int] = None, keepdim: _bool = False, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.aminmax: r""" aminmax(input, *, dim=None, keepdim=False, out=None) -> (Tensor min, Tensor max) Computes the minimum and maximum values of the :attr:`input` tensor. Args: input (Tensor): The input tensor Keyword Args: dim (Optional[int]): The dimension along which to compute the values. If `None`, computes the values over the entire :attr:`input` tensor. Default is `None`. keepdim (bool): If `True`, the reduced dimensions will be kept in the output tensor as dimensions with size 1 for broadcasting, otherwise they will be removed, as if calling (:func:`torch.squeeze`). Default is `False`. out (Optional[Tuple[Tensor, Tensor]]): Optional tensors on which to write the result. Must have the same shape and dtype as the expected output. Default is `None`. Returns: A named tuple `(min, max)` containing the minimum and maximum values. Raises: RuntimeError If any of the dimensions to compute the values over has size 0. .. note:: NaN values are propagated to the output if at least one value is NaN. .. seealso:: :func:`torch.amin` computes just the minimum value :func:`torch.amax` computes just the maximum value Example:: >>> torch.aminmax(torch.tensor([1, -3, 5])) torch.return_types.aminmax( min=tensor(-3), max=tensor(5)) >>> # aminmax propagates NaNs >>> torch.aminmax(torch.tensor([1, -3, 5, torch.nan])) torch.return_types.aminmax( min=tensor(nan), max=tensor(nan)) >>> t = torch.arange(10).view(2, 5) >>> t tensor([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]) >>> t.aminmax(dim=0, keepdim=True) torch.return_types.aminmax( min=tensor([[0, 1, 2, 3, 4]]), max=tensor([[5, 6, 7, 8, 9]])) """ ... def angle(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" angle(input, *, out=None) -> Tensor Computes the element-wise angle (in radians) of the given :attr:`input` tensor. .. math:: \text{out}_{i} = angle(\text{input}_{i}) Args: input (Tensor): the input tensor. Keyword args: out (Tensor, optional): the output tensor. .. note:: Starting in PyTorch 1.8, angle returns pi for negative real numbers, zero for non-negative real numbers, and propagates NaNs. Previously the function would return zero for all real numbers and not propagate floating-point NaNs. Example:: >>> torch.angle(torch.tensor([-1 + 1j, -2 + 2j, 3 - 3j]))*180/3.14159 tensor([ 135., 135, -45]) """ ... @overload def any(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" any(input) -> Tensor Tests if any element in :attr:`input` evaluates to `True`. .. note:: This function matches the behaviour of NumPy in returning output of dtype `bool` for all supported dtypes except `uint8`. For `uint8` the dtype of output is `uint8` itself. Example:: >>> a = torch.rand(1, 2).bool() >>> a tensor([[False, True]], dtype=torch.bool) >>> torch.any(a) tensor(True, dtype=torch.bool) >>> a = torch.arange(0, 3) >>> a tensor([0, 1, 2]) >>> torch.any(a) tensor(True) .. function:: any(input, dim, keepdim=False, *, out=None) -> Tensor :noindex: For each row of :attr:`input` in the given dimension :attr:`dim`, returns `True` if any element in the row evaluate to `True` and `False` otherwise. If :attr:`keepdim` is ``True``, the output tensor is of the same size as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the output tensor having 1 (or ``len(dim)``) fewer dimension(s). Args: input (Tensor): the input tensor. dim (int or tuple of ints): the dimension or dimensions to reduce. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.randn(4, 2) < 0 >>> a tensor([[ True, True], [False, True], [ True, True], [False, False]]) >>> torch.any(a, 1) tensor([ True, True, True, False]) >>> torch.any(a, 0) tensor([True, True]) """ ... @overload def any(input: Tensor, dim: Optional[_size] = None, keepdim: _bool = False, *, out: Optional[Tensor] = None) -> Tensor: r""" any(input) -> Tensor Tests if any element in :attr:`input` evaluates to `True`. .. note:: This function matches the behaviour of NumPy in returning output of dtype `bool` for all supported dtypes except `uint8`. For `uint8` the dtype of output is `uint8` itself. Example:: >>> a = torch.rand(1, 2).bool() >>> a tensor([[False, True]], dtype=torch.bool) >>> torch.any(a) tensor(True, dtype=torch.bool) >>> a = torch.arange(0, 3) >>> a tensor([0, 1, 2]) >>> torch.any(a) tensor(True) .. function:: any(input, dim, keepdim=False, *, out=None) -> Tensor :noindex: For each row of :attr:`input` in the given dimension :attr:`dim`, returns `True` if any element in the row evaluate to `True` and `False` otherwise. If :attr:`keepdim` is ``True``, the output tensor is of the same size as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the output tensor having 1 (or ``len(dim)``) fewer dimension(s). Args: input (Tensor): the input tensor. dim (int or tuple of ints): the dimension or dimensions to reduce. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.randn(4, 2) < 0 >>> a tensor([[ True, True], [False, True], [ True, True], [False, False]]) >>> torch.any(a, 1) tensor([ True, True, True, False]) >>> torch.any(a, 0) tensor([True, True]) """ ... @overload def any(input: Tensor, dim: _int, keepdim: _bool = False, *, out: Optional[Tensor] = None) -> Tensor: r""" any(input) -> Tensor Tests if any element in :attr:`input` evaluates to `True`. .. note:: This function matches the behaviour of NumPy in returning output of dtype `bool` for all supported dtypes except `uint8`. For `uint8` the dtype of output is `uint8` itself. Example:: >>> a = torch.rand(1, 2).bool() >>> a tensor([[False, True]], dtype=torch.bool) >>> torch.any(a) tensor(True, dtype=torch.bool) >>> a = torch.arange(0, 3) >>> a tensor([0, 1, 2]) >>> torch.any(a) tensor(True) .. function:: any(input, dim, keepdim=False, *, out=None) -> Tensor :noindex: For each row of :attr:`input` in the given dimension :attr:`dim`, returns `True` if any element in the row evaluate to `True` and `False` otherwise. If :attr:`keepdim` is ``True``, the output tensor is of the same size as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the output tensor having 1 (or ``len(dim)``) fewer dimension(s). Args: input (Tensor): the input tensor. dim (int or tuple of ints): the dimension or dimensions to reduce. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.randn(4, 2) < 0 >>> a tensor([[ True, True], [False, True], [ True, True], [False, False]]) >>> torch.any(a, 1) tensor([ True, True, True, False]) >>> torch.any(a, 0) tensor([True, True]) """ ... @overload def any(input: Tensor, dim: Union[str, ellipsis, None], keepdim: _bool = False, *, out: Optional[Tensor] = None) -> Tensor: r""" any(input) -> Tensor Tests if any element in :attr:`input` evaluates to `True`. .. note:: This function matches the behaviour of NumPy in returning output of dtype `bool` for all supported dtypes except `uint8`. For `uint8` the dtype of output is `uint8` itself. Example:: >>> a = torch.rand(1, 2).bool() >>> a tensor([[False, True]], dtype=torch.bool) >>> torch.any(a) tensor(True, dtype=torch.bool) >>> a = torch.arange(0, 3) >>> a tensor([0, 1, 2]) >>> torch.any(a) tensor(True) .. function:: any(input, dim, keepdim=False, *, out=None) -> Tensor :noindex: For each row of :attr:`input` in the given dimension :attr:`dim`, returns `True` if any element in the row evaluate to `True` and `False` otherwise. If :attr:`keepdim` is ``True``, the output tensor is of the same size as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the output tensor having 1 (or ``len(dim)``) fewer dimension(s). Args: input (Tensor): the input tensor. dim (int or tuple of ints): the dimension or dimensions to reduce. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.randn(4, 2) < 0 >>> a tensor([[ True, True], [False, True], [ True, True], [False, False]]) >>> torch.any(a, 1) tensor([ True, True, True, False]) >>> torch.any(a, 0) tensor([True, True]) """ ... @overload def arange(start: Number, end: Number, step: Number, *, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, device: Optional[DeviceLikeType] = None, requires_grad: _bool = False, pin_memory: _bool = False) -> Tensor: r""" arange(start=0, end, step=1, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor Returns a 1-D tensor of size :math:`\left\lceil \frac{\text{end} - \text{start}}{\text{step}} \right\rceil` with values from the interval ``[start, end)`` taken with common difference :attr:`step` beginning from `start`. Note that non-integer :attr:`step` is subject to floating point rounding errors when comparing against :attr:`end`; to avoid inconsistency, we advise subtracting a small epsilon from :attr:`end` in such cases. .. math:: \text{out}_{{i+1}} = \text{out}_{i} + \text{step} Args: start (Number): the starting value for the set of points. Default: ``0``. end (Number): the ending value for the set of points step (Number): the gap between each pair of adjacent points. Default: ``1``. Keyword args: out (Tensor, optional): the output tensor. dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). If `dtype` is not given, infer the data type from the other input arguments. If any of `start`, `end`, or `stop` are floating-point, the `dtype` is inferred to be the default dtype, see :meth:`~torch.get_default_dtype`. Otherwise, the `dtype` is inferred to be `torch.int64`. layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. Example:: >>> torch.arange(5) tensor([ 0, 1, 2, 3, 4]) >>> torch.arange(1, 4) tensor([ 1, 2, 3]) >>> torch.arange(1, 2.5, 0.5) tensor([ 1.0000, 1.5000, 2.0000]) """ ... @overload def arange(start: Number, end: Number, *, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, device: Optional[DeviceLikeType] = None, requires_grad: _bool = False, pin_memory: _bool = False) -> Tensor: r""" arange(start=0, end, step=1, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor Returns a 1-D tensor of size :math:`\left\lceil \frac{\text{end} - \text{start}}{\text{step}} \right\rceil` with values from the interval ``[start, end)`` taken with common difference :attr:`step` beginning from `start`. Note that non-integer :attr:`step` is subject to floating point rounding errors when comparing against :attr:`end`; to avoid inconsistency, we advise subtracting a small epsilon from :attr:`end` in such cases. .. math:: \text{out}_{{i+1}} = \text{out}_{i} + \text{step} Args: start (Number): the starting value for the set of points. Default: ``0``. end (Number): the ending value for the set of points step (Number): the gap between each pair of adjacent points. Default: ``1``. Keyword args: out (Tensor, optional): the output tensor. dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). If `dtype` is not given, infer the data type from the other input arguments. If any of `start`, `end`, or `stop` are floating-point, the `dtype` is inferred to be the default dtype, see :meth:`~torch.get_default_dtype`. Otherwise, the `dtype` is inferred to be `torch.int64`. layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. Example:: >>> torch.arange(5) tensor([ 0, 1, 2, 3, 4]) >>> torch.arange(1, 4) tensor([ 1, 2, 3]) >>> torch.arange(1, 2.5, 0.5) tensor([ 1.0000, 1.5000, 2.0000]) """ ... @overload def arange(end: Number, *, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, device: Optional[DeviceLikeType] = None, requires_grad: _bool = False, pin_memory: _bool = False) -> Tensor: r""" arange(start=0, end, step=1, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor Returns a 1-D tensor of size :math:`\left\lceil \frac{\text{end} - \text{start}}{\text{step}} \right\rceil` with values from the interval ``[start, end)`` taken with common difference :attr:`step` beginning from `start`. Note that non-integer :attr:`step` is subject to floating point rounding errors when comparing against :attr:`end`; to avoid inconsistency, we advise subtracting a small epsilon from :attr:`end` in such cases. .. math:: \text{out}_{{i+1}} = \text{out}_{i} + \text{step} Args: start (Number): the starting value for the set of points. Default: ``0``. end (Number): the ending value for the set of points step (Number): the gap between each pair of adjacent points. Default: ``1``. Keyword args: out (Tensor, optional): the output tensor. dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). If `dtype` is not given, infer the data type from the other input arguments. If any of `start`, `end`, or `stop` are floating-point, the `dtype` is inferred to be the default dtype, see :meth:`~torch.get_default_dtype`. Otherwise, the `dtype` is inferred to be `torch.int64`. layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. Example:: >>> torch.arange(5) tensor([ 0, 1, 2, 3, 4]) >>> torch.arange(1, 4) tensor([ 1, 2, 3]) >>> torch.arange(1, 2.5, 0.5) tensor([ 1.0000, 1.5000, 2.0000]) """ ... @overload def arange(end: Union[Number, _complex], *, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" arange(start=0, end, step=1, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor Returns a 1-D tensor of size :math:`\left\lceil \frac{\text{end} - \text{start}}{\text{step}} \right\rceil` with values from the interval ``[start, end)`` taken with common difference :attr:`step` beginning from `start`. Note that non-integer :attr:`step` is subject to floating point rounding errors when comparing against :attr:`end`; to avoid inconsistency, we advise subtracting a small epsilon from :attr:`end` in such cases. .. math:: \text{out}_{{i+1}} = \text{out}_{i} + \text{step} Args: start (Number): the starting value for the set of points. Default: ``0``. end (Number): the ending value for the set of points step (Number): the gap between each pair of adjacent points. Default: ``1``. Keyword args: out (Tensor, optional): the output tensor. dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). If `dtype` is not given, infer the data type from the other input arguments. If any of `start`, `end`, or `stop` are floating-point, the `dtype` is inferred to be the default dtype, see :meth:`~torch.get_default_dtype`. Otherwise, the `dtype` is inferred to be `torch.int64`. layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. Example:: >>> torch.arange(5) tensor([ 0, 1, 2, 3, 4]) >>> torch.arange(1, 4) tensor([ 1, 2, 3]) >>> torch.arange(1, 2.5, 0.5) tensor([ 1.0000, 1.5000, 2.0000]) """ ... @overload def arange(start: Union[Number, _complex], end: Union[Number, _complex], *, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" arange(start=0, end, step=1, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor Returns a 1-D tensor of size :math:`\left\lceil \frac{\text{end} - \text{start}}{\text{step}} \right\rceil` with values from the interval ``[start, end)`` taken with common difference :attr:`step` beginning from `start`. Note that non-integer :attr:`step` is subject to floating point rounding errors when comparing against :attr:`end`; to avoid inconsistency, we advise subtracting a small epsilon from :attr:`end` in such cases. .. math:: \text{out}_{{i+1}} = \text{out}_{i} + \text{step} Args: start (Number): the starting value for the set of points. Default: ``0``. end (Number): the ending value for the set of points step (Number): the gap between each pair of adjacent points. Default: ``1``. Keyword args: out (Tensor, optional): the output tensor. dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). If `dtype` is not given, infer the data type from the other input arguments. If any of `start`, `end`, or `stop` are floating-point, the `dtype` is inferred to be the default dtype, see :meth:`~torch.get_default_dtype`. Otherwise, the `dtype` is inferred to be `torch.int64`. layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. Example:: >>> torch.arange(5) tensor([ 0, 1, 2, 3, 4]) >>> torch.arange(1, 4) tensor([ 1, 2, 3]) >>> torch.arange(1, 2.5, 0.5) tensor([ 1.0000, 1.5000, 2.0000]) """ ... @overload def arange(start: Union[Number, _complex], end: Union[Number, _complex], step: Union[Number, _complex] = 1, *, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" arange(start=0, end, step=1, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor Returns a 1-D tensor of size :math:`\left\lceil \frac{\text{end} - \text{start}}{\text{step}} \right\rceil` with values from the interval ``[start, end)`` taken with common difference :attr:`step` beginning from `start`. Note that non-integer :attr:`step` is subject to floating point rounding errors when comparing against :attr:`end`; to avoid inconsistency, we advise subtracting a small epsilon from :attr:`end` in such cases. .. math:: \text{out}_{{i+1}} = \text{out}_{i} + \text{step} Args: start (Number): the starting value for the set of points. Default: ``0``. end (Number): the ending value for the set of points step (Number): the gap between each pair of adjacent points. Default: ``1``. Keyword args: out (Tensor, optional): the output tensor. dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). If `dtype` is not given, infer the data type from the other input arguments. If any of `start`, `end`, or `stop` are floating-point, the `dtype` is inferred to be the default dtype, see :meth:`~torch.get_default_dtype`. Otherwise, the `dtype` is inferred to be `torch.int64`. layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. Example:: >>> torch.arange(5) tensor([ 0, 1, 2, 3, 4]) >>> torch.arange(1, 4) tensor([ 1, 2, 3]) >>> torch.arange(1, 2.5, 0.5) tensor([ 1.0000, 1.5000, 2.0000]) """ ... def arccos(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" arccos(input, *, out=None) -> Tensor Alias for :func:`torch.acos`. """ ... def arccos_(input: Tensor) -> Tensor: ... def arccosh(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" arccosh(input, *, out=None) -> Tensor Alias for :func:`torch.acosh`. """ ... def arccosh_(input: Tensor) -> Tensor: ... def arcsin(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" arcsin(input, *, out=None) -> Tensor Alias for :func:`torch.asin`. """ ... def arcsin_(input: Tensor) -> Tensor: ... def arcsinh(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" arcsinh(input, *, out=None) -> Tensor Alias for :func:`torch.asinh`. """ ... def arcsinh_(input: Tensor) -> Tensor: ... def arctan(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" arctan(input, *, out=None) -> Tensor Alias for :func:`torch.atan`. """ ... def arctan2(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" arctan2(input, other, *, out=None) -> Tensor Alias for :func:`torch.atan2`. """ ... def arctan_(input: Tensor) -> Tensor: ... def arctanh(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" arctanh(input, *, out=None) -> Tensor Alias for :func:`torch.atanh`. """ ... def arctanh_(input: Tensor) -> Tensor: ... def argmax(input: Tensor, dim: Optional[_int] = None, keepdim: _bool = False, *, out: Optional[Tensor] = None) -> Tensor: r""" argmax(input) -> LongTensor Returns the indices of the maximum value of all elements in the :attr:`input` tensor. This is the second value returned by :meth:`torch.max`. See its documentation for the exact semantics of this method. .. note:: If there are multiple maximal values then the indices of the first maximal value are returned. Args: input (Tensor): the input tensor. Example:: >>> a = torch.randn(4, 4) >>> a tensor([[ 1.3398, 0.2663, -0.2686, 0.2450], [-0.7401, -0.8805, -0.3402, -1.1936], [ 0.4907, -1.3948, -1.0691, -0.3132], [-1.6092, 0.5419, -0.2993, 0.3195]]) >>> torch.argmax(a) tensor(0) .. function:: argmax(input, dim, keepdim=False) -> LongTensor :noindex: Returns the indices of the maximum values of a tensor across a dimension. This is the second value returned by :meth:`torch.max`. See its documentation for the exact semantics of this method. Args: input (Tensor): the input tensor. dim (int): the dimension to reduce. If ``None``, the argmax of the flattened input is returned. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. Example:: >>> a = torch.randn(4, 4) >>> a tensor([[ 1.3398, 0.2663, -0.2686, 0.2450], [-0.7401, -0.8805, -0.3402, -1.1936], [ 0.4907, -1.3948, -1.0691, -0.3132], [-1.6092, 0.5419, -0.2993, 0.3195]]) >>> torch.argmax(a, dim=1) tensor([ 0, 2, 0, 1]) """ ... def argmin(input: Tensor, dim: Optional[_int] = None, keepdim: _bool = False, *, out: Optional[Tensor] = None) -> Tensor: r""" argmin(input, dim=None, keepdim=False) -> LongTensor Returns the indices of the minimum value(s) of the flattened tensor or along a dimension This is the second value returned by :meth:`torch.min`. See its documentation for the exact semantics of this method. .. note:: If there are multiple minimal values then the indices of the first minimal value are returned. Args: input (Tensor): the input tensor. dim (int): the dimension to reduce. If ``None``, the argmin of the flattened input is returned. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. Example:: >>> a = torch.randn(4, 4) >>> a tensor([[ 0.1139, 0.2254, -0.1381, 0.3687], [ 1.0100, -1.1975, -0.0102, -0.4732], [-0.9240, 0.1207, -0.7506, -1.0213], [ 1.7809, -1.2960, 0.9384, 0.1438]]) >>> torch.argmin(a) tensor(13) >>> torch.argmin(a, dim=1) tensor([ 2, 1, 3, 1]) >>> torch.argmin(a, dim=1, keepdim=True) tensor([[2], [1], [3], [1]]) """ ... @overload def argsort(input: Tensor, *, stable: _bool, dim: _int = -1, descending: _bool = False) -> Tensor: r""" argsort(input, dim=-1, descending=False, stable=False) -> Tensor Returns the indices that sort a tensor along a given dimension in ascending order by value. This is the second value returned by :meth:`torch.sort`. See its documentation for the exact semantics of this method. If :attr:`stable` is ``True`` then the sorting routine becomes stable, preserving the order of equivalent elements. If ``False``, the relative order of values which compare equal is not guaranteed. ``True`` is slower. Args: input (Tensor): the input tensor. dim (int, optional): the dimension to sort along descending (bool, optional): controls the sorting order (ascending or descending) stable (bool, optional): controls the relative order of equivalent elements Example:: >>> a = torch.randn(4, 4) >>> a tensor([[ 0.0785, 1.5267, -0.8521, 0.4065], [ 0.1598, 0.0788, -0.0745, -1.2700], [ 1.2208, 1.0722, -0.7064, 1.2564], [ 0.0669, -0.2318, -0.8229, -0.9280]]) >>> torch.argsort(a, dim=1) tensor([[2, 0, 3, 1], [3, 2, 1, 0], [2, 1, 0, 3], [3, 2, 1, 0]]) """ ... @overload def argsort(input: Tensor, dim: _int = -1, descending: _bool = False) -> Tensor: r""" argsort(input, dim=-1, descending=False, stable=False) -> Tensor Returns the indices that sort a tensor along a given dimension in ascending order by value. This is the second value returned by :meth:`torch.sort`. See its documentation for the exact semantics of this method. If :attr:`stable` is ``True`` then the sorting routine becomes stable, preserving the order of equivalent elements. If ``False``, the relative order of values which compare equal is not guaranteed. ``True`` is slower. Args: input (Tensor): the input tensor. dim (int, optional): the dimension to sort along descending (bool, optional): controls the sorting order (ascending or descending) stable (bool, optional): controls the relative order of equivalent elements Example:: >>> a = torch.randn(4, 4) >>> a tensor([[ 0.0785, 1.5267, -0.8521, 0.4065], [ 0.1598, 0.0788, -0.0745, -1.2700], [ 1.2208, 1.0722, -0.7064, 1.2564], [ 0.0669, -0.2318, -0.8229, -0.9280]]) >>> torch.argsort(a, dim=1) tensor([[2, 0, 3, 1], [3, 2, 1, 0], [2, 1, 0, 3], [3, 2, 1, 0]]) """ ... @overload def argsort(input: Tensor, dim: Union[str, ellipsis, None], descending: _bool = False) -> Tensor: r""" argsort(input, dim=-1, descending=False, stable=False) -> Tensor Returns the indices that sort a tensor along a given dimension in ascending order by value. This is the second value returned by :meth:`torch.sort`. See its documentation for the exact semantics of this method. If :attr:`stable` is ``True`` then the sorting routine becomes stable, preserving the order of equivalent elements. If ``False``, the relative order of values which compare equal is not guaranteed. ``True`` is slower. Args: input (Tensor): the input tensor. dim (int, optional): the dimension to sort along descending (bool, optional): controls the sorting order (ascending or descending) stable (bool, optional): controls the relative order of equivalent elements Example:: >>> a = torch.randn(4, 4) >>> a tensor([[ 0.0785, 1.5267, -0.8521, 0.4065], [ 0.1598, 0.0788, -0.0745, -1.2700], [ 1.2208, 1.0722, -0.7064, 1.2564], [ 0.0669, -0.2318, -0.8229, -0.9280]]) >>> torch.argsort(a, dim=1) tensor([[2, 0, 3, 1], [3, 2, 1, 0], [2, 1, 0, 3], [3, 2, 1, 0]]) """ ... def argwhere(input: Tensor) -> Tensor: r""" argwhere(input) -> Tensor Returns a tensor containing the indices of all non-zero elements of :attr:`input`. Each row in the result contains the indices of a non-zero element in :attr:`input`. The result is sorted lexicographically, with the last index changing the fastest (C-style). If :attr:`input` has :math:`n` dimensions, then the resulting indices tensor :attr:`out` is of size :math:`(z \times n)`, where :math:`z` is the total number of non-zero elements in the :attr:`input` tensor. .. note:: This function is similar to NumPy's `argwhere`. When :attr:`input` is on CUDA, this function causes host-device synchronization. Args: {input} Example:: >>> t = torch.tensor([1, 0, 1]) >>> torch.argwhere(t) tensor([[0], [2]]) >>> t = torch.tensor([[1, 0, 1], [0, 1, 1]]) >>> torch.argwhere(t) tensor([[0, 0], [0, 2], [1, 1], [1, 2]]) """ ... def as_strided(input: Tensor, size: Sequence[Union[_int, SymInt]], stride: Sequence[Union[_int, SymInt]], storage_offset: Optional[Union[_int, SymInt]] = None) -> Tensor: r""" as_strided(input, size, stride, storage_offset=None) -> Tensor Create a view of an existing `torch.Tensor` :attr:`input` with specified :attr:`size`, :attr:`stride` and :attr:`storage_offset`. .. warning:: Prefer using other view functions, like :meth:`torch.Tensor.expand`, to setting a view's strides manually with `as_strided`, as this function's behavior depends on the implementation of a tensor's storage. The constructed view of the storage must only refer to elements within the storage or a runtime error will be thrown, and if the view is "overlapped" (with multiple indices referring to the same element in memory) its behavior is undefined. Args: input (Tensor): the input tensor. size (tuple or ints): the shape of the output tensor stride (tuple or ints): the stride of the output tensor storage_offset (int, optional): the offset in the underlying storage of the output tensor. If ``None``, the storage_offset of the output tensor will match the input tensor. Example:: >>> x = torch.randn(3, 3) >>> x tensor([[ 0.9039, 0.6291, 1.0795], [ 0.1586, 2.1939, -0.4900], [-0.1909, -0.7503, 1.9355]]) >>> t = torch.as_strided(x, (2, 2), (1, 2)) >>> t tensor([[0.9039, 1.0795], [0.6291, 0.1586]]) >>> t = torch.as_strided(x, (2, 2), (1, 2), 1) tensor([[0.6291, 0.1586], [1.0795, 2.1939]]) """ ... def as_strided_(input: Tensor, size: Sequence[Union[_int, SymInt]], stride: Sequence[Union[_int, SymInt]], storage_offset: Optional[Union[_int, SymInt]] = None) -> Tensor: ... def as_strided_copy(input: Tensor, size: Sequence[Union[_int, SymInt]], stride: Sequence[Union[_int, SymInt]], storage_offset: Optional[Union[_int, SymInt]] = None, *, out: Optional[Tensor] = None) -> Tensor: r""" Performs the same operation as :func:`torch.as_strided`, but all output tensors are freshly created instead of aliasing the input. """ ... def as_strided_scatter(input: Tensor, src: Tensor, size: Sequence[Union[_int, SymInt]], stride: Sequence[Union[_int, SymInt]], storage_offset: Optional[Union[_int, SymInt]] = None) -> Tensor: r""" as_strided_scatter(input, src, size, stride, storage_offset=None) -> Tensor Embeds the values of the :attr:`src` tensor into :attr:`input` along the elements corresponding to the result of calling input.as_strided(size, stride, storage_offset). This function returns a tensor with fresh storage; it does not return a view. Args: input (Tensor): the input tensor. size (tuple or ints): the shape of the output tensor stride (tuple or ints): the stride of the output tensor storage_offset (int, optional): the offset in the underlying storage of the output tensor .. note:: :attr:`src` must be of the proper size in order to be embedded into :attr:`input`. Specifically, it should have the same shape as `torch.as_strided(input, size, stride, storage_offset)` Example:: >>> a = torch.arange(4).reshape(2, 2) + 1 >>> a tensor([[1, 2], [3, 4]]) >>> b = torch.zeros(3, 3) >>> b tensor([[0., 0., 0.], [0., 0., 0.], [0., 0., 0.]]) >>> torch.as_strided_scatter(b, a, (2, 2), (1, 2)) tensor([[1., 3., 2.], [4., 0., 0.], [0., 0., 0.]]) """ ... def as_tensor(data: Any, dtype: Optional[_dtype] = None, device: Optional[DeviceLikeType] = None) -> Tensor: r""" as_tensor(data, dtype=None, device=None) -> Tensor Converts :attr:`data` into a tensor, sharing data and preserving autograd history if possible. If :attr:`data` is already a tensor with the requested dtype and device then :attr:`data` itself is returned, but if :attr:`data` is a tensor with a different dtype or device then it's copied as if using `data.to(dtype=dtype, device=device)`. If :attr:`data` is a NumPy array (an ndarray) with the same dtype and device then a tensor is constructed using :func:`torch.from_numpy`. .. seealso:: :func:`torch.tensor` never shares its data and creates a new "leaf tensor" (see :doc:`/notes/autograd`). Args: data (array_like): Initial data for the tensor. Can be a list, tuple, NumPy ``ndarray``, scalar, and other types. dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, infers data type from :attr:`data`. device (:class:`torch.device`, optional): the device of the constructed tensor. If None and data is a tensor then the device of data is used. If None and data is not a tensor then the result tensor is constructed on the current device. Example:: >>> a = numpy.array([1, 2, 3]) >>> t = torch.as_tensor(a) >>> t tensor([ 1, 2, 3]) >>> t[0] = -1 >>> a array([-1, 2, 3]) >>> a = numpy.array([1, 2, 3]) >>> t = torch.as_tensor(a, device=torch.device('cuda')) >>> t tensor([ 1, 2, 3]) >>> t[0] = -1 >>> a array([1, 2, 3]) """ ... def asarray(obj: Any, *, dtype: Optional[_dtype] = None, device: Optional[DeviceLikeType] = None, copy: Optional[_bool] = None, requires_grad: _bool = False) -> Tensor: r""" asarray(obj, *, dtype=None, device=None, copy=None, requires_grad=False) -> Tensor Converts :attr:`obj` to a tensor. :attr:`obj` can be one of: 1. a tensor 2. a NumPy array or a NumPy scalar 3. a DLPack capsule 4. an object that implements Python's buffer protocol 5. a scalar 6. a sequence of scalars When :attr:`obj` is a tensor, NumPy array, or DLPack capsule the returned tensor will, by default, not require a gradient, have the same datatype as :attr:`obj`, be on the same device, and share memory with it. These properties can be controlled with the :attr:`dtype`, :attr:`device`, :attr:`copy`, and :attr:`requires_grad` keyword arguments. If the returned tensor is of a different datatype, on a different device, or a copy is requested then it will not share its memory with :attr:`obj`. If :attr:`requires_grad` is ``True`` then the returned tensor will require a gradient, and if :attr:`obj` is also a tensor with an autograd history then the returned tensor will have the same history. When :attr:`obj` is not a tensor, NumPy array, or DLPack capsule but implements Python's buffer protocol then the buffer is interpreted as an array of bytes grouped according to the size of the datatype passed to the :attr:`dtype` keyword argument. (If no datatype is passed then the default floating point datatype is used, instead.) The returned tensor will have the specified datatype (or default floating point datatype if none is specified) and, by default, be on the CPU device and share memory with the buffer. When :attr:`obj` is a NumPy scalar, the returned tensor will be a 0-dimensional tensor on the CPU and that doesn't share its memory (i.e. ``copy=True``). By default datatype will be the PyTorch datatype corresponding to the NumPy's scalar's datatype. When :attr:`obj` is none of the above but a scalar, or a sequence of scalars then the returned tensor will, by default, infer its datatype from the scalar values, be on the current default device, and not share its memory. .. seealso:: :func:`torch.tensor` creates a tensor that always copies the data from the input object. :func:`torch.from_numpy` creates a tensor that always shares memory from NumPy arrays. :func:`torch.frombuffer` creates a tensor that always shares memory from objects that implement the buffer protocol. :func:`torch.from_dlpack` creates a tensor that always shares memory from DLPack capsules. Args: obj (object): a tensor, NumPy array, DLPack Capsule, object that implements Python's buffer protocol, scalar, or sequence of scalars. Keyword args: dtype (:class:`torch.dtype`, optional): the datatype of the returned tensor. Default: ``None``, which causes the datatype of the returned tensor to be inferred from :attr:`obj`. copy (bool, optional): controls whether the returned tensor shares memory with :attr:`obj`. Default: ``None``, which causes the returned tensor to share memory with :attr:`obj` whenever possible. If ``True`` then the returned tensor does not share its memory. If ``False`` then the returned tensor shares its memory with :attr:`obj` and an error is thrown if it cannot. device (:class:`torch.device`, optional): the device of the returned tensor. Default: ``None``, which causes the device of :attr:`obj` to be used. Or, if :attr:`obj` is a Python sequence, the current default device will be used. requires_grad (bool, optional): whether the returned tensor requires grad. Default: ``False``, which causes the returned tensor not to require a gradient. If ``True``, then the returned tensor will require a gradient, and if :attr:`obj` is also a tensor with an autograd history then the returned tensor will have the same history. Example:: >>> a = torch.tensor([1, 2, 3]) >>> # Shares memory with tensor 'a' >>> b = torch.asarray(a) >>> a.data_ptr() == b.data_ptr() True >>> # Forces memory copy >>> c = torch.asarray(a, copy=True) >>> a.data_ptr() == c.data_ptr() False >>> a = torch.tensor([1., 2., 3.], requires_grad=True) >>> b = a + 2 >>> b tensor([3., 4., 5.], grad_fn=) >>> # Shares memory with tensor 'b', with no grad >>> c = torch.asarray(b) >>> c tensor([3., 4., 5.]) >>> # Shares memory with tensor 'b', retaining autograd history >>> d = torch.asarray(b, requires_grad=True) >>> d tensor([3., 4., 5.], grad_fn=) >>> array = numpy.array([1, 2, 3]) >>> # Shares memory with array 'array' >>> t1 = torch.asarray(array) >>> array.__array_interface__['data'][0] == t1.data_ptr() True >>> # Copies memory due to dtype mismatch >>> t2 = torch.asarray(array, dtype=torch.float32) >>> array.__array_interface__['data'][0] == t2.data_ptr() False >>> scalar = numpy.float64(0.5) >>> torch.asarray(scalar) tensor(0.5000, dtype=torch.float64) """ ... def asin(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" asin(input, *, out=None) -> Tensor Returns a new tensor with the arcsine of the elements of :attr:`input`. .. math:: \text{out}_{i} = \sin^{-1}(\text{input}_{i}) Args: input (Tensor): the input tensor. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.randn(4) >>> a tensor([-0.5962, 1.4985, -0.4396, 1.4525]) >>> torch.asin(a) tensor([-0.6387, nan, -0.4552, nan]) """ ... def asin_(input: Tensor) -> Tensor: ... def asinh(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" asinh(input, *, out=None) -> Tensor Returns a new tensor with the inverse hyperbolic sine of the elements of :attr:`input`. .. math:: \text{out}_{i} = \sinh^{-1}(\text{input}_{i}) Args: input (Tensor): the input tensor. Keyword arguments: out (Tensor, optional): the output tensor. Example:: >>> a = torch.randn(4) >>> a tensor([ 0.1606, -1.4267, -1.0899, -1.0250 ]) >>> torch.asinh(a) tensor([ 0.1599, -1.1534, -0.9435, -0.8990 ]) """ ... def asinh_(input: Tensor) -> Tensor: ... def atan(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" atan(input, *, out=None) -> Tensor Returns a new tensor with the arctangent of the elements of :attr:`input`. .. math:: \text{out}_{i} = \tan^{-1}(\text{input}_{i}) Args: input (Tensor): the input tensor. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.randn(4) >>> a tensor([ 0.2341, 0.2539, -0.6256, -0.6448]) >>> torch.atan(a) tensor([ 0.2299, 0.2487, -0.5591, -0.5727]) """ ... def atan2(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" atan2(input, other, *, out=None) -> Tensor Element-wise arctangent of :math:`\text{input}_{i} / \text{other}_{i}` with consideration of the quadrant. Returns a new tensor with the signed angles in radians between vector :math:`(\text{other}_{i}, \text{input}_{i})` and vector :math:`(1, 0)`. (Note that :math:`\text{other}_{i}`, the second parameter, is the x-coordinate, while :math:`\text{input}_{i}`, the first parameter, is the y-coordinate.) The shapes of ``input`` and ``other`` must be :ref:`broadcastable `. Args: input (Tensor): the first input tensor other (Tensor): the second input tensor Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.randn(4) >>> a tensor([ 0.9041, 0.0196, -0.3108, -2.4423]) >>> torch.atan2(a, torch.randn(4)) tensor([ 0.9833, 0.0811, -1.9743, -1.4151]) """ ... def atan_(input: Tensor) -> Tensor: ... def atanh(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" atanh(input, *, out=None) -> Tensor Returns a new tensor with the inverse hyperbolic tangent of the elements of :attr:`input`. Note: The domain of the inverse hyperbolic tangent is `(-1, 1)` and values outside this range will be mapped to ``NaN``, except for the values `1` and `-1` for which the output is mapped to `+/-INF` respectively. .. math:: \text{out}_{i} = \tanh^{-1}(\text{input}_{i}) Args: input (Tensor): the input tensor. Keyword arguments: out (Tensor, optional): the output tensor. Example:: >>> a = torch.randn(4).uniform_(-1, 1) >>> a tensor([ -0.9385, 0.2968, -0.8591, -0.1871 ]) >>> torch.atanh(a) tensor([ -1.7253, 0.3060, -1.2899, -0.1893 ]) """ ... def atanh_(input: Tensor) -> Tensor: ... def avg_pool1d(input: Tensor, kernel_size: Union[_int, _size], stride: Union[_int, _size] = (), padding: Union[_int, _size] = 0, ceil_mode: _bool = False, count_include_pad: _bool = True) -> Tensor: ... @overload def baddbmm(beta: Union[Number, _complex], self: Tensor, alpha: Union[Number, _complex], batch1: Tensor, batch2: Tensor) -> Tensor: r""" baddbmm(input, batch1, batch2, *, beta=1, alpha=1, out=None) -> Tensor Performs a batch matrix-matrix product of matrices in :attr:`batch1` and :attr:`batch2`. :attr:`input` is added to the final result. :attr:`batch1` and :attr:`batch2` must be 3-D tensors each containing the same number of matrices. If :attr:`batch1` is a :math:`(b \times n \times m)` tensor, :attr:`batch2` is a :math:`(b \times m \times p)` tensor, then :attr:`input` must be :ref:`broadcastable ` with a :math:`(b \times n \times p)` tensor and :attr:`out` will be a :math:`(b \times n \times p)` tensor. Both :attr:`alpha` and :attr:`beta` mean the same as the scaling factors used in :meth:`torch.addbmm`. .. math:: \text{out}_i = \beta\ \text{input}_i + \alpha\ (\text{batch1}_i \mathbin{@} \text{batch2}_i) If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in it will not be propagated. For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and :attr:`alpha` must be real numbers, otherwise they should be integers. This operator supports :ref:`TensorFloat32`. On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision` for backward. Args: input (Tensor): the tensor to be added batch1 (Tensor): the first batch of matrices to be multiplied batch2 (Tensor): the second batch of matrices to be multiplied Keyword args: beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`) alpha (Number, optional): multiplier for :math:`\text{batch1} \mathbin{@} \text{batch2}` (:math:`\alpha`) out (Tensor, optional): the output tensor. Example:: >>> M = torch.randn(10, 3, 5) >>> batch1 = torch.randn(10, 3, 4) >>> batch2 = torch.randn(10, 4, 5) >>> torch.baddbmm(M, batch1, batch2).size() torch.Size([10, 3, 5]) """ ... @overload def baddbmm(beta: Union[Number, _complex], self: Tensor, alpha: Union[Number, _complex], batch1: Tensor, batch2: Tensor, *, out: Tensor) -> Tensor: r""" baddbmm(input, batch1, batch2, *, beta=1, alpha=1, out=None) -> Tensor Performs a batch matrix-matrix product of matrices in :attr:`batch1` and :attr:`batch2`. :attr:`input` is added to the final result. :attr:`batch1` and :attr:`batch2` must be 3-D tensors each containing the same number of matrices. If :attr:`batch1` is a :math:`(b \times n \times m)` tensor, :attr:`batch2` is a :math:`(b \times m \times p)` tensor, then :attr:`input` must be :ref:`broadcastable ` with a :math:`(b \times n \times p)` tensor and :attr:`out` will be a :math:`(b \times n \times p)` tensor. Both :attr:`alpha` and :attr:`beta` mean the same as the scaling factors used in :meth:`torch.addbmm`. .. math:: \text{out}_i = \beta\ \text{input}_i + \alpha\ (\text{batch1}_i \mathbin{@} \text{batch2}_i) If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in it will not be propagated. For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and :attr:`alpha` must be real numbers, otherwise they should be integers. This operator supports :ref:`TensorFloat32`. On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision` for backward. Args: input (Tensor): the tensor to be added batch1 (Tensor): the first batch of matrices to be multiplied batch2 (Tensor): the second batch of matrices to be multiplied Keyword args: beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`) alpha (Number, optional): multiplier for :math:`\text{batch1} \mathbin{@} \text{batch2}` (:math:`\alpha`) out (Tensor, optional): the output tensor. Example:: >>> M = torch.randn(10, 3, 5) >>> batch1 = torch.randn(10, 3, 4) >>> batch2 = torch.randn(10, 4, 5) >>> torch.baddbmm(M, batch1, batch2).size() torch.Size([10, 3, 5]) """ ... @overload def baddbmm(input: Tensor, batch1: Tensor, batch2: Tensor, *, beta: Union[Number, _complex] = 1, alpha: Union[Number, _complex] = 1, out: Optional[Tensor] = None) -> Tensor: r""" baddbmm(input, batch1, batch2, *, beta=1, alpha=1, out=None) -> Tensor Performs a batch matrix-matrix product of matrices in :attr:`batch1` and :attr:`batch2`. :attr:`input` is added to the final result. :attr:`batch1` and :attr:`batch2` must be 3-D tensors each containing the same number of matrices. If :attr:`batch1` is a :math:`(b \times n \times m)` tensor, :attr:`batch2` is a :math:`(b \times m \times p)` tensor, then :attr:`input` must be :ref:`broadcastable ` with a :math:`(b \times n \times p)` tensor and :attr:`out` will be a :math:`(b \times n \times p)` tensor. Both :attr:`alpha` and :attr:`beta` mean the same as the scaling factors used in :meth:`torch.addbmm`. .. math:: \text{out}_i = \beta\ \text{input}_i + \alpha\ (\text{batch1}_i \mathbin{@} \text{batch2}_i) If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in it will not be propagated. For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and :attr:`alpha` must be real numbers, otherwise they should be integers. This operator supports :ref:`TensorFloat32`. On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision` for backward. Args: input (Tensor): the tensor to be added batch1 (Tensor): the first batch of matrices to be multiplied batch2 (Tensor): the second batch of matrices to be multiplied Keyword args: beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`) alpha (Number, optional): multiplier for :math:`\text{batch1} \mathbin{@} \text{batch2}` (:math:`\alpha`) out (Tensor, optional): the output tensor. Example:: >>> M = torch.randn(10, 3, 5) >>> batch1 = torch.randn(10, 3, 4) >>> batch2 = torch.randn(10, 4, 5) >>> torch.baddbmm(M, batch1, batch2).size() torch.Size([10, 3, 5]) """ ... @overload def baddbmm(beta: Union[Number, _complex], self: Tensor, batch1: Tensor, batch2: Tensor) -> Tensor: r""" baddbmm(input, batch1, batch2, *, beta=1, alpha=1, out=None) -> Tensor Performs a batch matrix-matrix product of matrices in :attr:`batch1` and :attr:`batch2`. :attr:`input` is added to the final result. :attr:`batch1` and :attr:`batch2` must be 3-D tensors each containing the same number of matrices. If :attr:`batch1` is a :math:`(b \times n \times m)` tensor, :attr:`batch2` is a :math:`(b \times m \times p)` tensor, then :attr:`input` must be :ref:`broadcastable ` with a :math:`(b \times n \times p)` tensor and :attr:`out` will be a :math:`(b \times n \times p)` tensor. Both :attr:`alpha` and :attr:`beta` mean the same as the scaling factors used in :meth:`torch.addbmm`. .. math:: \text{out}_i = \beta\ \text{input}_i + \alpha\ (\text{batch1}_i \mathbin{@} \text{batch2}_i) If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in it will not be propagated. For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and :attr:`alpha` must be real numbers, otherwise they should be integers. This operator supports :ref:`TensorFloat32`. On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision` for backward. Args: input (Tensor): the tensor to be added batch1 (Tensor): the first batch of matrices to be multiplied batch2 (Tensor): the second batch of matrices to be multiplied Keyword args: beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`) alpha (Number, optional): multiplier for :math:`\text{batch1} \mathbin{@} \text{batch2}` (:math:`\alpha`) out (Tensor, optional): the output tensor. Example:: >>> M = torch.randn(10, 3, 5) >>> batch1 = torch.randn(10, 3, 4) >>> batch2 = torch.randn(10, 4, 5) >>> torch.baddbmm(M, batch1, batch2).size() torch.Size([10, 3, 5]) """ ... @overload def baddbmm(beta: Union[Number, _complex], self: Tensor, batch1: Tensor, batch2: Tensor, *, out: Tensor) -> Tensor: r""" baddbmm(input, batch1, batch2, *, beta=1, alpha=1, out=None) -> Tensor Performs a batch matrix-matrix product of matrices in :attr:`batch1` and :attr:`batch2`. :attr:`input` is added to the final result. :attr:`batch1` and :attr:`batch2` must be 3-D tensors each containing the same number of matrices. If :attr:`batch1` is a :math:`(b \times n \times m)` tensor, :attr:`batch2` is a :math:`(b \times m \times p)` tensor, then :attr:`input` must be :ref:`broadcastable ` with a :math:`(b \times n \times p)` tensor and :attr:`out` will be a :math:`(b \times n \times p)` tensor. Both :attr:`alpha` and :attr:`beta` mean the same as the scaling factors used in :meth:`torch.addbmm`. .. math:: \text{out}_i = \beta\ \text{input}_i + \alpha\ (\text{batch1}_i \mathbin{@} \text{batch2}_i) If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in it will not be propagated. For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and :attr:`alpha` must be real numbers, otherwise they should be integers. This operator supports :ref:`TensorFloat32`. On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision` for backward. Args: input (Tensor): the tensor to be added batch1 (Tensor): the first batch of matrices to be multiplied batch2 (Tensor): the second batch of matrices to be multiplied Keyword args: beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`) alpha (Number, optional): multiplier for :math:`\text{batch1} \mathbin{@} \text{batch2}` (:math:`\alpha`) out (Tensor, optional): the output tensor. Example:: >>> M = torch.randn(10, 3, 5) >>> batch1 = torch.randn(10, 3, 4) >>> batch2 = torch.randn(10, 4, 5) >>> torch.baddbmm(M, batch1, batch2).size() torch.Size([10, 3, 5]) """ ... @overload def bartlett_window(window_length: _int, *, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" bartlett_window(window_length, periodic=True, *, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor Bartlett window function. .. math:: w[n] = 1 - \left| \frac{2n}{N-1} - 1 \right| = \begin{cases} \frac{2n}{N - 1} & \text{if } 0 \leq n \leq \frac{N - 1}{2} \\ 2 - \frac{2n}{N - 1} & \text{if } \frac{N - 1}{2} < n < N \\ \end{cases}, where :math:`N` is the full window size. The input :attr:`window_length` is a positive integer controlling the returned window size. :attr:`periodic` flag determines whether the returned window trims off the last duplicate value from the symmetric window and is ready to be used as a periodic window with functions like :meth:`torch.stft`. Therefore, if :attr:`periodic` is true, the :math:`N` in above formula is in fact :math:`\text{window\_length} + 1`. Also, we always have ``torch.bartlett_window(L, periodic=True)`` equal to ``torch.bartlett_window(L + 1, periodic=False)[:-1])``. .. note:: If :attr:`window_length` :math:`=1`, the returned window contains a single value 1. Arguments: window_length (int): the size of returned window periodic (bool, optional): If True, returns a window to be used as periodic function. If False, return a symmetric window. Keyword args: dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). Only floating point types are supported. layout (:class:`torch.layout`, optional): the desired layout of returned window tensor. Only ``torch.strided`` (dense layout) is supported. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. Returns: Tensor: A 1-D tensor of size :math:`(\text{window\_length},)` containing the window """ ... @overload def bartlett_window(window_length: _int, periodic: _bool, *, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" bartlett_window(window_length, periodic=True, *, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor Bartlett window function. .. math:: w[n] = 1 - \left| \frac{2n}{N-1} - 1 \right| = \begin{cases} \frac{2n}{N - 1} & \text{if } 0 \leq n \leq \frac{N - 1}{2} \\ 2 - \frac{2n}{N - 1} & \text{if } \frac{N - 1}{2} < n < N \\ \end{cases}, where :math:`N` is the full window size. The input :attr:`window_length` is a positive integer controlling the returned window size. :attr:`periodic` flag determines whether the returned window trims off the last duplicate value from the symmetric window and is ready to be used as a periodic window with functions like :meth:`torch.stft`. Therefore, if :attr:`periodic` is true, the :math:`N` in above formula is in fact :math:`\text{window\_length} + 1`. Also, we always have ``torch.bartlett_window(L, periodic=True)`` equal to ``torch.bartlett_window(L + 1, periodic=False)[:-1])``. .. note:: If :attr:`window_length` :math:`=1`, the returned window contains a single value 1. Arguments: window_length (int): the size of returned window periodic (bool, optional): If True, returns a window to be used as periodic function. If False, return a symmetric window. Keyword args: dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). Only floating point types are supported. layout (:class:`torch.layout`, optional): the desired layout of returned window tensor. Only ``torch.strided`` (dense layout) is supported. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. Returns: Tensor: A 1-D tensor of size :math:`(\text{window\_length},)` containing the window """ ... def batch_norm(input: Tensor, weight: Optional[Tensor], bias: Optional[Tensor], running_mean: Optional[Tensor], running_var: Optional[Tensor], training: _bool, momentum: _float, eps: _float, cudnn_enabled: _bool) -> Tensor: ... def batch_norm_backward_elemt(grad_out: Tensor, input: Tensor, mean: Tensor, invstd: Tensor, weight: Optional[Tensor], sum_dy: Tensor, sum_dy_xmu: Tensor, count: Tensor) -> Tensor: ... def batch_norm_backward_reduce(grad_out: Tensor, input: Tensor, mean: Tensor, invstd: Tensor, weight: Optional[Tensor], input_g: _bool, weight_g: _bool, bias_g: _bool) -> Tuple[Tensor, Tensor, Tensor, Tensor]: ... def batch_norm_elemt(input: Tensor, weight: Optional[Tensor], bias: Optional[Tensor], mean: Tensor, invstd: Tensor, eps: _float, *, out: Optional[Tensor] = None) -> Tensor: ... def batch_norm_gather_stats(input: Tensor, mean: Tensor, invstd: Tensor, running_mean: Optional[Tensor], running_var: Optional[Tensor], momentum: _float, eps: _float, count: _int) -> Tuple[Tensor, Tensor]: ... def batch_norm_gather_stats_with_counts(input: Tensor, mean: Tensor, invstd: Tensor, running_mean: Optional[Tensor], running_var: Optional[Tensor], momentum: _float, eps: _float, counts: Tensor) -> Tuple[Tensor, Tensor]: ... def batch_norm_stats(input: Tensor, eps: _float) -> Tuple[Tensor, Tensor]: ... def batch_norm_update_stats(input: Tensor, running_mean: Optional[Tensor], running_var: Optional[Tensor], momentum: _float) -> Tuple[Tensor, Tensor]: ... @overload def bernoulli(input: Tensor, *, generator: Optional[Generator] = None, out: Optional[Tensor] = None) -> Tensor: r""" bernoulli(input, *, generator=None, out=None) -> Tensor Draws binary random numbers (0 or 1) from a Bernoulli distribution. The :attr:`input` tensor should be a tensor containing probabilities to be used for drawing the binary random number. Hence, all values in :attr:`input` have to be in the range: :math:`0 \leq \text{input}_i \leq 1`. The :math:`\text{i}^{th}` element of the output tensor will draw a value :math:`1` according to the :math:`\text{i}^{th}` probability value given in :attr:`input`. .. math:: \text{out}_{i} \sim \mathrm{Bernoulli}(p = \text{input}_{i}) The returned :attr:`out` tensor only has values 0 or 1 and is of the same shape as :attr:`input`. :attr:`out` can have integral ``dtype``, but :attr:`input` must have floating point ``dtype``. Args: input (Tensor): the input tensor of probability values for the Bernoulli distribution Keyword args: generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling out (Tensor, optional): the output tensor. Example:: >>> a = torch.empty(3, 3).uniform_(0, 1) # generate a uniform random matrix with range [0, 1] >>> a tensor([[ 0.1737, 0.0950, 0.3609], [ 0.7148, 0.0289, 0.2676], [ 0.9456, 0.8937, 0.7202]]) >>> torch.bernoulli(a) tensor([[ 1., 0., 0.], [ 0., 0., 0.], [ 1., 1., 1.]]) >>> a = torch.ones(3, 3) # probability of drawing "1" is 1 >>> torch.bernoulli(a) tensor([[ 1., 1., 1.], [ 1., 1., 1.], [ 1., 1., 1.]]) >>> a = torch.zeros(3, 3) # probability of drawing "1" is 0 >>> torch.bernoulli(a) tensor([[ 0., 0., 0.], [ 0., 0., 0.], [ 0., 0., 0.]]) """ ... @overload def bernoulli(input: Tensor, p: _float, *, generator: Optional[Generator] = None) -> Tensor: r""" bernoulli(input, *, generator=None, out=None) -> Tensor Draws binary random numbers (0 or 1) from a Bernoulli distribution. The :attr:`input` tensor should be a tensor containing probabilities to be used for drawing the binary random number. Hence, all values in :attr:`input` have to be in the range: :math:`0 \leq \text{input}_i \leq 1`. The :math:`\text{i}^{th}` element of the output tensor will draw a value :math:`1` according to the :math:`\text{i}^{th}` probability value given in :attr:`input`. .. math:: \text{out}_{i} \sim \mathrm{Bernoulli}(p = \text{input}_{i}) The returned :attr:`out` tensor only has values 0 or 1 and is of the same shape as :attr:`input`. :attr:`out` can have integral ``dtype``, but :attr:`input` must have floating point ``dtype``. Args: input (Tensor): the input tensor of probability values for the Bernoulli distribution Keyword args: generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling out (Tensor, optional): the output tensor. Example:: >>> a = torch.empty(3, 3).uniform_(0, 1) # generate a uniform random matrix with range [0, 1] >>> a tensor([[ 0.1737, 0.0950, 0.3609], [ 0.7148, 0.0289, 0.2676], [ 0.9456, 0.8937, 0.7202]]) >>> torch.bernoulli(a) tensor([[ 1., 0., 0.], [ 0., 0., 0.], [ 1., 1., 1.]]) >>> a = torch.ones(3, 3) # probability of drawing "1" is 1 >>> torch.bernoulli(a) tensor([[ 1., 1., 1.], [ 1., 1., 1.], [ 1., 1., 1.]]) >>> a = torch.zeros(3, 3) # probability of drawing "1" is 0 >>> torch.bernoulli(a) tensor([[ 0., 0., 0.], [ 0., 0., 0.], [ 0., 0., 0.]]) """ ... def bilinear(input1: Tensor, input2: Tensor, weight: Tensor, bias: Optional[Tensor] = None) -> Tensor: ... def binary_cross_entropy_with_logits(input: Tensor, target: Tensor, weight: Optional[Tensor] = None, pos_weight: Optional[Tensor] = None, reduction: _int = 1) -> Tensor: ... def bincount(input: Tensor, weights: Optional[Tensor] = None, minlength: _int = 0) -> Tensor: r""" bincount(input, weights=None, minlength=0) -> Tensor Count the frequency of each value in an array of non-negative ints. The number of bins (size 1) is one larger than the largest value in :attr:`input` unless :attr:`input` is empty, in which case the result is a tensor of size 0. If :attr:`minlength` is specified, the number of bins is at least :attr:`minlength` and if :attr:`input` is empty, then the result is tensor of size :attr:`minlength` filled with zeros. If ``n`` is the value at position ``i``, ``out[n] += weights[i]`` if :attr:`weights` is specified else ``out[n] += 1``. Note: This operation may produce nondeterministic gradients when given tensors on a CUDA device. See :doc:`/notes/randomness` for more information. Arguments: input (Tensor): 1-d int tensor weights (Tensor): optional, weight for each value in the input tensor. Should be of same size as input tensor. minlength (int): optional, minimum number of bins. Should be non-negative. Returns: output (Tensor): a tensor of shape ``Size([max(input) + 1])`` if :attr:`input` is non-empty, else ``Size(0)`` Example:: >>> input = torch.randint(0, 8, (5,), dtype=torch.int64) >>> weights = torch.linspace(0, 1, steps=5) >>> input, weights (tensor([4, 3, 6, 3, 4]), tensor([ 0.0000, 0.2500, 0.5000, 0.7500, 1.0000]) >>> torch.bincount(input) tensor([0, 0, 0, 2, 2, 0, 1]) >>> input.bincount(weights) tensor([0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 0.0000, 0.5000]) """ ... def binomial(count: Tensor, prob: Tensor, generator: Optional[Generator] = None) -> Tensor: ... @overload def bitwise_and(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" bitwise_and(input, other, *, out=None) -> Tensor Computes the bitwise AND of :attr:`input` and :attr:`other`. The input tensor must be of integral or Boolean types. For bool tensors, it computes the logical AND. Args: input: the first input tensor other: the second input tensor Keyword args: out (Tensor, optional): the output tensor. Example:: >>> torch.bitwise_and(torch.tensor([-1, -2, 3], dtype=torch.int8), torch.tensor([1, 0, 3], dtype=torch.int8)) tensor([1, 0, 3], dtype=torch.int8) >>> torch.bitwise_and(torch.tensor([True, True, False]), torch.tensor([False, True, False])) tensor([ False, True, False]) """ ... @overload def bitwise_and(self: Union[Number, _complex], other: Tensor) -> Tensor: r""" bitwise_and(input, other, *, out=None) -> Tensor Computes the bitwise AND of :attr:`input` and :attr:`other`. The input tensor must be of integral or Boolean types. For bool tensors, it computes the logical AND. Args: input: the first input tensor other: the second input tensor Keyword args: out (Tensor, optional): the output tensor. Example:: >>> torch.bitwise_and(torch.tensor([-1, -2, 3], dtype=torch.int8), torch.tensor([1, 0, 3], dtype=torch.int8)) tensor([1, 0, 3], dtype=torch.int8) >>> torch.bitwise_and(torch.tensor([True, True, False]), torch.tensor([False, True, False])) tensor([ False, True, False]) """ ... @overload def bitwise_and(input: Tensor, other: Union[Number, _complex], *, out: Optional[Tensor] = None) -> Tensor: r""" bitwise_and(input, other, *, out=None) -> Tensor Computes the bitwise AND of :attr:`input` and :attr:`other`. The input tensor must be of integral or Boolean types. For bool tensors, it computes the logical AND. Args: input: the first input tensor other: the second input tensor Keyword args: out (Tensor, optional): the output tensor. Example:: >>> torch.bitwise_and(torch.tensor([-1, -2, 3], dtype=torch.int8), torch.tensor([1, 0, 3], dtype=torch.int8)) tensor([1, 0, 3], dtype=torch.int8) >>> torch.bitwise_and(torch.tensor([True, True, False]), torch.tensor([False, True, False])) tensor([ False, True, False]) """ ... @overload def bitwise_left_shift(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" bitwise_left_shift(input, other, *, out=None) -> Tensor Computes the left arithmetic shift of :attr:`input` by :attr:`other` bits. The input tensor must be of integral type. This operator supports :ref:`broadcasting to a common shape ` and :ref:`type promotion `. The operation applied is: .. math:: \text{out}_i = \text{input}_i << \text{other}_i Args: input (Tensor or Scalar): the first input tensor other (Tensor or Scalar): the second input tensor Keyword args: out (Tensor, optional): the output tensor. Example:: >>> torch.bitwise_left_shift(torch.tensor([-1, -2, 3], dtype=torch.int8), torch.tensor([1, 0, 3], dtype=torch.int8)) tensor([-2, -2, 24], dtype=torch.int8) """ ... @overload def bitwise_left_shift(self: Union[Number, _complex], other: Tensor) -> Tensor: r""" bitwise_left_shift(input, other, *, out=None) -> Tensor Computes the left arithmetic shift of :attr:`input` by :attr:`other` bits. The input tensor must be of integral type. This operator supports :ref:`broadcasting to a common shape ` and :ref:`type promotion `. The operation applied is: .. math:: \text{out}_i = \text{input}_i << \text{other}_i Args: input (Tensor or Scalar): the first input tensor other (Tensor or Scalar): the second input tensor Keyword args: out (Tensor, optional): the output tensor. Example:: >>> torch.bitwise_left_shift(torch.tensor([-1, -2, 3], dtype=torch.int8), torch.tensor([1, 0, 3], dtype=torch.int8)) tensor([-2, -2, 24], dtype=torch.int8) """ ... @overload def bitwise_left_shift(input: Tensor, other: Union[Number, _complex], *, out: Optional[Tensor] = None) -> Tensor: r""" bitwise_left_shift(input, other, *, out=None) -> Tensor Computes the left arithmetic shift of :attr:`input` by :attr:`other` bits. The input tensor must be of integral type. This operator supports :ref:`broadcasting to a common shape ` and :ref:`type promotion `. The operation applied is: .. math:: \text{out}_i = \text{input}_i << \text{other}_i Args: input (Tensor or Scalar): the first input tensor other (Tensor or Scalar): the second input tensor Keyword args: out (Tensor, optional): the output tensor. Example:: >>> torch.bitwise_left_shift(torch.tensor([-1, -2, 3], dtype=torch.int8), torch.tensor([1, 0, 3], dtype=torch.int8)) tensor([-2, -2, 24], dtype=torch.int8) """ ... def bitwise_not(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" bitwise_not(input, *, out=None) -> Tensor Computes the bitwise NOT of the given input tensor. The input tensor must be of integral or Boolean types. For bool tensors, it computes the logical NOT. Args: input (Tensor): the input tensor. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> torch.bitwise_not(torch.tensor([-1, -2, 3], dtype=torch.int8)) tensor([ 0, 1, -4], dtype=torch.int8) """ ... @overload def bitwise_or(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" bitwise_or(input, other, *, out=None) -> Tensor Computes the bitwise OR of :attr:`input` and :attr:`other`. The input tensor must be of integral or Boolean types. For bool tensors, it computes the logical OR. Args: input: the first input tensor other: the second input tensor Keyword args: out (Tensor, optional): the output tensor. Example:: >>> torch.bitwise_or(torch.tensor([-1, -2, 3], dtype=torch.int8), torch.tensor([1, 0, 3], dtype=torch.int8)) tensor([-1, -2, 3], dtype=torch.int8) >>> torch.bitwise_or(torch.tensor([True, True, False]), torch.tensor([False, True, False])) tensor([ True, True, False]) """ ... @overload def bitwise_or(self: Union[Number, _complex], other: Tensor) -> Tensor: r""" bitwise_or(input, other, *, out=None) -> Tensor Computes the bitwise OR of :attr:`input` and :attr:`other`. The input tensor must be of integral or Boolean types. For bool tensors, it computes the logical OR. Args: input: the first input tensor other: the second input tensor Keyword args: out (Tensor, optional): the output tensor. Example:: >>> torch.bitwise_or(torch.tensor([-1, -2, 3], dtype=torch.int8), torch.tensor([1, 0, 3], dtype=torch.int8)) tensor([-1, -2, 3], dtype=torch.int8) >>> torch.bitwise_or(torch.tensor([True, True, False]), torch.tensor([False, True, False])) tensor([ True, True, False]) """ ... @overload def bitwise_or(input: Tensor, other: Union[Number, _complex], *, out: Optional[Tensor] = None) -> Tensor: r""" bitwise_or(input, other, *, out=None) -> Tensor Computes the bitwise OR of :attr:`input` and :attr:`other`. The input tensor must be of integral or Boolean types. For bool tensors, it computes the logical OR. Args: input: the first input tensor other: the second input tensor Keyword args: out (Tensor, optional): the output tensor. Example:: >>> torch.bitwise_or(torch.tensor([-1, -2, 3], dtype=torch.int8), torch.tensor([1, 0, 3], dtype=torch.int8)) tensor([-1, -2, 3], dtype=torch.int8) >>> torch.bitwise_or(torch.tensor([True, True, False]), torch.tensor([False, True, False])) tensor([ True, True, False]) """ ... @overload def bitwise_right_shift(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" bitwise_right_shift(input, other, *, out=None) -> Tensor Computes the right arithmetic shift of :attr:`input` by :attr:`other` bits. The input tensor must be of integral type. This operator supports :ref:`broadcasting to a common shape ` and :ref:`type promotion `. In any case, if the value of the right operand is negative or is greater or equal to the number of bits in the promoted left operand, the behavior is undefined. The operation applied is: .. math:: \text{out}_i = \text{input}_i >> \text{other}_i Args: input (Tensor or Scalar): the first input tensor other (Tensor or Scalar): the second input tensor Keyword args: out (Tensor, optional): the output tensor. Example:: >>> torch.bitwise_right_shift(torch.tensor([-2, -7, 31], dtype=torch.int8), torch.tensor([1, 0, 3], dtype=torch.int8)) tensor([-1, -7, 3], dtype=torch.int8) """ ... @overload def bitwise_right_shift(self: Union[Number, _complex], other: Tensor) -> Tensor: r""" bitwise_right_shift(input, other, *, out=None) -> Tensor Computes the right arithmetic shift of :attr:`input` by :attr:`other` bits. The input tensor must be of integral type. This operator supports :ref:`broadcasting to a common shape ` and :ref:`type promotion `. In any case, if the value of the right operand is negative or is greater or equal to the number of bits in the promoted left operand, the behavior is undefined. The operation applied is: .. math:: \text{out}_i = \text{input}_i >> \text{other}_i Args: input (Tensor or Scalar): the first input tensor other (Tensor or Scalar): the second input tensor Keyword args: out (Tensor, optional): the output tensor. Example:: >>> torch.bitwise_right_shift(torch.tensor([-2, -7, 31], dtype=torch.int8), torch.tensor([1, 0, 3], dtype=torch.int8)) tensor([-1, -7, 3], dtype=torch.int8) """ ... @overload def bitwise_right_shift(input: Tensor, other: Union[Number, _complex], *, out: Optional[Tensor] = None) -> Tensor: r""" bitwise_right_shift(input, other, *, out=None) -> Tensor Computes the right arithmetic shift of :attr:`input` by :attr:`other` bits. The input tensor must be of integral type. This operator supports :ref:`broadcasting to a common shape ` and :ref:`type promotion `. In any case, if the value of the right operand is negative or is greater or equal to the number of bits in the promoted left operand, the behavior is undefined. The operation applied is: .. math:: \text{out}_i = \text{input}_i >> \text{other}_i Args: input (Tensor or Scalar): the first input tensor other (Tensor or Scalar): the second input tensor Keyword args: out (Tensor, optional): the output tensor. Example:: >>> torch.bitwise_right_shift(torch.tensor([-2, -7, 31], dtype=torch.int8), torch.tensor([1, 0, 3], dtype=torch.int8)) tensor([-1, -7, 3], dtype=torch.int8) """ ... @overload def bitwise_xor(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" bitwise_xor(input, other, *, out=None) -> Tensor Computes the bitwise XOR of :attr:`input` and :attr:`other`. The input tensor must be of integral or Boolean types. For bool tensors, it computes the logical XOR. Args: input: the first input tensor other: the second input tensor Keyword args: out (Tensor, optional): the output tensor. Example:: >>> torch.bitwise_xor(torch.tensor([-1, -2, 3], dtype=torch.int8), torch.tensor([1, 0, 3], dtype=torch.int8)) tensor([-2, -2, 0], dtype=torch.int8) >>> torch.bitwise_xor(torch.tensor([True, True, False]), torch.tensor([False, True, False])) tensor([ True, False, False]) """ ... @overload def bitwise_xor(self: Union[Number, _complex], other: Tensor) -> Tensor: r""" bitwise_xor(input, other, *, out=None) -> Tensor Computes the bitwise XOR of :attr:`input` and :attr:`other`. The input tensor must be of integral or Boolean types. For bool tensors, it computes the logical XOR. Args: input: the first input tensor other: the second input tensor Keyword args: out (Tensor, optional): the output tensor. Example:: >>> torch.bitwise_xor(torch.tensor([-1, -2, 3], dtype=torch.int8), torch.tensor([1, 0, 3], dtype=torch.int8)) tensor([-2, -2, 0], dtype=torch.int8) >>> torch.bitwise_xor(torch.tensor([True, True, False]), torch.tensor([False, True, False])) tensor([ True, False, False]) """ ... @overload def bitwise_xor(input: Tensor, other: Union[Number, _complex], *, out: Optional[Tensor] = None) -> Tensor: r""" bitwise_xor(input, other, *, out=None) -> Tensor Computes the bitwise XOR of :attr:`input` and :attr:`other`. The input tensor must be of integral or Boolean types. For bool tensors, it computes the logical XOR. Args: input: the first input tensor other: the second input tensor Keyword args: out (Tensor, optional): the output tensor. Example:: >>> torch.bitwise_xor(torch.tensor([-1, -2, 3], dtype=torch.int8), torch.tensor([1, 0, 3], dtype=torch.int8)) tensor([-2, -2, 0], dtype=torch.int8) >>> torch.bitwise_xor(torch.tensor([True, True, False]), torch.tensor([False, True, False])) tensor([ True, False, False]) """ ... @overload def blackman_window(window_length: _int, *, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" blackman_window(window_length, periodic=True, *, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor Blackman window function. .. math:: w[n] = 0.42 - 0.5 \cos \left( \frac{2 \pi n}{N - 1} \right) + 0.08 \cos \left( \frac{4 \pi n}{N - 1} \right) where :math:`N` is the full window size. The input :attr:`window_length` is a positive integer controlling the returned window size. :attr:`periodic` flag determines whether the returned window trims off the last duplicate value from the symmetric window and is ready to be used as a periodic window with functions like :meth:`torch.stft`. Therefore, if :attr:`periodic` is true, the :math:`N` in above formula is in fact :math:`\text{window\_length} + 1`. Also, we always have ``torch.blackman_window(L, periodic=True)`` equal to ``torch.blackman_window(L + 1, periodic=False)[:-1])``. .. note:: If :attr:`window_length` :math:`=1`, the returned window contains a single value 1. Arguments: window_length (int): the size of returned window periodic (bool, optional): If True, returns a window to be used as periodic function. If False, return a symmetric window. Keyword args: dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). Only floating point types are supported. layout (:class:`torch.layout`, optional): the desired layout of returned window tensor. Only ``torch.strided`` (dense layout) is supported. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. Returns: Tensor: A 1-D tensor of size :math:`(\text{window\_length},)` containing the window """ ... @overload def blackman_window(window_length: _int, periodic: _bool, *, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" blackman_window(window_length, periodic=True, *, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor Blackman window function. .. math:: w[n] = 0.42 - 0.5 \cos \left( \frac{2 \pi n}{N - 1} \right) + 0.08 \cos \left( \frac{4 \pi n}{N - 1} \right) where :math:`N` is the full window size. The input :attr:`window_length` is a positive integer controlling the returned window size. :attr:`periodic` flag determines whether the returned window trims off the last duplicate value from the symmetric window and is ready to be used as a periodic window with functions like :meth:`torch.stft`. Therefore, if :attr:`periodic` is true, the :math:`N` in above formula is in fact :math:`\text{window\_length} + 1`. Also, we always have ``torch.blackman_window(L, periodic=True)`` equal to ``torch.blackman_window(L + 1, periodic=False)[:-1])``. .. note:: If :attr:`window_length` :math:`=1`, the returned window contains a single value 1. Arguments: window_length (int): the size of returned window periodic (bool, optional): If True, returns a window to be used as periodic function. If False, return a symmetric window. Keyword args: dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). Only floating point types are supported. layout (:class:`torch.layout`, optional): the desired layout of returned window tensor. Only ``torch.strided`` (dense layout) is supported. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. Returns: Tensor: A 1-D tensor of size :math:`(\text{window\_length},)` containing the window """ ... def bmm(input: Tensor, mat2: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" bmm(input, mat2, *, out=None) -> Tensor Performs a batch matrix-matrix product of matrices stored in :attr:`input` and :attr:`mat2`. :attr:`input` and :attr:`mat2` must be 3-D tensors each containing the same number of matrices. If :attr:`input` is a :math:`(b \times n \times m)` tensor, :attr:`mat2` is a :math:`(b \times m \times p)` tensor, :attr:`out` will be a :math:`(b \times n \times p)` tensor. .. math:: \text{out}_i = \text{input}_i \mathbin{@} \text{mat2}_i This operator supports :ref:`TensorFloat32`. On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision` for backward. .. note:: This function does not :ref:`broadcast `. For broadcasting matrix products, see :func:`torch.matmul`. Args: input (Tensor): the first batch of matrices to be multiplied mat2 (Tensor): the second batch of matrices to be multiplied Keyword Args: out (Tensor, optional): the output tensor. Example:: >>> input = torch.randn(10, 3, 4) >>> mat2 = torch.randn(10, 4, 5) >>> res = torch.bmm(input, mat2) >>> res.size() torch.Size([10, 3, 5]) """ ... def broadcast_to(input: Tensor, size: Sequence[Union[_int, SymInt]]) -> Tensor: r""" broadcast_to(input, shape) -> Tensor Broadcasts :attr:`input` to the shape :attr:`\shape`. Equivalent to calling ``input.expand(shape)``. See :meth:`~Tensor.expand` for details. Args: input (Tensor): the input tensor. shape (list, tuple, or :class:`torch.Size`): the new shape. Example:: >>> x = torch.tensor([1, 2, 3]) >>> torch.broadcast_to(x, (3, 3)) tensor([[1, 2, 3], [1, 2, 3], [1, 2, 3]]) """ ... @overload def bucketize(input: Tensor, boundaries: Tensor, *, out_int32: _bool = False, right: _bool = False, out: Optional[Tensor] = None) -> Tensor: r""" bucketize(input, boundaries, *, out_int32=False, right=False, out=None) -> Tensor Returns the indices of the buckets to which each value in the :attr:`input` belongs, where the boundaries of the buckets are set by :attr:`boundaries`. Return a new tensor with the same size as :attr:`input`. If :attr:`right` is False (default), then the left boundary is open. Note that this behavior is opposite the behavior of `numpy.digitize `_. More formally, the returned index satisfies the following rules: .. list-table:: :widths: 15 85 :header-rows: 1 * - :attr:`right` - *returned index satisfies* * - False - ``boundaries[i-1] < input[m][n]...[l][x] <= boundaries[i]`` * - True - ``boundaries[i-1] <= input[m][n]...[l][x] < boundaries[i]`` Args: input (Tensor or Scalar): N-D tensor or a Scalar containing the search value(s). boundaries (Tensor): 1-D tensor, must contain a strictly increasing sequence, or the return value is undefined. Keyword args: out_int32 (bool, optional): indicate the output data type. torch.int32 if True, torch.int64 otherwise. Default value is False, i.e. default output data type is torch.int64. right (bool, optional): if False, return the first suitable location that is found. If True, return the last such index. If no suitable index found, return 0 for non-numerical value (eg. nan, inf) or the size of :attr:`boundaries` (one pass the last index). In other words, if False, gets the lower bound index for each value in :attr:`input` from :attr:`boundaries`. If True, gets the upper bound index instead. Default value is False. out (Tensor, optional): the output tensor, must be the same size as :attr:`input` if provided. Example:: >>> boundaries = torch.tensor([1, 3, 5, 7, 9]) >>> boundaries tensor([1, 3, 5, 7, 9]) >>> v = torch.tensor([[3, 6, 9], [3, 6, 9]]) >>> v tensor([[3, 6, 9], [3, 6, 9]]) >>> torch.bucketize(v, boundaries) tensor([[1, 3, 4], [1, 3, 4]]) >>> torch.bucketize(v, boundaries, right=True) tensor([[2, 3, 5], [2, 3, 5]]) """ ... @overload def bucketize(self: Union[Number, _complex], boundaries: Tensor, *, out_int32: _bool = False, right: _bool = False) -> Tensor: r""" bucketize(input, boundaries, *, out_int32=False, right=False, out=None) -> Tensor Returns the indices of the buckets to which each value in the :attr:`input` belongs, where the boundaries of the buckets are set by :attr:`boundaries`. Return a new tensor with the same size as :attr:`input`. If :attr:`right` is False (default), then the left boundary is open. Note that this behavior is opposite the behavior of `numpy.digitize `_. More formally, the returned index satisfies the following rules: .. list-table:: :widths: 15 85 :header-rows: 1 * - :attr:`right` - *returned index satisfies* * - False - ``boundaries[i-1] < input[m][n]...[l][x] <= boundaries[i]`` * - True - ``boundaries[i-1] <= input[m][n]...[l][x] < boundaries[i]`` Args: input (Tensor or Scalar): N-D tensor or a Scalar containing the search value(s). boundaries (Tensor): 1-D tensor, must contain a strictly increasing sequence, or the return value is undefined. Keyword args: out_int32 (bool, optional): indicate the output data type. torch.int32 if True, torch.int64 otherwise. Default value is False, i.e. default output data type is torch.int64. right (bool, optional): if False, return the first suitable location that is found. If True, return the last such index. If no suitable index found, return 0 for non-numerical value (eg. nan, inf) or the size of :attr:`boundaries` (one pass the last index). In other words, if False, gets the lower bound index for each value in :attr:`input` from :attr:`boundaries`. If True, gets the upper bound index instead. Default value is False. out (Tensor, optional): the output tensor, must be the same size as :attr:`input` if provided. Example:: >>> boundaries = torch.tensor([1, 3, 5, 7, 9]) >>> boundaries tensor([1, 3, 5, 7, 9]) >>> v = torch.tensor([[3, 6, 9], [3, 6, 9]]) >>> v tensor([[3, 6, 9], [3, 6, 9]]) >>> torch.bucketize(v, boundaries) tensor([[1, 3, 4], [1, 3, 4]]) >>> torch.bucketize(v, boundaries, right=True) tensor([[2, 3, 5], [2, 3, 5]]) """ ... def can_cast(from_: _dtype, to: _dtype) -> _bool: r""" can_cast(from, to) -> bool Determines if a type conversion is allowed under PyTorch casting rules described in the type promotion :ref:`documentation `. Args: from (dtype): The original :class:`torch.dtype`. to (dtype): The target :class:`torch.dtype`. Example:: >>> torch.can_cast(torch.double, torch.float) True >>> torch.can_cast(torch.float, torch.int) False """ ... @overload def cat(tensors: Union[Tuple[Tensor, ...], List[Tensor]], dim: _int = 0, *, out: Optional[Tensor] = None) -> Tensor: r""" cat(tensors, dim=0, *, out=None) -> Tensor Concatenates the given sequence of :attr:`seq` tensors in the given dimension. All tensors must either have the same shape (except in the concatenating dimension) or be a 1-D empty tensor with size ``(0,)``. :func:`torch.cat` can be seen as an inverse operation for :func:`torch.split` and :func:`torch.chunk`. :func:`torch.cat` can be best understood via examples. .. seealso:: :func:`torch.stack` concatenates the given sequence along a new dimension. Args: tensors (sequence of Tensors): any python sequence of tensors of the same type. Non-empty tensors provided must have the same shape, except in the cat dimension. dim (int, optional): the dimension over which the tensors are concatenated Keyword args: out (Tensor, optional): the output tensor. Example:: >>> x = torch.randn(2, 3) >>> x tensor([[ 0.6580, -1.0969, -0.4614], [-0.1034, -0.5790, 0.1497]]) >>> torch.cat((x, x, x), 0) tensor([[ 0.6580, -1.0969, -0.4614], [-0.1034, -0.5790, 0.1497], [ 0.6580, -1.0969, -0.4614], [-0.1034, -0.5790, 0.1497], [ 0.6580, -1.0969, -0.4614], [-0.1034, -0.5790, 0.1497]]) >>> torch.cat((x, x, x), 1) tensor([[ 0.6580, -1.0969, -0.4614, 0.6580, -1.0969, -0.4614, 0.6580, -1.0969, -0.4614], [-0.1034, -0.5790, 0.1497, -0.1034, -0.5790, 0.1497, -0.1034, -0.5790, 0.1497]]) """ ... @overload def cat(tensors: Union[Tuple[Tensor, ...], List[Tensor]], dim: Union[str, ellipsis, None], *, out: Optional[Tensor] = None) -> Tensor: r""" cat(tensors, dim=0, *, out=None) -> Tensor Concatenates the given sequence of :attr:`seq` tensors in the given dimension. All tensors must either have the same shape (except in the concatenating dimension) or be a 1-D empty tensor with size ``(0,)``. :func:`torch.cat` can be seen as an inverse operation for :func:`torch.split` and :func:`torch.chunk`. :func:`torch.cat` can be best understood via examples. .. seealso:: :func:`torch.stack` concatenates the given sequence along a new dimension. Args: tensors (sequence of Tensors): any python sequence of tensors of the same type. Non-empty tensors provided must have the same shape, except in the cat dimension. dim (int, optional): the dimension over which the tensors are concatenated Keyword args: out (Tensor, optional): the output tensor. Example:: >>> x = torch.randn(2, 3) >>> x tensor([[ 0.6580, -1.0969, -0.4614], [-0.1034, -0.5790, 0.1497]]) >>> torch.cat((x, x, x), 0) tensor([[ 0.6580, -1.0969, -0.4614], [-0.1034, -0.5790, 0.1497], [ 0.6580, -1.0969, -0.4614], [-0.1034, -0.5790, 0.1497], [ 0.6580, -1.0969, -0.4614], [-0.1034, -0.5790, 0.1497]]) >>> torch.cat((x, x, x), 1) tensor([[ 0.6580, -1.0969, -0.4614, 0.6580, -1.0969, -0.4614, 0.6580, -1.0969, -0.4614], [-0.1034, -0.5790, 0.1497, -0.1034, -0.5790, 0.1497, -0.1034, -0.5790, 0.1497]]) """ ... def ccol_indices_copy(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: ... def ceil(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" ceil(input, *, out=None) -> Tensor Returns a new tensor with the ceil of the elements of :attr:`input`, the smallest integer greater than or equal to each element. For integer inputs, follows the array-api convention of returning a copy of the input tensor. .. math:: \text{out}_{i} = \left\lceil \text{input}_{i} \right\rceil Args: input (Tensor): the input tensor. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.randn(4) >>> a tensor([-0.6341, -1.4208, -1.0900, 0.5826]) >>> torch.ceil(a) tensor([-0., -1., -1., 1.]) """ ... def ceil_(input: Tensor) -> Tensor: ... def celu(input: Tensor, alpha: Union[Number, _complex] = 1.0) -> Tensor: ... def celu_(input: Tensor, alpha: Union[Number, _complex] = 1.0) -> Tensor: ... def channel_shuffle(input: Tensor, groups: Union[_int, SymInt]) -> Tensor: ... def cholesky(input: Tensor, upper: _bool = False, *, out: Optional[Tensor] = None) -> Tensor: r""" cholesky(input, upper=False, *, out=None) -> Tensor Computes the Cholesky decomposition of a symmetric positive-definite matrix :math:`A` or for batches of symmetric positive-definite matrices. If :attr:`upper` is ``True``, the returned matrix ``U`` is upper-triangular, and the decomposition has the form: .. math:: A = U^TU If :attr:`upper` is ``False``, the returned matrix ``L`` is lower-triangular, and the decomposition has the form: .. math:: A = LL^T If :attr:`upper` is ``True``, and :math:`A` is a batch of symmetric positive-definite matrices, then the returned tensor will be composed of upper-triangular Cholesky factors of each of the individual matrices. Similarly, when :attr:`upper` is ``False``, the returned tensor will be composed of lower-triangular Cholesky factors of each of the individual matrices. .. warning:: :func:`torch.cholesky` is deprecated in favor of :func:`torch.linalg.cholesky` and will be removed in a future PyTorch release. ``L = torch.cholesky(A)`` should be replaced with .. code:: python L = torch.linalg.cholesky(A) ``U = torch.cholesky(A, upper=True)`` should be replaced with .. code:: python U = torch.linalg.cholesky(A).mH This transform will produce equivalent results for all valid (symmetric positive definite) inputs. Args: input (Tensor): the input tensor :math:`A` of size :math:`(*, n, n)` where `*` is zero or more batch dimensions consisting of symmetric positive-definite matrices. upper (bool, optional): flag that indicates whether to return a upper or lower triangular matrix. Default: ``False`` Keyword args: out (Tensor, optional): the output matrix Example:: >>> a = torch.randn(3, 3) >>> a = a @ a.mT + 1e-3 # make symmetric positive-definite >>> l = torch.cholesky(a) >>> a tensor([[ 2.4112, -0.7486, 1.4551], [-0.7486, 1.3544, 0.1294], [ 1.4551, 0.1294, 1.6724]]) >>> l tensor([[ 1.5528, 0.0000, 0.0000], [-0.4821, 1.0592, 0.0000], [ 0.9371, 0.5487, 0.7023]]) >>> l @ l.mT tensor([[ 2.4112, -0.7486, 1.4551], [-0.7486, 1.3544, 0.1294], [ 1.4551, 0.1294, 1.6724]]) >>> a = torch.randn(3, 2, 2) # Example for batched input >>> a = a @ a.mT + 1e-03 # make symmetric positive-definite >>> l = torch.cholesky(a) >>> z = l @ l.mT >>> torch.dist(z, a) tensor(2.3842e-07) """ ... def cholesky_inverse(input: Tensor, upper: _bool = False, *, out: Optional[Tensor] = None) -> Tensor: r""" cholesky_inverse(L, upper=False, *, out=None) -> Tensor Computes the inverse of a complex Hermitian or real symmetric positive-definite matrix given its Cholesky decomposition. Let :math:`A` be a complex Hermitian or real symmetric positive-definite matrix, and :math:`L` its Cholesky decomposition such that: .. math:: A = LL^{\text{H}} where :math:`L^{\text{H}}` is the conjugate transpose when :math:`L` is complex, and the transpose when :math:`L` is real-valued. Computes the inverse matrix :math:`A^{-1}`. Supports input of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if :math:`A` is a batch of matrices then the output has the same batch dimensions. Args: L (Tensor): tensor of shape `(*, n, n)` where `*` is zero or more batch dimensions consisting of lower or upper triangular Cholesky decompositions of symmetric or Hermitian positive-definite matrices. upper (bool, optional): flag that indicates whether :math:`L` is lower triangular or upper triangular. Default: ``False`` Keyword args: out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`. Example:: >>> A = torch.randn(3, 3) >>> A = A @ A.T + torch.eye(3) * 1e-3 # Creates a symmetric positive-definite matrix >>> L = torch.linalg.cholesky(A) # Extract Cholesky decomposition >>> torch.cholesky_inverse(L) tensor([[ 1.9314, 1.2251, -0.0889], [ 1.2251, 2.4439, 0.2122], [-0.0889, 0.2122, 0.1412]]) >>> A.inverse() tensor([[ 1.9314, 1.2251, -0.0889], [ 1.2251, 2.4439, 0.2122], [-0.0889, 0.2122, 0.1412]]) >>> A = torch.randn(3, 2, 2, dtype=torch.complex64) >>> A = A @ A.mH + torch.eye(2) * 1e-3 # Batch of Hermitian positive-definite matrices >>> L = torch.linalg.cholesky(A) >>> torch.dist(torch.inverse(A), torch.cholesky_inverse(L)) tensor(5.6358e-7) """ ... def cholesky_solve(input: Tensor, input2: Tensor, upper: _bool = False, *, out: Optional[Tensor] = None) -> Tensor: r""" cholesky_solve(B, L, upper=False, *, out=None) -> Tensor Computes the solution of a system of linear equations with complex Hermitian or real symmetric positive-definite lhs given its Cholesky decomposition. Let :math:`A` be a complex Hermitian or real symmetric positive-definite matrix, and :math:`L` its Cholesky decomposition such that: .. math:: A = LL^{\text{H}} where :math:`L^{\text{H}}` is the conjugate transpose when :math:`L` is complex, and the transpose when :math:`L` is real-valued. Returns the solution :math:`X` of the following linear system: .. math:: AX = B Supports inputs of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if :math:`A` or :math:`B` is a batch of matrices then the output has the same batch dimensions. Args: B (Tensor): right-hand side tensor of shape `(*, n, k)` where :math:`*` is zero or more batch dimensions L (Tensor): tensor of shape `(*, n, n)` where `*` is zero or more batch dimensions consisting of lower or upper triangular Cholesky decompositions of symmetric or Hermitian positive-definite matrices. upper (bool, optional): flag that indicates whether :math:`L` is lower triangular or upper triangular. Default: ``False``. Keyword args: out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`. Example:: >>> A = torch.randn(3, 3) >>> A = A @ A.T + torch.eye(3) * 1e-3 # Creates a symmetric positive-definite matrix >>> L = torch.linalg.cholesky(A) # Extract Cholesky decomposition >>> B = torch.randn(3, 2) >>> torch.cholesky_solve(B, L) tensor([[ -8.1625, 19.6097], [ -5.8398, 14.2387], [ -4.3771, 10.4173]]) >>> A.inverse() @ B tensor([[ -8.1626, 19.6097], [ -5.8398, 14.2387], [ -4.3771, 10.4173]]) >>> A = torch.randn(3, 2, 2, dtype=torch.complex64) >>> A = A @ A.mH + torch.eye(2) * 1e-3 # Batch of Hermitian positive-definite matrices >>> L = torch.linalg.cholesky(A) >>> B = torch.randn(2, 1, dtype=torch.complex64) >>> X = torch.cholesky_solve(B, L) >>> torch.dist(X, A.inverse() @ B) tensor(1.6881e-5) """ ... def choose_qparams_optimized(input: Tensor, numel: _int, n_bins: _int, ratio: _float, bit_width: _int) -> Tuple[Tensor, Tensor]: ... def chunk(input: Tensor, chunks: _int, dim: _int = 0) -> Tuple[Tensor, ...]: r""" chunk(input, chunks, dim=0) -> List of Tensors Attempts to split a tensor into the specified number of chunks. Each chunk is a view of the input tensor. .. note:: This function may return fewer than the specified number of chunks! .. seealso:: :func:`torch.tensor_split` a function that always returns exactly the specified number of chunks If the tensor size along the given dimension :attr:`dim` is divisible by :attr:`chunks`, all returned chunks will be the same size. If the tensor size along the given dimension :attr:`dim` is not divisible by :attr:`chunks`, all returned chunks will be the same size, except the last one. If such division is not possible, this function may return fewer than the specified number of chunks. Arguments: input (Tensor): the tensor to split chunks (int): number of chunks to return dim (int): dimension along which to split the tensor Example: >>> torch.arange(11).chunk(6) (tensor([0, 1]), tensor([2, 3]), tensor([4, 5]), tensor([6, 7]), tensor([8, 9]), tensor([10])) >>> torch.arange(12).chunk(6) (tensor([0, 1]), tensor([2, 3]), tensor([4, 5]), tensor([6, 7]), tensor([8, 9]), tensor([10, 11])) >>> torch.arange(13).chunk(6) (tensor([0, 1, 2]), tensor([3, 4, 5]), tensor([6, 7, 8]), tensor([ 9, 10, 11]), tensor([12])) """ ... @overload def clamp(input: Tensor, min: Optional[Tensor] = None, max: Optional[Tensor] = None, *, out: Optional[Tensor] = None) -> Tensor: r""" clamp(input, min=None, max=None, *, out=None) -> Tensor Clamps all elements in :attr:`input` into the range `[` :attr:`min`, :attr:`max` `]`. Letting min_value and max_value be :attr:`min` and :attr:`max`, respectively, this returns: .. math:: y_i = \min(\max(x_i, \text{min\_value}_i), \text{max\_value}_i) If :attr:`min` is ``None``, there is no lower bound. Or, if :attr:`max` is ``None`` there is no upper bound. .. note:: If :attr:`min` is greater than :attr:`max` :func:`torch.clamp(..., min, max) ` sets all elements in :attr:`input` to the value of :attr:`max`. Args: input (Tensor): the input tensor. min (Number or Tensor, optional): lower-bound of the range to be clamped to max (Number or Tensor, optional): upper-bound of the range to be clamped to Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.randn(4) >>> a tensor([-1.7120, 0.1734, -0.0478, -0.0922]) >>> torch.clamp(a, min=-0.5, max=0.5) tensor([-0.5000, 0.1734, -0.0478, -0.0922]) >>> min = torch.linspace(-1, 1, steps=4) >>> torch.clamp(a, min=min) tensor([-1.0000, 0.1734, 0.3333, 1.0000]) """ ... @overload def clamp(input: Tensor, min: Optional[Union[Number, _complex]] = None, max: Optional[Union[Number, _complex]] = None, *, out: Optional[Tensor] = None) -> Tensor: r""" clamp(input, min=None, max=None, *, out=None) -> Tensor Clamps all elements in :attr:`input` into the range `[` :attr:`min`, :attr:`max` `]`. Letting min_value and max_value be :attr:`min` and :attr:`max`, respectively, this returns: .. math:: y_i = \min(\max(x_i, \text{min\_value}_i), \text{max\_value}_i) If :attr:`min` is ``None``, there is no lower bound. Or, if :attr:`max` is ``None`` there is no upper bound. .. note:: If :attr:`min` is greater than :attr:`max` :func:`torch.clamp(..., min, max) ` sets all elements in :attr:`input` to the value of :attr:`max`. Args: input (Tensor): the input tensor. min (Number or Tensor, optional): lower-bound of the range to be clamped to max (Number or Tensor, optional): upper-bound of the range to be clamped to Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.randn(4) >>> a tensor([-1.7120, 0.1734, -0.0478, -0.0922]) >>> torch.clamp(a, min=-0.5, max=0.5) tensor([-0.5000, 0.1734, -0.0478, -0.0922]) >>> min = torch.linspace(-1, 1, steps=4) >>> torch.clamp(a, min=min) tensor([-1.0000, 0.1734, 0.3333, 1.0000]) """ ... @overload def clamp_(input: Tensor, min: Optional[Tensor] = None, max: Optional[Tensor] = None) -> Tensor: ... @overload def clamp_(input: Tensor, min: Optional[Union[Number, _complex]] = None, max: Optional[Union[Number, _complex]] = None) -> Tensor: ... @overload def clamp_max(input: Tensor, max: Tensor, *, out: Optional[Tensor] = None) -> Tensor: ... @overload def clamp_max(input: Tensor, max: Union[Number, _complex], *, out: Optional[Tensor] = None) -> Tensor: ... @overload def clamp_max_(input: Tensor, max: Tensor) -> Tensor: ... @overload def clamp_max_(input: Tensor, max: Union[Number, _complex]) -> Tensor: ... @overload def clamp_min(input: Tensor, min: Tensor, *, out: Optional[Tensor] = None) -> Tensor: ... @overload def clamp_min(input: Tensor, min: Union[Number, _complex], *, out: Optional[Tensor] = None) -> Tensor: ... @overload def clamp_min_(input: Tensor, min: Tensor) -> Tensor: ... @overload def clamp_min_(input: Tensor, min: Union[Number, _complex]) -> Tensor: ... @overload def clip(input: Tensor, min: Optional[Tensor] = None, max: Optional[Tensor] = None, *, out: Optional[Tensor] = None) -> Tensor: r""" clip(input, min=None, max=None, *, out=None) -> Tensor Alias for :func:`torch.clamp`. """ ... @overload def clip(input: Tensor, min: Optional[Union[Number, _complex]] = None, max: Optional[Union[Number, _complex]] = None, *, out: Optional[Tensor] = None) -> Tensor: r""" clip(input, min=None, max=None, *, out=None) -> Tensor Alias for :func:`torch.clamp`. """ ... @overload def clip_(input: Tensor, min: Optional[Tensor] = None, max: Optional[Tensor] = None) -> Tensor: ... @overload def clip_(input: Tensor, min: Optional[Union[Number, _complex]] = None, max: Optional[Union[Number, _complex]] = None) -> Tensor: ... def clone(input: Tensor, *, memory_format: Optional[memory_format] = None) -> Tensor: r""" clone(input, *, memory_format=torch.preserve_format) -> Tensor Returns a copy of :attr:`input`. .. note:: This function is differentiable, so gradients will flow back from the result of this operation to :attr:`input`. To create a tensor without an autograd relationship to :attr:`input` see :meth:`~Tensor.detach`. Args: input (Tensor): the input tensor. Keyword args: memory_format (:class:`torch.memory_format`, optional): the desired memory format of returned tensor. Default: ``torch.preserve_format``. """ ... def col_indices_copy(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" Performs the same operation as :func:`torch.col_indices`, but all output tensors are freshly created instead of aliasing the input. """ ... def column_stack(tensors: Union[Tuple[Tensor, ...], List[Tensor]], *, out: Optional[Tensor] = None) -> Tensor: r""" column_stack(tensors, *, out=None) -> Tensor Creates a new tensor by horizontally stacking the tensors in :attr:`tensors`. Equivalent to ``torch.hstack(tensors)``, except each zero or one dimensional tensor ``t`` in :attr:`tensors` is first reshaped into a ``(t.numel(), 1)`` column before being stacked horizontally. Args: tensors (sequence of Tensors): sequence of tensors to concatenate Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.tensor([1, 2, 3]) >>> b = torch.tensor([4, 5, 6]) >>> torch.column_stack((a, b)) tensor([[1, 4], [2, 5], [3, 6]]) >>> a = torch.arange(5) >>> b = torch.arange(10).reshape(5, 2) >>> torch.column_stack((a, b, b)) tensor([[0, 0, 1, 0, 1], [1, 2, 3, 2, 3], [2, 4, 5, 4, 5], [3, 6, 7, 6, 7], [4, 8, 9, 8, 9]]) """ ... def combinations(input: Tensor, r: _int = 2, with_replacement: _bool = False) -> Tensor: r""" combinations(input, r=2, with_replacement=False) -> seq Compute combinations of length :math:`r` of the given tensor. The behavior is similar to python's `itertools.combinations` when `with_replacement` is set to `False`, and `itertools.combinations_with_replacement` when `with_replacement` is set to `True`. Arguments: input (Tensor): 1D vector. r (int, optional): number of elements to combine with_replacement (bool, optional): whether to allow duplication in combination Returns: Tensor: A tensor equivalent to converting all the input tensors into lists, do `itertools.combinations` or `itertools.combinations_with_replacement` on these lists, and finally convert the resulting list into tensor. Example:: >>> a = [1, 2, 3] >>> list(itertools.combinations(a, r=2)) [(1, 2), (1, 3), (2, 3)] >>> list(itertools.combinations(a, r=3)) [(1, 2, 3)] >>> list(itertools.combinations_with_replacement(a, r=2)) [(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)] >>> tensor_a = torch.tensor(a) >>> torch.combinations(tensor_a) tensor([[1, 2], [1, 3], [2, 3]]) >>> torch.combinations(tensor_a, r=3) tensor([[1, 2, 3]]) >>> torch.combinations(tensor_a, with_replacement=True) tensor([[1, 1], [1, 2], [1, 3], [2, 2], [2, 3], [3, 3]]) """ ... def complex(real: Tensor, imag: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" complex(real, imag, *, out=None) -> Tensor Constructs a complex tensor with its real part equal to :attr:`real` and its imaginary part equal to :attr:`imag`. Args: real (Tensor): The real part of the complex tensor. Must be half, float or double. imag (Tensor): The imaginary part of the complex tensor. Must be same dtype as :attr:`real`. Keyword args: out (Tensor): If the inputs are ``torch.float32``, must be ``torch.complex64``. If the inputs are ``torch.float64``, must be ``torch.complex128``. Example:: >>> real = torch.tensor([1, 2], dtype=torch.float32) >>> imag = torch.tensor([3, 4], dtype=torch.float32) >>> z = torch.complex(real, imag) >>> z tensor([(1.+3.j), (2.+4.j)]) >>> z.dtype torch.complex64 """ ... @overload def concat(tensors: Union[Tuple[Tensor, ...], List[Tensor]], dim: _int = 0, *, out: Optional[Tensor] = None) -> Tensor: r""" concat(tensors, dim=0, *, out=None) -> Tensor Alias of :func:`torch.cat`. """ ... @overload def concat(tensors: Union[Tuple[Tensor, ...], List[Tensor]], dim: Union[str, ellipsis, None], *, out: Optional[Tensor] = None) -> Tensor: r""" concat(tensors, dim=0, *, out=None) -> Tensor Alias of :func:`torch.cat`. """ ... @overload def concatenate(tensors: Union[Tuple[Tensor, ...], List[Tensor]], dim: _int = 0, *, out: Optional[Tensor] = None) -> Tensor: r""" concatenate(tensors, axis=0, out=None) -> Tensor Alias of :func:`torch.cat`. """ ... @overload def concatenate(tensors: Union[Tuple[Tensor, ...], List[Tensor]], dim: Union[str, ellipsis, None], *, out: Optional[Tensor] = None) -> Tensor: r""" concatenate(tensors, axis=0, out=None) -> Tensor Alias of :func:`torch.cat`. """ ... def conj(input: Tensor) -> Tensor: r""" conj(input) -> Tensor Returns a view of :attr:`input` with a flipped conjugate bit. If :attr:`input` has a non-complex dtype, this function just returns :attr:`input`. .. note:: :func:`torch.conj` performs a lazy conjugation, but the actual conjugated tensor can be materialized at any time using :func:`torch.resolve_conj`. .. warning:: In the future, :func:`torch.conj` may return a non-writeable view for an :attr:`input` of non-complex dtype. It's recommended that programs not modify the tensor returned by :func:`torch.conj_physical` when :attr:`input` is of non-complex dtype to be compatible with this change. Args: input (Tensor): the input tensor. Example:: >>> x = torch.tensor([-1 + 1j, -2 + 2j, 3 - 3j]) >>> x.is_conj() False >>> y = torch.conj(x) >>> y.is_conj() True """ ... def conj_physical(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" conj_physical(input, *, out=None) -> Tensor Computes the element-wise conjugate of the given :attr:`input` tensor. If :attr:`input` has a non-complex dtype, this function just returns :attr:`input`. .. note:: This performs the conjugate operation regardless of the fact conjugate bit is set or not. .. warning:: In the future, :func:`torch.conj_physical` may return a non-writeable view for an :attr:`input` of non-complex dtype. It's recommended that programs not modify the tensor returned by :func:`torch.conj_physical` when :attr:`input` is of non-complex dtype to be compatible with this change. .. math:: \text{out}_{i} = conj(\text{input}_{i}) Args: input (Tensor): the input tensor. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> torch.conj_physical(torch.tensor([-1 + 1j, -2 + 2j, 3 - 3j])) tensor([-1 - 1j, -2 - 2j, 3 + 3j]) """ ... def conj_physical_(input: Tensor) -> Tensor: ... def constant_pad_nd(input: Tensor, pad: Sequence[Union[_int, SymInt]], value: Union[Number, _complex] = 0) -> Tensor: ... @overload def conv1d(input: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]] = 1, padding: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]] = 0, dilation: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]] = 1, groups: Union[_int, SymInt] = 1) -> Tensor: ... @overload def conv1d(input: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]] = 1, padding: str = "valid", dilation: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]] = 1, groups: Union[_int, SymInt] = 1) -> Tensor: ... @overload def conv2d(input: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]] = 1, padding: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]] = 0, dilation: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]] = 1, groups: Union[_int, SymInt] = 1) -> Tensor: ... @overload def conv2d(input: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]] = 1, padding: str = "valid", dilation: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]] = 1, groups: Union[_int, SymInt] = 1) -> Tensor: ... @overload def conv3d(input: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]] = 1, padding: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]] = 0, dilation: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]] = 1, groups: Union[_int, SymInt] = 1) -> Tensor: ... @overload def conv3d(input: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]] = 1, padding: str = "valid", dilation: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]] = 1, groups: Union[_int, SymInt] = 1) -> Tensor: ... def conv_tbc(input: Tensor, weight: Tensor, bias: Tensor, pad: _int = 0) -> Tensor: ... def conv_transpose1d(input: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]] = 1, padding: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]] = 0, output_padding: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]] = 0, groups: Union[_int, SymInt] = 1, dilation: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]] = 1) -> Tensor: ... def conv_transpose2d(input: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]] = 1, padding: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]] = 0, output_padding: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]] = 0, groups: Union[_int, SymInt] = 1, dilation: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]] = 1) -> Tensor: ... def conv_transpose3d(input: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]] = 1, padding: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]] = 0, output_padding: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]] = 0, groups: Union[_int, SymInt] = 1, dilation: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]] = 1) -> Tensor: ... def convolution(input: Tensor, weight: Tensor, bias: Optional[Tensor], stride: Sequence[Union[_int, SymInt]], padding: Sequence[Union[_int, SymInt]], dilation: Sequence[Union[_int, SymInt]], transposed: _bool, output_padding: Sequence[Union[_int, SymInt]], groups: Union[_int, SymInt]) -> Tensor: ... @overload def copysign(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" copysign(input, other, *, out=None) -> Tensor Create a new floating-point tensor with the magnitude of :attr:`input` and the sign of :attr:`other`, elementwise. .. math:: \text{out}_{i} = \begin{cases} -|\text{input}_{i}| & \text{if } \text{other}_{i} \leq -0.0 \\ |\text{input}_{i}| & \text{if } \text{other}_{i} \geq 0.0 \\ \end{cases} Supports :ref:`broadcasting to a common shape `, and integer and float inputs. Args: input (Tensor): magnitudes. other (Tensor or Number): contains value(s) whose signbit(s) are applied to the magnitudes in :attr:`input`. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.randn(5) >>> a tensor([-1.2557, -0.0026, -0.5387, 0.4740, -0.9244]) >>> torch.copysign(a, 1) tensor([1.2557, 0.0026, 0.5387, 0.4740, 0.9244]) >>> a = torch.randn(4, 4) >>> a tensor([[ 0.7079, 0.2778, -1.0249, 0.5719], [-0.0059, -0.2600, -0.4475, -1.3948], [ 0.3667, -0.9567, -2.5757, -0.1751], [ 0.2046, -0.0742, 0.2998, -0.1054]]) >>> b = torch.randn(4) tensor([ 0.2373, 0.3120, 0.3190, -1.1128]) >>> torch.copysign(a, b) tensor([[ 0.7079, 0.2778, 1.0249, -0.5719], [ 0.0059, 0.2600, 0.4475, -1.3948], [ 0.3667, 0.9567, 2.5757, -0.1751], [ 0.2046, 0.0742, 0.2998, -0.1054]]) >>> a = torch.tensor([1.]) >>> b = torch.tensor([-0.]) >>> torch.copysign(a, b) tensor([-1.]) .. note:: copysign handles signed zeros. If the other argument has a negative zero (-0), the corresponding output value will be negative. """ ... @overload def copysign(input: Tensor, other: Union[Number, _complex], *, out: Optional[Tensor] = None) -> Tensor: r""" copysign(input, other, *, out=None) -> Tensor Create a new floating-point tensor with the magnitude of :attr:`input` and the sign of :attr:`other`, elementwise. .. math:: \text{out}_{i} = \begin{cases} -|\text{input}_{i}| & \text{if } \text{other}_{i} \leq -0.0 \\ |\text{input}_{i}| & \text{if } \text{other}_{i} \geq 0.0 \\ \end{cases} Supports :ref:`broadcasting to a common shape `, and integer and float inputs. Args: input (Tensor): magnitudes. other (Tensor or Number): contains value(s) whose signbit(s) are applied to the magnitudes in :attr:`input`. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.randn(5) >>> a tensor([-1.2557, -0.0026, -0.5387, 0.4740, -0.9244]) >>> torch.copysign(a, 1) tensor([1.2557, 0.0026, 0.5387, 0.4740, 0.9244]) >>> a = torch.randn(4, 4) >>> a tensor([[ 0.7079, 0.2778, -1.0249, 0.5719], [-0.0059, -0.2600, -0.4475, -1.3948], [ 0.3667, -0.9567, -2.5757, -0.1751], [ 0.2046, -0.0742, 0.2998, -0.1054]]) >>> b = torch.randn(4) tensor([ 0.2373, 0.3120, 0.3190, -1.1128]) >>> torch.copysign(a, b) tensor([[ 0.7079, 0.2778, 1.0249, -0.5719], [ 0.0059, 0.2600, 0.4475, -1.3948], [ 0.3667, 0.9567, 2.5757, -0.1751], [ 0.2046, 0.0742, 0.2998, -0.1054]]) >>> a = torch.tensor([1.]) >>> b = torch.tensor([-0.]) >>> torch.copysign(a, b) tensor([-1.]) .. note:: copysign handles signed zeros. If the other argument has a negative zero (-0), the corresponding output value will be negative. """ ... def corrcoef(input: Tensor) -> Tensor: r""" corrcoef(input) -> Tensor Estimates the Pearson product-moment correlation coefficient matrix of the variables given by the :attr:`input` matrix, where rows are the variables and columns are the observations. .. note:: The correlation coefficient matrix R is computed using the covariance matrix C as given by :math:`R_{ij} = \frac{ C_{ij} } { \sqrt{ C_{ii} * C_{jj} } }` .. note:: Due to floating point rounding, the resulting array may not be Hermitian and its diagonal elements may not be 1. The real and imaginary values are clipped to the interval [-1, 1] in an attempt to improve this situation. Args: input (Tensor): A 2D matrix containing multiple variables and observations, or a Scalar or 1D vector representing a single variable. Returns: (Tensor) The correlation coefficient matrix of the variables. .. seealso:: :func:`torch.cov` covariance matrix. Example:: >>> x = torch.tensor([[0, 1, 2], [2, 1, 0]]) >>> torch.corrcoef(x) tensor([[ 1., -1.], [-1., 1.]]) >>> x = torch.randn(2, 4) >>> x tensor([[-0.2678, -0.0908, -0.3766, 0.2780], [-0.5812, 0.1535, 0.2387, 0.2350]]) >>> torch.corrcoef(x) tensor([[1.0000, 0.3582], [0.3582, 1.0000]]) >>> torch.corrcoef(x[0]) tensor(1.) """ ... def cos(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" cos(input, *, out=None) -> Tensor Returns a new tensor with the cosine of the elements of :attr:`input`. .. math:: \text{out}_{i} = \cos(\text{input}_{i}) Args: input (Tensor): the input tensor. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.randn(4) >>> a tensor([ 1.4309, 1.2706, -0.8562, 0.9796]) >>> torch.cos(a) tensor([ 0.1395, 0.2957, 0.6553, 0.5574]) """ ... def cos_(input: Tensor) -> Tensor: ... def cosh(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" cosh(input, *, out=None) -> Tensor Returns a new tensor with the hyperbolic cosine of the elements of :attr:`input`. .. math:: \text{out}_{i} = \cosh(\text{input}_{i}) Args: input (Tensor): the input tensor. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.randn(4) >>> a tensor([ 0.1632, 1.1835, -0.6979, -0.7325]) >>> torch.cosh(a) tensor([ 1.0133, 1.7860, 1.2536, 1.2805]) .. note:: When :attr:`input` is on the CPU, the implementation of torch.cosh may use the Sleef library, which rounds very large results to infinity or negative infinity. See `here `_ for details. """ ... def cosh_(input: Tensor) -> Tensor: ... def cosine_embedding_loss(input1: Tensor, input2: Tensor, target: Tensor, margin: _float = 0.0, reduction: _int = 1) -> Tensor: ... def cosine_similarity(x1: Tensor, x2: Tensor, dim: _int = 1, eps: _float = 1e-08) -> Tensor: ... @overload def count_nonzero(input: Tensor, dim: Optional[_int] = None) -> Tensor: r""" count_nonzero(input, dim=None) -> Tensor Counts the number of non-zero values in the tensor :attr:`input` along the given :attr:`dim`. If no dim is specified then all non-zeros in the tensor are counted. Args: input (Tensor): the input tensor. dim (int or tuple of ints, optional): Dim or tuple of dims along which to count non-zeros. Example:: >>> x = torch.zeros(3,3) >>> x[torch.randn(3,3) > 0.5] = 1 >>> x tensor([[0., 1., 1.], [0., 0., 0.], [0., 0., 1.]]) >>> torch.count_nonzero(x) tensor(3) >>> torch.count_nonzero(x, dim=0) tensor([0, 1, 2]) """ ... @overload def count_nonzero(input: Tensor, dim: _size) -> Tensor: r""" count_nonzero(input, dim=None) -> Tensor Counts the number of non-zero values in the tensor :attr:`input` along the given :attr:`dim`. If no dim is specified then all non-zeros in the tensor are counted. Args: input (Tensor): the input tensor. dim (int or tuple of ints, optional): Dim or tuple of dims along which to count non-zeros. Example:: >>> x = torch.zeros(3,3) >>> x[torch.randn(3,3) > 0.5] = 1 >>> x tensor([[0., 1., 1.], [0., 0., 0.], [0., 0., 1.]]) >>> torch.count_nonzero(x) tensor(3) >>> torch.count_nonzero(x, dim=0) tensor([0, 1, 2]) """ ... def cov(input: Tensor, *, correction: _int = 1, fweights: Optional[Tensor] = None, aweights: Optional[Tensor] = None) -> Tensor: r""" cov(input, *, correction=1, fweights=None, aweights=None) -> Tensor Estimates the covariance matrix of the variables given by the :attr:`input` matrix, where rows are the variables and columns are the observations. A covariance matrix is a square matrix giving the covariance of each pair of variables. The diagonal contains the variance of each variable (covariance of a variable with itself). By definition, if :attr:`input` represents a single variable (Scalar or 1D) then its variance is returned. The sample covariance of the variables :math:`x` and :math:`y` is given by: .. math:: \text{cov}(x,y) = \frac{\sum^{N}_{i = 1}(x_{i} - \bar{x})(y_{i} - \bar{y})}{\max(0,~N~-~\delta N)} where :math:`\bar{x}` and :math:`\bar{y}` are the simple means of the :math:`x` and :math:`y` respectively, and :math:`\delta N` is the :attr:`correction`. If :attr:`fweights` and/or :attr:`aweights` are provided, the weighted covariance is calculated, which is given by: .. math:: \text{cov}_w(x,y) = \frac{\sum^{N}_{i = 1}w_i(x_{i} - \mu_x^*)(y_{i} - \mu_y^*)} {\max(0,~\sum^{N}_{i = 1}w_i~-~\frac{\sum^{N}_{i = 1}w_ia_i}{\sum^{N}_{i = 1}w_i}~\delta N)} where :math:`w` denotes :attr:`fweights` or :attr:`aweights` (``f`` and ``a`` for brevity) based on whichever is provided, or :math:`w = f \times a` if both are provided, and :math:`\mu_x^* = \frac{\sum^{N}_{i = 1}w_ix_{i} }{\sum^{N}_{i = 1}w_i}` is the weighted mean of the variable. If not provided, ``f`` and/or ``a`` can be seen as a :math:`\mathbb{1}` vector of appropriate size. Args: input (Tensor): A 2D matrix containing multiple variables and observations, or a Scalar or 1D vector representing a single variable. Keyword Args: correction (int, optional): difference between the sample size and sample degrees of freedom. Defaults to Bessel's correction, ``correction = 1`` which returns the unbiased estimate, even if both :attr:`fweights` and :attr:`aweights` are specified. ``correction = 0`` will return the simple average. Defaults to ``1``. fweights (tensor, optional): A Scalar or 1D tensor of observation vector frequencies representing the number of times each observation should be repeated. Its numel must equal the number of columns of :attr:`input`. Must have integral dtype. Ignored if ``None``. Defaults to ``None``. aweights (tensor, optional): A Scalar or 1D array of observation vector weights. These relative weights are typically large for observations considered “important” and smaller for observations considered less “important”. Its numel must equal the number of columns of :attr:`input`. Must have floating point dtype. Ignored if ``None``. Defaults to ``None``. Returns: (Tensor) The covariance matrix of the variables. .. seealso:: :func:`torch.corrcoef` normalized covariance matrix. Example:: >>> x = torch.tensor([[0, 2], [1, 1], [2, 0]]).T >>> x tensor([[0, 1, 2], [2, 1, 0]]) >>> torch.cov(x) tensor([[ 1., -1.], [-1., 1.]]) >>> torch.cov(x, correction=0) tensor([[ 0.6667, -0.6667], [-0.6667, 0.6667]]) >>> fw = torch.randint(1, 10, (3,)) >>> fw tensor([1, 6, 9]) >>> aw = torch.rand(3) >>> aw tensor([0.4282, 0.0255, 0.4144]) >>> torch.cov(x, fweights=fw, aweights=aw) tensor([[ 0.4169, -0.4169], [-0.4169, 0.4169]]) """ ... def cross(input: Tensor, other: Tensor, dim: Optional[_int] = None, *, out: Optional[Tensor] = None) -> Tensor: r""" cross(input, other, dim=None, *, out=None) -> Tensor Returns the cross product of vectors in dimension :attr:`dim` of :attr:`input` and :attr:`other`. Supports input of float, double, cfloat and cdouble dtypes. Also supports batches of vectors, for which it computes the product along the dimension :attr:`dim`. In this case, the output has the same batch dimensions as the inputs. .. warning:: If :attr:`dim` is not given, it defaults to the first dimension found with the size 3. Note that this might be unexpected. This behavior is deprecated and will be changed to match that of :func:`torch.linalg.cross` in a future release. .. seealso:: :func:`torch.linalg.cross` which has dim=-1 as default. Args: input (Tensor): the input tensor. other (Tensor): the second input tensor dim (int, optional): the dimension to take the cross-product in. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.randn(4, 3) >>> a tensor([[-0.3956, 1.1455, 1.6895], [-0.5849, 1.3672, 0.3599], [-1.1626, 0.7180, -0.0521], [-0.1339, 0.9902, -2.0225]]) >>> b = torch.randn(4, 3) >>> b tensor([[-0.0257, -1.4725, -1.2251], [-1.1479, -0.7005, -1.9757], [-1.3904, 0.3726, -1.1836], [-0.9688, -0.7153, 0.2159]]) >>> torch.cross(a, b, dim=1) tensor([[ 1.0844, -0.5281, 0.6120], [-2.4490, -1.5687, 1.9792], [-0.8304, -1.3037, 0.5650], [-1.2329, 1.9883, 1.0551]]) >>> torch.cross(a, b) tensor([[ 1.0844, -0.5281, 0.6120], [-2.4490, -1.5687, 1.9792], [-0.8304, -1.3037, 0.5650], [-1.2329, 1.9883, 1.0551]]) """ ... def crow_indices_copy(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" Performs the same operation as :func:`torch.crow_indices`, but all output tensors are freshly created instead of aliasing the input. """ ... @overload def ctc_loss(log_probs: Tensor, targets: Tensor, input_lengths: _size, target_lengths: _size, blank: _int = 0, reduction: _int = 1, zero_infinity: _bool = False) -> Tensor: ... @overload def ctc_loss(log_probs: Tensor, targets: Tensor, input_lengths: Tensor, target_lengths: Tensor, blank: _int = 0, reduction: _int = 1, zero_infinity: _bool = False) -> Tensor: ... def cudnn_affine_grid_generator(theta: Tensor, N: _int, C: _int, H: _int, W: _int) -> Tensor: ... def cudnn_batch_norm(input: Tensor, weight: Tensor, bias: Optional[Tensor], running_mean: Optional[Tensor], running_var: Optional[Tensor], training: _bool, exponential_average_factor: _float, epsilon: _float) -> Tuple[Tensor, Tensor, Tensor, Tensor]: ... def cudnn_convolution(input: Tensor, weight: Tensor, padding: Sequence[Union[_int, SymInt]], stride: Sequence[Union[_int, SymInt]], dilation: Sequence[Union[_int, SymInt]], groups: Union[_int, SymInt], benchmark: _bool, deterministic: _bool, allow_tf32: _bool, *, out: Optional[Tensor] = None) -> Tensor: ... def cudnn_convolution_add_relu(input: Tensor, weight: Tensor, z: Tensor, alpha: Optional[Union[Number, _complex]], bias: Optional[Tensor], stride: Sequence[Union[_int, SymInt]], padding: Sequence[Union[_int, SymInt]], dilation: Sequence[Union[_int, SymInt]], groups: Union[_int, SymInt]) -> Tensor: ... def cudnn_convolution_relu(input: Tensor, weight: Tensor, bias: Optional[Tensor], stride: Sequence[Union[_int, SymInt]], padding: Sequence[Union[_int, SymInt]], dilation: Sequence[Union[_int, SymInt]], groups: Union[_int, SymInt]) -> Tensor: ... def cudnn_convolution_transpose(input: Tensor, weight: Tensor, padding: Sequence[Union[_int, SymInt]], output_padding: Sequence[Union[_int, SymInt]], stride: Sequence[Union[_int, SymInt]], dilation: Sequence[Union[_int, SymInt]], groups: Union[_int, SymInt], benchmark: _bool, deterministic: _bool, allow_tf32: _bool) -> Tensor: ... def cudnn_grid_sampler(input: Tensor, grid: Tensor) -> Tensor: ... def cudnn_is_acceptable(input: Tensor) -> _bool: ... @overload def cummax(input: Tensor, dim: _int, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.cummax: r""" cummax(input, dim, *, out=None) -> (Tensor, LongTensor) Returns a namedtuple ``(values, indices)`` where ``values`` is the cumulative maximum of elements of :attr:`input` in the dimension :attr:`dim`. And ``indices`` is the index location of each maximum value found in the dimension :attr:`dim`. .. math:: y_i = max(x_1, x_2, x_3, \dots, x_i) Args: input (Tensor): the input tensor. dim (int): the dimension to do the operation over Keyword args: out (tuple, optional): the result tuple of two output tensors (values, indices) Example:: >>> a = torch.randn(10) >>> a tensor([-0.3449, -1.5447, 0.0685, -1.5104, -1.1706, 0.2259, 1.4696, -1.3284, 1.9946, -0.8209]) >>> torch.cummax(a, dim=0) torch.return_types.cummax( values=tensor([-0.3449, -0.3449, 0.0685, 0.0685, 0.0685, 0.2259, 1.4696, 1.4696, 1.9946, 1.9946]), indices=tensor([0, 0, 2, 2, 2, 5, 6, 6, 8, 8])) """ ... @overload def cummax(input: Tensor, dim: Union[str, ellipsis, None], *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.cummax: r""" cummax(input, dim, *, out=None) -> (Tensor, LongTensor) Returns a namedtuple ``(values, indices)`` where ``values`` is the cumulative maximum of elements of :attr:`input` in the dimension :attr:`dim`. And ``indices`` is the index location of each maximum value found in the dimension :attr:`dim`. .. math:: y_i = max(x_1, x_2, x_3, \dots, x_i) Args: input (Tensor): the input tensor. dim (int): the dimension to do the operation over Keyword args: out (tuple, optional): the result tuple of two output tensors (values, indices) Example:: >>> a = torch.randn(10) >>> a tensor([-0.3449, -1.5447, 0.0685, -1.5104, -1.1706, 0.2259, 1.4696, -1.3284, 1.9946, -0.8209]) >>> torch.cummax(a, dim=0) torch.return_types.cummax( values=tensor([-0.3449, -0.3449, 0.0685, 0.0685, 0.0685, 0.2259, 1.4696, 1.4696, 1.9946, 1.9946]), indices=tensor([0, 0, 2, 2, 2, 5, 6, 6, 8, 8])) """ ... @overload def cummin(input: Tensor, dim: _int, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.cummin: r""" cummin(input, dim, *, out=None) -> (Tensor, LongTensor) Returns a namedtuple ``(values, indices)`` where ``values`` is the cumulative minimum of elements of :attr:`input` in the dimension :attr:`dim`. And ``indices`` is the index location of each maximum value found in the dimension :attr:`dim`. .. math:: y_i = min(x_1, x_2, x_3, \dots, x_i) Args: input (Tensor): the input tensor. dim (int): the dimension to do the operation over Keyword args: out (tuple, optional): the result tuple of two output tensors (values, indices) Example:: >>> a = torch.randn(10) >>> a tensor([-0.2284, -0.6628, 0.0975, 0.2680, -1.3298, -0.4220, -0.3885, 1.1762, 0.9165, 1.6684]) >>> torch.cummin(a, dim=0) torch.return_types.cummin( values=tensor([-0.2284, -0.6628, -0.6628, -0.6628, -1.3298, -1.3298, -1.3298, -1.3298, -1.3298, -1.3298]), indices=tensor([0, 1, 1, 1, 4, 4, 4, 4, 4, 4])) """ ... @overload def cummin(input: Tensor, dim: Union[str, ellipsis, None], *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.cummin: r""" cummin(input, dim, *, out=None) -> (Tensor, LongTensor) Returns a namedtuple ``(values, indices)`` where ``values`` is the cumulative minimum of elements of :attr:`input` in the dimension :attr:`dim`. And ``indices`` is the index location of each maximum value found in the dimension :attr:`dim`. .. math:: y_i = min(x_1, x_2, x_3, \dots, x_i) Args: input (Tensor): the input tensor. dim (int): the dimension to do the operation over Keyword args: out (tuple, optional): the result tuple of two output tensors (values, indices) Example:: >>> a = torch.randn(10) >>> a tensor([-0.2284, -0.6628, 0.0975, 0.2680, -1.3298, -0.4220, -0.3885, 1.1762, 0.9165, 1.6684]) >>> torch.cummin(a, dim=0) torch.return_types.cummin( values=tensor([-0.2284, -0.6628, -0.6628, -0.6628, -1.3298, -1.3298, -1.3298, -1.3298, -1.3298, -1.3298]), indices=tensor([0, 1, 1, 1, 4, 4, 4, 4, 4, 4])) """ ... @overload def cumprod(input: Tensor, dim: _int, *, dtype: Optional[_dtype] = None, out: Optional[Tensor] = None) -> Tensor: r""" cumprod(input, dim, *, dtype=None, out=None) -> Tensor Returns the cumulative product of elements of :attr:`input` in the dimension :attr:`dim`. For example, if :attr:`input` is a vector of size N, the result will also be a vector of size N, with elements. .. math:: y_i = x_1 \times x_2\times x_3\times \dots \times x_i Args: input (Tensor): the input tensor. dim (int): the dimension to do the operation over Keyword args: dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. If specified, the input tensor is casted to :attr:`dtype` before the operation is performed. This is useful for preventing data type overflows. Default: None. out (Tensor, optional): the output tensor. Example:: >>> a = torch.randn(10) >>> a tensor([ 0.6001, 0.2069, -0.1919, 0.9792, 0.6727, 1.0062, 0.4126, -0.2129, -0.4206, 0.1968]) >>> torch.cumprod(a, dim=0) tensor([ 0.6001, 0.1241, -0.0238, -0.0233, -0.0157, -0.0158, -0.0065, 0.0014, -0.0006, -0.0001]) >>> a[5] = 0.0 >>> torch.cumprod(a, dim=0) tensor([ 0.6001, 0.1241, -0.0238, -0.0233, -0.0157, -0.0000, -0.0000, 0.0000, -0.0000, -0.0000]) """ ... @overload def cumprod(input: Tensor, dim: Union[str, ellipsis, None], *, dtype: Optional[_dtype] = None, out: Optional[Tensor] = None) -> Tensor: r""" cumprod(input, dim, *, dtype=None, out=None) -> Tensor Returns the cumulative product of elements of :attr:`input` in the dimension :attr:`dim`. For example, if :attr:`input` is a vector of size N, the result will also be a vector of size N, with elements. .. math:: y_i = x_1 \times x_2\times x_3\times \dots \times x_i Args: input (Tensor): the input tensor. dim (int): the dimension to do the operation over Keyword args: dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. If specified, the input tensor is casted to :attr:`dtype` before the operation is performed. This is useful for preventing data type overflows. Default: None. out (Tensor, optional): the output tensor. Example:: >>> a = torch.randn(10) >>> a tensor([ 0.6001, 0.2069, -0.1919, 0.9792, 0.6727, 1.0062, 0.4126, -0.2129, -0.4206, 0.1968]) >>> torch.cumprod(a, dim=0) tensor([ 0.6001, 0.1241, -0.0238, -0.0233, -0.0157, -0.0158, -0.0065, 0.0014, -0.0006, -0.0001]) >>> a[5] = 0.0 >>> torch.cumprod(a, dim=0) tensor([ 0.6001, 0.1241, -0.0238, -0.0233, -0.0157, -0.0000, -0.0000, 0.0000, -0.0000, -0.0000]) """ ... @overload def cumsum(input: Tensor, dim: _int, *, dtype: Optional[_dtype] = None, out: Optional[Tensor] = None) -> Tensor: r""" cumsum(input, dim, *, dtype=None, out=None) -> Tensor Returns the cumulative sum of elements of :attr:`input` in the dimension :attr:`dim`. For example, if :attr:`input` is a vector of size N, the result will also be a vector of size N, with elements. .. math:: y_i = x_1 + x_2 + x_3 + \dots + x_i Args: input (Tensor): the input tensor. dim (int): the dimension to do the operation over Keyword args: dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. If specified, the input tensor is casted to :attr:`dtype` before the operation is performed. This is useful for preventing data type overflows. Default: None. out (Tensor, optional): the output tensor. Example:: >>> a = torch.randint(1, 20, (10,)) >>> a tensor([13, 7, 3, 10, 13, 3, 15, 10, 9, 10]) >>> torch.cumsum(a, dim=0) tensor([13, 20, 23, 33, 46, 49, 64, 74, 83, 93]) """ ... @overload def cumsum(input: Tensor, dim: Union[str, ellipsis, None], *, dtype: Optional[_dtype] = None, out: Optional[Tensor] = None) -> Tensor: r""" cumsum(input, dim, *, dtype=None, out=None) -> Tensor Returns the cumulative sum of elements of :attr:`input` in the dimension :attr:`dim`. For example, if :attr:`input` is a vector of size N, the result will also be a vector of size N, with elements. .. math:: y_i = x_1 + x_2 + x_3 + \dots + x_i Args: input (Tensor): the input tensor. dim (int): the dimension to do the operation over Keyword args: dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. If specified, the input tensor is casted to :attr:`dtype` before the operation is performed. This is useful for preventing data type overflows. Default: None. out (Tensor, optional): the output tensor. Example:: >>> a = torch.randint(1, 20, (10,)) >>> a tensor([13, 7, 3, 10, 13, 3, 15, 10, 9, 10]) >>> torch.cumsum(a, dim=0) tensor([13, 20, 23, 33, 46, 49, 64, 74, 83, 93]) """ ... @overload def cumulative_trapezoid(y: Tensor, x: Tensor, *, dim: _int = -1) -> Tensor: r""" cumulative_trapezoid(y, x=None, *, dx=None, dim=-1) -> Tensor Cumulatively computes the `trapezoidal rule `_ along :attr:`dim`. By default the spacing between elements is assumed to be 1, but :attr:`dx` can be used to specify a different constant spacing, and :attr:`x` can be used to specify arbitrary spacing along :attr:`dim`. For more details, please read :func:`torch.trapezoid`. The difference between :func:`torch.trapezoid` and this function is that, :func:`torch.trapezoid` returns a value for each integration, where as this function returns a cumulative value for every spacing within the integration. This is analogous to how `.sum` returns a value and `.cumsum` returns a cumulative sum. Arguments: y (Tensor): Values to use when computing the trapezoidal rule. x (Tensor): If specified, defines spacing between values as specified above. Keyword arguments: dx (float): constant spacing between values. If neither :attr:`x` or :attr:`dx` are specified then this defaults to 1. Effectively multiplies the result by its value. dim (int): The dimension along which to compute the trapezoidal rule. The last (inner-most) dimension by default. Examples:: >>> # Cumulatively computes the trapezoidal rule in 1D, spacing is implicitly 1. >>> y = torch.tensor([1, 5, 10]) >>> torch.cumulative_trapezoid(y) tensor([3., 10.5]) >>> # Computes the same trapezoidal rule directly up to each element to verify >>> (1 + 5) / 2 3.0 >>> (1 + 10 + 10) / 2 10.5 >>> # Cumulatively computes the trapezoidal rule in 1D with constant spacing of 2 >>> # NOTE: the result is the same as before, but multiplied by 2 >>> torch.cumulative_trapezoid(y, dx=2) tensor([6., 21.]) >>> # Cumulatively computes the trapezoidal rule in 1D with arbitrary spacing >>> x = torch.tensor([1, 3, 6]) >>> torch.cumulative_trapezoid(y, x) tensor([6., 28.5]) >>> # Computes the same trapezoidal rule directly up to each element to verify >>> ((3 - 1) * (1 + 5)) / 2 6.0 >>> ((3 - 1) * (1 + 5) + (6 - 3) * (5 + 10)) / 2 28.5 >>> # Cumulatively computes the trapezoidal rule for each row of a 3x3 matrix >>> y = torch.arange(9).reshape(3, 3) tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) >>> torch.cumulative_trapezoid(y) tensor([[ 0.5, 2.], [ 3.5, 8.], [ 6.5, 14.]]) >>> # Cumulatively computes the trapezoidal rule for each column of the matrix >>> torch.cumulative_trapezoid(y, dim=0) tensor([[ 1.5, 2.5, 3.5], [ 6.0, 8.0, 10.0]]) >>> # Cumulatively computes the trapezoidal rule for each row of a 3x3 ones matrix >>> # with the same arbitrary spacing >>> y = torch.ones(3, 3) >>> x = torch.tensor([1, 3, 6]) >>> torch.cumulative_trapezoid(y, x) tensor([[2., 5.], [2., 5.], [2., 5.]]) >>> # Cumulatively computes the trapezoidal rule for each row of a 3x3 ones matrix >>> # with different arbitrary spacing per row >>> y = torch.ones(3, 3) >>> x = torch.tensor([[1, 2, 3], [1, 3, 5], [1, 4, 7]]) >>> torch.cumulative_trapezoid(y, x) tensor([[1., 2.], [2., 4.], [3., 6.]]) """ ... @overload def cumulative_trapezoid(y: Tensor, *, dx: Union[Number, _complex] = 1, dim: _int = -1) -> Tensor: r""" cumulative_trapezoid(y, x=None, *, dx=None, dim=-1) -> Tensor Cumulatively computes the `trapezoidal rule `_ along :attr:`dim`. By default the spacing between elements is assumed to be 1, but :attr:`dx` can be used to specify a different constant spacing, and :attr:`x` can be used to specify arbitrary spacing along :attr:`dim`. For more details, please read :func:`torch.trapezoid`. The difference between :func:`torch.trapezoid` and this function is that, :func:`torch.trapezoid` returns a value for each integration, where as this function returns a cumulative value for every spacing within the integration. This is analogous to how `.sum` returns a value and `.cumsum` returns a cumulative sum. Arguments: y (Tensor): Values to use when computing the trapezoidal rule. x (Tensor): If specified, defines spacing between values as specified above. Keyword arguments: dx (float): constant spacing between values. If neither :attr:`x` or :attr:`dx` are specified then this defaults to 1. Effectively multiplies the result by its value. dim (int): The dimension along which to compute the trapezoidal rule. The last (inner-most) dimension by default. Examples:: >>> # Cumulatively computes the trapezoidal rule in 1D, spacing is implicitly 1. >>> y = torch.tensor([1, 5, 10]) >>> torch.cumulative_trapezoid(y) tensor([3., 10.5]) >>> # Computes the same trapezoidal rule directly up to each element to verify >>> (1 + 5) / 2 3.0 >>> (1 + 10 + 10) / 2 10.5 >>> # Cumulatively computes the trapezoidal rule in 1D with constant spacing of 2 >>> # NOTE: the result is the same as before, but multiplied by 2 >>> torch.cumulative_trapezoid(y, dx=2) tensor([6., 21.]) >>> # Cumulatively computes the trapezoidal rule in 1D with arbitrary spacing >>> x = torch.tensor([1, 3, 6]) >>> torch.cumulative_trapezoid(y, x) tensor([6., 28.5]) >>> # Computes the same trapezoidal rule directly up to each element to verify >>> ((3 - 1) * (1 + 5)) / 2 6.0 >>> ((3 - 1) * (1 + 5) + (6 - 3) * (5 + 10)) / 2 28.5 >>> # Cumulatively computes the trapezoidal rule for each row of a 3x3 matrix >>> y = torch.arange(9).reshape(3, 3) tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) >>> torch.cumulative_trapezoid(y) tensor([[ 0.5, 2.], [ 3.5, 8.], [ 6.5, 14.]]) >>> # Cumulatively computes the trapezoidal rule for each column of the matrix >>> torch.cumulative_trapezoid(y, dim=0) tensor([[ 1.5, 2.5, 3.5], [ 6.0, 8.0, 10.0]]) >>> # Cumulatively computes the trapezoidal rule for each row of a 3x3 ones matrix >>> # with the same arbitrary spacing >>> y = torch.ones(3, 3) >>> x = torch.tensor([1, 3, 6]) >>> torch.cumulative_trapezoid(y, x) tensor([[2., 5.], [2., 5.], [2., 5.]]) >>> # Cumulatively computes the trapezoidal rule for each row of a 3x3 ones matrix >>> # with different arbitrary spacing per row >>> y = torch.ones(3, 3) >>> x = torch.tensor([[1, 2, 3], [1, 3, 5], [1, 4, 7]]) >>> torch.cumulative_trapezoid(y, x) tensor([[1., 2.], [2., 4.], [3., 6.]]) """ ... def deg2rad(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" deg2rad(input, *, out=None) -> Tensor Returns a new tensor with each of the elements of :attr:`input` converted from angles in degrees to radians. Args: input (Tensor): the input tensor. Keyword arguments: out (Tensor, optional): the output tensor. Example:: >>> a = torch.tensor([[180.0, -180.0], [360.0, -360.0], [90.0, -90.0]]) >>> torch.deg2rad(a) tensor([[ 3.1416, -3.1416], [ 6.2832, -6.2832], [ 1.5708, -1.5708]]) """ ... def deg2rad_(input: Tensor) -> Tensor: ... @overload def dequantize(input: Tensor) -> Tensor: r""" dequantize(tensor) -> Tensor Returns an fp32 Tensor by dequantizing a quantized Tensor Args: tensor (Tensor): A quantized Tensor .. function:: dequantize(tensors) -> sequence of Tensors :noindex: Given a list of quantized Tensors, dequantize them and return a list of fp32 Tensors Args: tensors (sequence of Tensors): A list of quantized Tensors """ ... @overload def dequantize(tensors: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: r""" dequantize(tensor) -> Tensor Returns an fp32 Tensor by dequantizing a quantized Tensor Args: tensor (Tensor): A quantized Tensor .. function:: dequantize(tensors) -> sequence of Tensors :noindex: Given a list of quantized Tensors, dequantize them and return a list of fp32 Tensors Args: tensors (sequence of Tensors): A list of quantized Tensors """ ... def det(input: Tensor) -> Tensor: r""" det(input) -> Tensor Alias for :func:`torch.linalg.det` """ ... def detach(input: Tensor) -> Tensor: ... def detach_(input: Tensor) -> Tensor: ... def detach_copy(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" Performs the same operation as :func:`torch.detach`, but all output tensors are freshly created instead of aliasing the input. """ ... def diag(input: Tensor, diagonal: _int = 0, *, out: Optional[Tensor] = None) -> Tensor: r""" diag(input, diagonal=0, *, out=None) -> Tensor - If :attr:`input` is a vector (1-D tensor), then returns a 2-D square tensor with the elements of :attr:`input` as the diagonal. - If :attr:`input` is a matrix (2-D tensor), then returns a 1-D tensor with the diagonal elements of :attr:`input`. The argument :attr:`diagonal` controls which diagonal to consider: - If :attr:`diagonal` = 0, it is the main diagonal. - If :attr:`diagonal` > 0, it is above the main diagonal. - If :attr:`diagonal` < 0, it is below the main diagonal. Args: input (Tensor): the input tensor. diagonal (int, optional): the diagonal to consider Keyword args: out (Tensor, optional): the output tensor. .. seealso:: :func:`torch.diagonal` always returns the diagonal of its input. :func:`torch.diagflat` always constructs a tensor with diagonal elements specified by the input. Examples: Get the square matrix where the input vector is the diagonal:: >>> a = torch.randn(3) >>> a tensor([ 0.5950,-0.0872, 2.3298]) >>> torch.diag(a) tensor([[ 0.5950, 0.0000, 0.0000], [ 0.0000,-0.0872, 0.0000], [ 0.0000, 0.0000, 2.3298]]) >>> torch.diag(a, 1) tensor([[ 0.0000, 0.5950, 0.0000, 0.0000], [ 0.0000, 0.0000,-0.0872, 0.0000], [ 0.0000, 0.0000, 0.0000, 2.3298], [ 0.0000, 0.0000, 0.0000, 0.0000]]) Get the k-th diagonal of a given matrix:: >>> a = torch.randn(3, 3) >>> a tensor([[-0.4264, 0.0255,-0.1064], [ 0.8795,-0.2429, 0.1374], [ 0.1029,-0.6482,-1.6300]]) >>> torch.diag(a, 0) tensor([-0.4264,-0.2429,-1.6300]) >>> torch.diag(a, 1) tensor([ 0.0255, 0.1374]) """ ... def diag_embed(input: Tensor, offset: _int = 0, dim1: _int = -2, dim2: _int = -1) -> Tensor: r""" diag_embed(input, offset=0, dim1=-2, dim2=-1) -> Tensor Creates a tensor whose diagonals of certain 2D planes (specified by :attr:`dim1` and :attr:`dim2`) are filled by :attr:`input`. To facilitate creating batched diagonal matrices, the 2D planes formed by the last two dimensions of the returned tensor are chosen by default. The argument :attr:`offset` controls which diagonal to consider: - If :attr:`offset` = 0, it is the main diagonal. - If :attr:`offset` > 0, it is above the main diagonal. - If :attr:`offset` < 0, it is below the main diagonal. The size of the new matrix will be calculated to make the specified diagonal of the size of the last input dimension. Note that for :attr:`offset` other than :math:`0`, the order of :attr:`dim1` and :attr:`dim2` matters. Exchanging them is equivalent to changing the sign of :attr:`offset`. Applying :meth:`torch.diagonal` to the output of this function with the same arguments yields a matrix identical to input. However, :meth:`torch.diagonal` has different default dimensions, so those need to be explicitly specified. Args: input (Tensor): the input tensor. Must be at least 1-dimensional. offset (int, optional): which diagonal to consider. Default: 0 (main diagonal). dim1 (int, optional): first dimension with respect to which to take diagonal. Default: -2. dim2 (int, optional): second dimension with respect to which to take diagonal. Default: -1. Example:: >>> a = torch.randn(2, 3) >>> torch.diag_embed(a) tensor([[[ 1.5410, 0.0000, 0.0000], [ 0.0000, -0.2934, 0.0000], [ 0.0000, 0.0000, -2.1788]], [[ 0.5684, 0.0000, 0.0000], [ 0.0000, -1.0845, 0.0000], [ 0.0000, 0.0000, -1.3986]]]) >>> torch.diag_embed(a, offset=1, dim1=0, dim2=2) tensor([[[ 0.0000, 1.5410, 0.0000, 0.0000], [ 0.0000, 0.5684, 0.0000, 0.0000]], [[ 0.0000, 0.0000, -0.2934, 0.0000], [ 0.0000, 0.0000, -1.0845, 0.0000]], [[ 0.0000, 0.0000, 0.0000, -2.1788], [ 0.0000, 0.0000, 0.0000, -1.3986]], [[ 0.0000, 0.0000, 0.0000, 0.0000], [ 0.0000, 0.0000, 0.0000, 0.0000]]]) """ ... def diagflat(input: Tensor, offset: _int = 0) -> Tensor: r""" diagflat(input, offset=0) -> Tensor - If :attr:`input` is a vector (1-D tensor), then returns a 2-D square tensor with the elements of :attr:`input` as the diagonal. - If :attr:`input` is a tensor with more than one dimension, then returns a 2-D tensor with diagonal elements equal to a flattened :attr:`input`. The argument :attr:`offset` controls which diagonal to consider: - If :attr:`offset` = 0, it is the main diagonal. - If :attr:`offset` > 0, it is above the main diagonal. - If :attr:`offset` < 0, it is below the main diagonal. Args: input (Tensor): the input tensor. offset (int, optional): the diagonal to consider. Default: 0 (main diagonal). Examples:: >>> a = torch.randn(3) >>> a tensor([-0.2956, -0.9068, 0.1695]) >>> torch.diagflat(a) tensor([[-0.2956, 0.0000, 0.0000], [ 0.0000, -0.9068, 0.0000], [ 0.0000, 0.0000, 0.1695]]) >>> torch.diagflat(a, 1) tensor([[ 0.0000, -0.2956, 0.0000, 0.0000], [ 0.0000, 0.0000, -0.9068, 0.0000], [ 0.0000, 0.0000, 0.0000, 0.1695], [ 0.0000, 0.0000, 0.0000, 0.0000]]) >>> a = torch.randn(2, 2) >>> a tensor([[ 0.2094, -0.3018], [-0.1516, 1.9342]]) >>> torch.diagflat(a) tensor([[ 0.2094, 0.0000, 0.0000, 0.0000], [ 0.0000, -0.3018, 0.0000, 0.0000], [ 0.0000, 0.0000, -0.1516, 0.0000], [ 0.0000, 0.0000, 0.0000, 1.9342]]) """ ... @overload def diagonal(input: Tensor, offset: _int = 0, dim1: _int = 0, dim2: _int = 1) -> Tensor: r""" diagonal(input, offset=0, dim1=0, dim2=1) -> Tensor Returns a partial view of :attr:`input` with the its diagonal elements with respect to :attr:`dim1` and :attr:`dim2` appended as a dimension at the end of the shape. The argument :attr:`offset` controls which diagonal to consider: - If :attr:`offset` = 0, it is the main diagonal. - If :attr:`offset` > 0, it is above the main diagonal. - If :attr:`offset` < 0, it is below the main diagonal. Applying :meth:`torch.diag_embed` to the output of this function with the same arguments yields a diagonal matrix with the diagonal entries of the input. However, :meth:`torch.diag_embed` has different default dimensions, so those need to be explicitly specified. Args: input (Tensor): the input tensor. Must be at least 2-dimensional. offset (int, optional): which diagonal to consider. Default: 0 (main diagonal). dim1 (int, optional): first dimension with respect to which to take diagonal. Default: 0. dim2 (int, optional): second dimension with respect to which to take diagonal. Default: 1. .. note:: To take a batch diagonal, pass in dim1=-2, dim2=-1. Examples:: >>> a = torch.randn(3, 3) >>> a tensor([[-1.0854, 1.1431, -0.1752], [ 0.8536, -0.0905, 0.0360], [ 0.6927, -0.3735, -0.4945]]) >>> torch.diagonal(a, 0) tensor([-1.0854, -0.0905, -0.4945]) >>> torch.diagonal(a, 1) tensor([ 1.1431, 0.0360]) >>> x = torch.randn(2, 5, 4, 2) >>> torch.diagonal(x, offset=-1, dim1=1, dim2=2) tensor([[[-1.2631, 0.3755, -1.5977, -1.8172], [-1.1065, 1.0401, -0.2235, -0.7938]], [[-1.7325, -0.3081, 0.6166, 0.2335], [ 1.0500, 0.7336, -0.3836, -1.1015]]]) """ ... @overload def diagonal(input: Tensor, *, outdim: Union[str, ellipsis, None], dim1: Union[str, ellipsis, None], dim2: Union[str, ellipsis, None], offset: _int = 0) -> Tensor: r""" diagonal(input, offset=0, dim1=0, dim2=1) -> Tensor Returns a partial view of :attr:`input` with the its diagonal elements with respect to :attr:`dim1` and :attr:`dim2` appended as a dimension at the end of the shape. The argument :attr:`offset` controls which diagonal to consider: - If :attr:`offset` = 0, it is the main diagonal. - If :attr:`offset` > 0, it is above the main diagonal. - If :attr:`offset` < 0, it is below the main diagonal. Applying :meth:`torch.diag_embed` to the output of this function with the same arguments yields a diagonal matrix with the diagonal entries of the input. However, :meth:`torch.diag_embed` has different default dimensions, so those need to be explicitly specified. Args: input (Tensor): the input tensor. Must be at least 2-dimensional. offset (int, optional): which diagonal to consider. Default: 0 (main diagonal). dim1 (int, optional): first dimension with respect to which to take diagonal. Default: 0. dim2 (int, optional): second dimension with respect to which to take diagonal. Default: 1. .. note:: To take a batch diagonal, pass in dim1=-2, dim2=-1. Examples:: >>> a = torch.randn(3, 3) >>> a tensor([[-1.0854, 1.1431, -0.1752], [ 0.8536, -0.0905, 0.0360], [ 0.6927, -0.3735, -0.4945]]) >>> torch.diagonal(a, 0) tensor([-1.0854, -0.0905, -0.4945]) >>> torch.diagonal(a, 1) tensor([ 1.1431, 0.0360]) >>> x = torch.randn(2, 5, 4, 2) >>> torch.diagonal(x, offset=-1, dim1=1, dim2=2) tensor([[[-1.2631, 0.3755, -1.5977, -1.8172], [-1.1065, 1.0401, -0.2235, -0.7938]], [[-1.7325, -0.3081, 0.6166, 0.2335], [ 1.0500, 0.7336, -0.3836, -1.1015]]]) """ ... def diagonal_copy(input: Tensor, offset: _int = 0, dim1: _int = 0, dim2: _int = 1, *, out: Optional[Tensor] = None) -> Tensor: r""" Performs the same operation as :func:`torch.diagonal`, but all output tensors are freshly created instead of aliasing the input. """ ... def diagonal_scatter(input: Tensor, src: Tensor, offset: _int = 0, dim1: _int = 0, dim2: _int = 1) -> Tensor: r""" diagonal_scatter(input, src, offset=0, dim1=0, dim2=1) -> Tensor Embeds the values of the :attr:`src` tensor into :attr:`input` along the diagonal elements of :attr:`input`, with respect to :attr:`dim1` and :attr:`dim2`. This function returns a tensor with fresh storage; it does not return a view. The argument :attr:`offset` controls which diagonal to consider: - If :attr:`offset` = 0, it is the main diagonal. - If :attr:`offset` > 0, it is above the main diagonal. - If :attr:`offset` < 0, it is below the main diagonal. Args: input (Tensor): the input tensor. Must be at least 2-dimensional. src (Tensor): the tensor to embed into :attr:`input`. offset (int, optional): which diagonal to consider. Default: 0 (main diagonal). dim1 (int, optional): first dimension with respect to which to take diagonal. Default: 0. dim2 (int, optional): second dimension with respect to which to take diagonal. Default: 1. .. note:: :attr:`src` must be of the proper size in order to be embedded into :attr:`input`. Specifically, it should have the same shape as ``torch.diagonal(input, offset, dim1, dim2)`` Examples:: >>> a = torch.zeros(3, 3) >>> a tensor([[0., 0., 0.], [0., 0., 0.], [0., 0., 0.]]) >>> torch.diagonal_scatter(a, torch.ones(3), 0) tensor([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]) >>> torch.diagonal_scatter(a, torch.ones(2), 1) tensor([[0., 1., 0.], [0., 0., 1.], [0., 0., 0.]]) """ ... def diff(input: Tensor, n: _int = 1, dim: _int = -1, prepend: Optional[Tensor] = None, append: Optional[Tensor] = None, *, out: Optional[Tensor] = None) -> Tensor: r""" diff(input, n=1, dim=-1, prepend=None, append=None) -> Tensor Computes the n-th forward difference along the given dimension. The first-order differences are given by `out[i] = input[i + 1] - input[i]`. Higher-order differences are calculated by using :func:`torch.diff` recursively. Args: input (Tensor): the tensor to compute the differences on n (int, optional): the number of times to recursively compute the difference dim (int, optional): the dimension to compute the difference along. Default is the last dimension. prepend, append (Tensor, optional): values to prepend or append to :attr:`input` along :attr:`dim` before computing the difference. Their dimensions must be equivalent to that of input, and their shapes must match input's shape except on :attr:`dim`. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.tensor([1, 3, 2]) >>> torch.diff(a) tensor([ 2, -1]) >>> b = torch.tensor([4, 5]) >>> torch.diff(a, append=b) tensor([ 2, -1, 2, 1]) >>> c = torch.tensor([[1, 2, 3], [3, 4, 5]]) >>> torch.diff(c, dim=0) tensor([[2, 2, 2]]) >>> torch.diff(c, dim=1) tensor([[1, 1], [1, 1]]) """ ... def digamma(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" digamma(input, *, out=None) -> Tensor Alias for :func:`torch.special.digamma`. """ ... def dist(input: Tensor, other: Tensor, p: Union[Number, _complex] = 2) -> Tensor: r""" dist(input, other, p=2) -> Tensor Returns the p-norm of (:attr:`input` - :attr:`other`) The shapes of :attr:`input` and :attr:`other` must be :ref:`broadcastable `. Args: input (Tensor): the input tensor. other (Tensor): the Right-hand-side input tensor p (float, optional): the norm to be computed Example:: >>> x = torch.randn(4) >>> x tensor([-1.5393, -0.8675, 0.5916, 1.6321]) >>> y = torch.randn(4) >>> y tensor([ 0.0967, -1.0511, 0.6295, 0.8360]) >>> torch.dist(x, y, 3.5) tensor(1.6727) >>> torch.dist(x, y, 3) tensor(1.6973) >>> torch.dist(x, y, 0) tensor(4.) >>> torch.dist(x, y, 1) tensor(2.6537) """ ... def div(input: Union[Tensor, Number], other: Union[Tensor, Number], *, rounding_mode: Optional[str] = None, out: Optional[Tensor] = None) -> Tensor: r""" div(input, other, *, rounding_mode=None, out=None) -> Tensor Divides each element of the input ``input`` by the corresponding element of :attr:`other`. .. math:: \text{out}_i = \frac{\text{input}_i}{\text{other}_i} .. note:: By default, this performs a "true" division like Python 3. See the :attr:`rounding_mode` argument for floor division. Supports :ref:`broadcasting to a common shape `, :ref:`type promotion `, and integer, float, and complex inputs. Always promotes integer types to the default scalar type. Args: input (Tensor): the dividend other (Tensor or Number): the divisor Keyword args: rounding_mode (str, optional): Type of rounding applied to the result: * None - default behavior. Performs no rounding and, if both :attr:`input` and :attr:`other` are integer types, promotes the inputs to the default scalar type. Equivalent to true division in Python (the ``/`` operator) and NumPy's ``np.true_divide``. * ``"trunc"`` - rounds the results of the division towards zero. Equivalent to C-style integer division. * ``"floor"`` - rounds the results of the division down. Equivalent to floor division in Python (the ``//`` operator) and NumPy's ``np.floor_divide``. out (Tensor, optional): the output tensor. Examples:: >>> x = torch.tensor([ 0.3810, 1.2774, -0.2972, -0.3719, 0.4637]) >>> torch.div(x, 0.5) tensor([ 0.7620, 2.5548, -0.5944, -0.7438, 0.9274]) >>> a = torch.tensor([[-0.3711, -1.9353, -0.4605, -0.2917], ... [ 0.1815, -1.0111, 0.9805, -1.5923], ... [ 0.1062, 1.4581, 0.7759, -1.2344], ... [-0.1830, -0.0313, 1.1908, -1.4757]]) >>> b = torch.tensor([ 0.8032, 0.2930, -0.8113, -0.2308]) >>> torch.div(a, b) tensor([[-0.4620, -6.6051, 0.5676, 1.2639], [ 0.2260, -3.4509, -1.2086, 6.8990], [ 0.1322, 4.9764, -0.9564, 5.3484], [-0.2278, -0.1068, -1.4678, 6.3938]]) >>> torch.div(a, b, rounding_mode='trunc') tensor([[-0., -6., 0., 1.], [ 0., -3., -1., 6.], [ 0., 4., -0., 5.], [-0., -0., -1., 6.]]) >>> torch.div(a, b, rounding_mode='floor') tensor([[-1., -7., 0., 1.], [ 0., -4., -2., 6.], [ 0., 4., -1., 5.], [-1., -1., -2., 6.]]) """ ... @overload def divide(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" divide(input, other, *, rounding_mode=None, out=None) -> Tensor Alias for :func:`torch.div`. """ ... @overload def divide(input: Tensor, other: Tensor, *, rounding_mode: Optional[str], out: Optional[Tensor] = None) -> Tensor: r""" divide(input, other, *, rounding_mode=None, out=None) -> Tensor Alias for :func:`torch.div`. """ ... @overload def divide(input: Tensor, other: Union[Number, _complex], *, rounding_mode: Optional[str]) -> Tensor: r""" divide(input, other, *, rounding_mode=None, out=None) -> Tensor Alias for :func:`torch.div`. """ ... @overload def divide(input: Tensor, other: Union[Number, _complex]) -> Tensor: r""" divide(input, other, *, rounding_mode=None, out=None) -> Tensor Alias for :func:`torch.div`. """ ... def dot(input: Tensor, tensor: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" dot(input, other, *, out=None) -> Tensor Computes the dot product of two 1D tensors. .. note:: Unlike NumPy's dot, torch.dot intentionally only supports computing the dot product of two 1D tensors with the same number of elements. Args: input (Tensor): first tensor in the dot product, must be 1D. other (Tensor): second tensor in the dot product, must be 1D. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> torch.dot(torch.tensor([2, 3]), torch.tensor([2, 1])) tensor(7) """ ... def dropout(input: Tensor, p: _float, train: _bool) -> Tensor: ... def dropout_(input: Tensor, p: _float, train: _bool) -> Tensor: ... def dsmm(input: Tensor, mat2: Tensor) -> Tensor: ... @overload def dsplit(input: Tensor, sections: _int) -> Tuple[Tensor, ...]: r""" dsplit(input, indices_or_sections) -> List of Tensors Splits :attr:`input`, a tensor with three or more dimensions, into multiple tensors depthwise according to :attr:`indices_or_sections`. Each split is a view of :attr:`input`. This is equivalent to calling torch.tensor_split(input, indices_or_sections, dim=2) (the split dimension is 2), except that if :attr:`indices_or_sections` is an integer it must evenly divide the split dimension or a runtime error will be thrown. This function is based on NumPy's :func:`numpy.dsplit`. Args: input (Tensor): tensor to split. indices_or_sections (int or list or tuple of ints): See argument in :func:`torch.tensor_split`. Example:: >>> t = torch.arange(16.0).reshape(2, 2, 4) >>> t tensor([[[ 0., 1., 2., 3.], [ 4., 5., 6., 7.]], [[ 8., 9., 10., 11.], [12., 13., 14., 15.]]]) >>> torch.dsplit(t, 2) (tensor([[[ 0., 1.], [ 4., 5.]], [[ 8., 9.], [12., 13.]]]), tensor([[[ 2., 3.], [ 6., 7.]], [[10., 11.], [14., 15.]]])) >>> torch.dsplit(t, [3, 6]) (tensor([[[ 0., 1., 2.], [ 4., 5., 6.]], [[ 8., 9., 10.], [12., 13., 14.]]]), tensor([[[ 3.], [ 7.]], [[11.], [15.]]]), tensor([], size=(2, 2, 0))) """ ... @overload def dsplit(input: Tensor, indices: _size) -> Tuple[Tensor, ...]: r""" dsplit(input, indices_or_sections) -> List of Tensors Splits :attr:`input`, a tensor with three or more dimensions, into multiple tensors depthwise according to :attr:`indices_or_sections`. Each split is a view of :attr:`input`. This is equivalent to calling torch.tensor_split(input, indices_or_sections, dim=2) (the split dimension is 2), except that if :attr:`indices_or_sections` is an integer it must evenly divide the split dimension or a runtime error will be thrown. This function is based on NumPy's :func:`numpy.dsplit`. Args: input (Tensor): tensor to split. indices_or_sections (int or list or tuple of ints): See argument in :func:`torch.tensor_split`. Example:: >>> t = torch.arange(16.0).reshape(2, 2, 4) >>> t tensor([[[ 0., 1., 2., 3.], [ 4., 5., 6., 7.]], [[ 8., 9., 10., 11.], [12., 13., 14., 15.]]]) >>> torch.dsplit(t, 2) (tensor([[[ 0., 1.], [ 4., 5.]], [[ 8., 9.], [12., 13.]]]), tensor([[[ 2., 3.], [ 6., 7.]], [[10., 11.], [14., 15.]]])) >>> torch.dsplit(t, [3, 6]) (tensor([[[ 0., 1., 2.], [ 4., 5., 6.]], [[ 8., 9., 10.], [12., 13., 14.]]]), tensor([[[ 3.], [ 7.]], [[11.], [15.]]]), tensor([], size=(2, 2, 0))) """ ... def dstack(tensors: Union[Tuple[Tensor, ...], List[Tensor]], *, out: Optional[Tensor] = None) -> Tensor: r""" dstack(tensors, *, out=None) -> Tensor Stack tensors in sequence depthwise (along third axis). This is equivalent to concatenation along the third axis after 1-D and 2-D tensors have been reshaped by :func:`torch.atleast_3d`. Args: tensors (sequence of Tensors): sequence of tensors to concatenate Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.tensor([1, 2, 3]) >>> b = torch.tensor([4, 5, 6]) >>> torch.dstack((a,b)) tensor([[[1, 4], [2, 5], [3, 6]]]) >>> a = torch.tensor([[1],[2],[3]]) >>> b = torch.tensor([[4],[5],[6]]) >>> torch.dstack((a,b)) tensor([[[1, 4]], [[2, 5]], [[3, 6]]]) """ ... def embedding(weight: Tensor, indices: Tensor, padding_idx: Union[_int, SymInt] = -1, scale_grad_by_freq: _bool = False, sparse: _bool = False) -> Tensor: ... @overload def embedding_bag(weight: Tensor, indices: Tensor, offsets: Tensor, scale_grad_by_freq: _bool, mode: _int, sparse: _bool, per_sample_weights: Optional[Tensor], include_last_offset: _bool, padding_idx: Optional[_int]) -> Tuple[Tensor, Tensor, Tensor, Tensor]: ... @overload def embedding_bag(weight: Tensor, indices: Tensor, offsets: Tensor, scale_grad_by_freq: _bool = False, mode: _int = 0, sparse: _bool = False, per_sample_weights: Optional[Tensor] = None, include_last_offset: _bool = False) -> Tuple[Tensor, Tensor, Tensor, Tensor]: ... def embedding_renorm_(input: Tensor, indices: Tensor, max_norm: _float, norm_type: _float) -> Tensor: ... @overload def empty(size: Sequence[Union[_int, SymInt]], *, memory_format: Optional[memory_format] = None, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" empty(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False, memory_format=torch.contiguous_format) -> Tensor Returns a tensor filled with uninitialized data. The shape of the tensor is defined by the variable argument :attr:`size`. .. note:: If :func:`torch.use_deterministic_algorithms()` and :attr:`torch.utils.deterministic.fill_uninitialized_memory` are both set to ``True``, the output tensor is initialized to prevent any possible nondeterministic behavior from using the data as an input to an operation. Floating point and complex tensors are filled with NaN, and integer tensors are filled with the maximum value. Args: size (int...): a sequence of integers defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple. Keyword args: out (Tensor, optional): the output tensor. dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. pin_memory (bool, optional): If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default: ``False``. memory_format (:class:`torch.memory_format`, optional): the desired memory format of returned Tensor. Default: ``torch.contiguous_format``. Example:: >>> torch.empty((2,3), dtype=torch.int64) tensor([[ 9.4064e+13, 2.8000e+01, 9.3493e+13], [ 7.5751e+18, 7.1428e+18, 7.5955e+18]]) """ ... @overload def empty(*size: _int, memory_format: Optional[memory_format] = None, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" empty(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False, memory_format=torch.contiguous_format) -> Tensor Returns a tensor filled with uninitialized data. The shape of the tensor is defined by the variable argument :attr:`size`. .. note:: If :func:`torch.use_deterministic_algorithms()` and :attr:`torch.utils.deterministic.fill_uninitialized_memory` are both set to ``True``, the output tensor is initialized to prevent any possible nondeterministic behavior from using the data as an input to an operation. Floating point and complex tensors are filled with NaN, and integer tensors are filled with the maximum value. Args: size (int...): a sequence of integers defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple. Keyword args: out (Tensor, optional): the output tensor. dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. pin_memory (bool, optional): If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default: ``False``. memory_format (:class:`torch.memory_format`, optional): the desired memory format of returned Tensor. Default: ``torch.contiguous_format``. Example:: >>> torch.empty((2,3), dtype=torch.int64) tensor([[ 9.4064e+13, 2.8000e+01, 9.3493e+13], [ 7.5751e+18, 7.1428e+18, 7.5955e+18]]) """ ... @overload def empty(size: _size, *, names: Optional[Sequence[Union[str, ellipsis, None]]], memory_format: Optional[memory_format] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" empty(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False, memory_format=torch.contiguous_format) -> Tensor Returns a tensor filled with uninitialized data. The shape of the tensor is defined by the variable argument :attr:`size`. .. note:: If :func:`torch.use_deterministic_algorithms()` and :attr:`torch.utils.deterministic.fill_uninitialized_memory` are both set to ``True``, the output tensor is initialized to prevent any possible nondeterministic behavior from using the data as an input to an operation. Floating point and complex tensors are filled with NaN, and integer tensors are filled with the maximum value. Args: size (int...): a sequence of integers defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple. Keyword args: out (Tensor, optional): the output tensor. dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. pin_memory (bool, optional): If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default: ``False``. memory_format (:class:`torch.memory_format`, optional): the desired memory format of returned Tensor. Default: ``torch.contiguous_format``. Example:: >>> torch.empty((2,3), dtype=torch.int64) tensor([[ 9.4064e+13, 2.8000e+01, 9.3493e+13], [ 7.5751e+18, 7.1428e+18, 7.5955e+18]]) """ ... @overload def empty(*size: _int, names: Optional[Sequence[Union[str, ellipsis, None]]], memory_format: Optional[memory_format] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" empty(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False, memory_format=torch.contiguous_format) -> Tensor Returns a tensor filled with uninitialized data. The shape of the tensor is defined by the variable argument :attr:`size`. .. note:: If :func:`torch.use_deterministic_algorithms()` and :attr:`torch.utils.deterministic.fill_uninitialized_memory` are both set to ``True``, the output tensor is initialized to prevent any possible nondeterministic behavior from using the data as an input to an operation. Floating point and complex tensors are filled with NaN, and integer tensors are filled with the maximum value. Args: size (int...): a sequence of integers defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple. Keyword args: out (Tensor, optional): the output tensor. dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. pin_memory (bool, optional): If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default: ``False``. memory_format (:class:`torch.memory_format`, optional): the desired memory format of returned Tensor. Default: ``torch.contiguous_format``. Example:: >>> torch.empty((2,3), dtype=torch.int64) tensor([[ 9.4064e+13, 2.8000e+01, 9.3493e+13], [ 7.5751e+18, 7.1428e+18, 7.5955e+18]]) """ ... def empty_like(input: Tensor, *, memory_format: Optional[memory_format] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" empty_like(input, *, dtype=None, layout=None, device=None, requires_grad=False, memory_format=torch.preserve_format) -> Tensor Returns an uninitialized tensor with the same size as :attr:`input`. ``torch.empty_like(input)`` is equivalent to ``torch.empty(input.size(), dtype=input.dtype, layout=input.layout, device=input.device)``. .. note:: If :func:`torch.use_deterministic_algorithms()` and :attr:`torch.utils.deterministic.fill_uninitialized_memory` are both set to ``True``, the output tensor is initialized to prevent any possible nondeterministic behavior from using the data as an input to an operation. Floating point and complex tensors are filled with NaN, and integer tensors are filled with the maximum value. Args: input (Tensor): the size of :attr:`input` will determine size of the output tensor. Keyword args: dtype (:class:`torch.dtype`, optional): the desired data type of returned Tensor. Default: if ``None``, defaults to the dtype of :attr:`input`. layout (:class:`torch.layout`, optional): the desired layout of returned tensor. Default: if ``None``, defaults to the layout of :attr:`input`. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, defaults to the device of :attr:`input`. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. memory_format (:class:`torch.memory_format`, optional): the desired memory format of returned Tensor. Default: ``torch.preserve_format``. Example:: >>> a=torch.empty((2,3), dtype=torch.int32, device = 'cuda') >>> torch.empty_like(a) tensor([[0, 0, 0], [0, 0, 0]], device='cuda:0', dtype=torch.int32) """ ... def empty_permuted(size: Sequence[Union[_int, SymInt]], physical_layout: _size, *, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" empty_permuted(size, physical_layout, *, dtype=None, layout=None, device=None, requires_grad=False, pin_memory=False) -> Tensor Creates an uninitialized, non-overlapping and dense tensor with the specified :attr:`size`, with :attr:`physical_layout` specifying how the dimensions are physically laid out in memory (each logical dimension is listed from outermost to innermost). :attr:`physical_layout` is a generalization of NCHW/NHWC notation: if each dimension is assigned a number according to what order they occur in size (N=0, C=1, H=2, W=3), then NCHW is ``(0, 1, 2, 3)`` while NHWC is ``(0, 2, 3, 1)``. Equivalently, the strides of the output tensor ``t`` are such that ``t.stride(physical_layout[i]) == contiguous_strides[i]`` (notably, this function is *not* equivalent to ``torch.empty(size).permute(physical_layout)``). Unlike :func:`torch.empty_strided`, this is guaranteed to produce a dense tensor with no overlaps. If possible, prefer using this function over :func:`torch.empty_strided` or manual use of :func:`torch.as_strided`. .. note:: If :func:`torch.use_deterministic_algorithms()` and :attr:`torch.utils.deterministic.fill_uninitialized_memory` are both set to ``True``, the output tensor is initialized to prevent any possible nondeterministic behavior from using the data as an input to an operation. Floating point and complex tensors are filled with NaN, and integer tensors are filled with the maximum value. Args: size (tuple of int): the shape of the output tensor physical_layout (tuple of int): the ordering of dimensions physically in memory Keyword args: dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. pin_memory (bool, optional): If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default: ``False``. Examples: >>> torch.empty((2, 3, 5, 7)).stride() (105, 35, 7, 1) >>> torch.empty_permuted((2, 3, 5, 7), (0, 1, 2, 3)).stride() (105, 35, 7, 1) >>> torch.empty((2, 3, 5, 7), memory_format=torch.channels_last).stride() (105, 1, 21, 3) >>> torch.empty_permuted((2, 3, 5, 7), (0, 2, 3, 1)).stride() (105, 1, 21, 3) >>> torch.empty_permuted((2, 3, 5, 7), (0, 2, 3, 1)).dim_order() (0, 2, 3, 1) """ ... def empty_quantized(size: _size, qtensor: Tensor, *, memory_format: Optional[memory_format] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: ... def empty_strided(size: Sequence[Union[_int, SymInt]], stride: Sequence[Union[_int, SymInt]], *, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" empty_strided(size, stride, *, dtype=None, layout=None, device=None, requires_grad=False, pin_memory=False) -> Tensor Creates a tensor with the specified :attr:`size` and :attr:`stride` and filled with undefined data. .. warning:: If the constructed tensor is "overlapped" (with multiple indices referring to the same element in memory) its behavior is undefined. .. note:: If :func:`torch.use_deterministic_algorithms()` and :attr:`torch.utils.deterministic.fill_uninitialized_memory` are both set to ``True``, the output tensor is initialized to prevent any possible nondeterministic behavior from using the data as an input to an operation. Floating point and complex tensors are filled with NaN, and integer tensors are filled with the maximum value. Args: size (tuple of int): the shape of the output tensor stride (tuple of int): the strides of the output tensor Keyword args: dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. pin_memory (bool, optional): If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default: ``False``. Example:: >>> a = torch.empty_strided((2, 3), (1, 2)) >>> a tensor([[8.9683e-44, 4.4842e-44, 5.1239e+07], [0.0000e+00, 0.0000e+00, 3.0705e-41]]) >>> a.stride() (1, 2) >>> a.size() torch.Size([2, 3]) """ ... @overload def eq(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" eq(input, other, *, out=None) -> Tensor Computes element-wise equality The second argument can be a number or a tensor whose shape is :ref:`broadcastable ` with the first argument. Args: input (Tensor): the tensor to compare other (Tensor or float): the tensor or value to compare Keyword args: out (Tensor, optional): the output tensor. Returns: A boolean tensor that is True where :attr:`input` is equal to :attr:`other` and False elsewhere Example:: >>> torch.eq(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]])) tensor([[ True, False], [False, True]]) """ ... @overload def eq(input: Tensor, other: Union[Number, _complex], *, out: Optional[Tensor] = None) -> Tensor: r""" eq(input, other, *, out=None) -> Tensor Computes element-wise equality The second argument can be a number or a tensor whose shape is :ref:`broadcastable ` with the first argument. Args: input (Tensor): the tensor to compare other (Tensor or float): the tensor or value to compare Keyword args: out (Tensor, optional): the output tensor. Returns: A boolean tensor that is True where :attr:`input` is equal to :attr:`other` and False elsewhere Example:: >>> torch.eq(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]])) tensor([[ True, False], [False, True]]) """ ... def equal(input: Tensor, other: Tensor) -> _bool: r""" equal(input, other) -> bool ``True`` if two tensors have the same size and elements, ``False`` otherwise. Example:: >>> torch.equal(torch.tensor([1, 2]), torch.tensor([1, 2])) True """ ... def erf(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" erf(input, *, out=None) -> Tensor Alias for :func:`torch.special.erf`. """ ... def erf_(input: Tensor) -> Tensor: ... def erfc(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" erfc(input, *, out=None) -> Tensor Alias for :func:`torch.special.erfc`. """ ... def erfc_(input: Tensor) -> Tensor: ... def erfinv(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" erfinv(input, *, out=None) -> Tensor Alias for :func:`torch.special.erfinv`. """ ... def exp(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" exp(input, *, out=None) -> Tensor Returns a new tensor with the exponential of the elements of the input tensor :attr:`input`. .. math:: y_{i} = e^{x_{i}} Args: input (Tensor): the input tensor. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> torch.exp(torch.tensor([0, math.log(2.)])) tensor([ 1., 2.]) """ ... def exp2(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" exp2(input, *, out=None) -> Tensor Alias for :func:`torch.special.exp2`. """ ... def exp2_(input: Tensor) -> Tensor: ... def exp_(input: Tensor) -> Tensor: ... def expand_copy(input: Tensor, size: Sequence[Union[_int, SymInt]], *, implicit: _bool = False, out: Optional[Tensor] = None) -> Tensor: r""" Performs the same operation as :func:`torch.expand`, but all output tensors are freshly created instead of aliasing the input. """ ... def expm1(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" expm1(input, *, out=None) -> Tensor Alias for :func:`torch.special.expm1`. """ ... def expm1_(input: Tensor) -> Tensor: ... @overload def eye(n: Union[_int, SymInt], *, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" eye(n, m=None, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor Returns a 2-D tensor with ones on the diagonal and zeros elsewhere. Args: n (int): the number of rows m (int, optional): the number of columns with default being :attr:`n` Keyword arguments: out (Tensor, optional): the output tensor. dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. Returns: Tensor: A 2-D tensor with ones on the diagonal and zeros elsewhere Example:: >>> torch.eye(3) tensor([[ 1., 0., 0.], [ 0., 1., 0.], [ 0., 0., 1.]]) """ ... @overload def eye(n: Union[_int, SymInt], m: Union[_int, SymInt], *, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" eye(n, m=None, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor Returns a 2-D tensor with ones on the diagonal and zeros elsewhere. Args: n (int): the number of rows m (int, optional): the number of columns with default being :attr:`n` Keyword arguments: out (Tensor, optional): the output tensor. dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. Returns: Tensor: A 2-D tensor with ones on the diagonal and zeros elsewhere Example:: >>> torch.eye(3) tensor([[ 1., 0., 0.], [ 0., 1., 0.], [ 0., 0., 1.]]) """ ... def fake_quantize_per_channel_affine(input: Tensor, scale: Tensor, zero_point: Tensor, axis: _int, quant_min: _int, quant_max: _int) -> Tensor: r""" fake_quantize_per_channel_affine(input, scale, zero_point, axis, quant_min, quant_max) -> Tensor Returns a new tensor with the data in :attr:`input` fake quantized per channel using :attr:`scale`, :attr:`zero_point`, :attr:`quant_min` and :attr:`quant_max`, across the channel specified by :attr:`axis`. .. math:: \text{output} = ( min( \text{quant\_max}, max( \text{quant\_min}, \text{std::nearby\_int}(\text{input} / \text{scale}) + \text{zero\_point} ) ) - \text{zero\_point} ) \times \text{scale} Args: input (Tensor): the input value(s), in ``torch.float32`` scale (Tensor): quantization scale, per channel in ``torch.float32`` zero_point (Tensor): quantization zero_point, per channel in ``torch.int32`` or ``torch.half`` or ``torch.float32`` axis (int32): channel axis quant_min (int64): lower bound of the quantized domain quant_max (int64): upper bound of the quantized domain Returns: Tensor: A newly fake_quantized per channel ``torch.float32`` tensor Example:: >>> x = torch.randn(2, 2, 2) >>> x tensor([[[-0.2525, -0.0466], [ 0.3491, -0.2168]], [[-0.5906, 1.6258], [ 0.6444, -0.0542]]]) >>> scales = (torch.randn(2) + 1) * 0.05 >>> scales tensor([0.0475, 0.0486]) >>> zero_points = torch.zeros(2).to(torch.int32) >>> zero_points tensor([0, 0]) >>> torch.fake_quantize_per_channel_affine(x, scales, zero_points, 1, 0, 255) tensor([[[0.0000, 0.0000], [0.3405, 0.0000]], [[0.0000, 1.6134], [0.6323, 0.0000]]]) """ ... @overload def fake_quantize_per_tensor_affine(input: Tensor, scale: _float, zero_point: _int, quant_min: _int, quant_max: _int) -> Tensor: r""" fake_quantize_per_tensor_affine(input, scale, zero_point, quant_min, quant_max) -> Tensor Returns a new tensor with the data in :attr:`input` fake quantized using :attr:`scale`, :attr:`zero_point`, :attr:`quant_min` and :attr:`quant_max`. .. math:: \text{output} = ( min( \text{quant\_max}, max( \text{quant\_min}, \text{std::nearby\_int}(\text{input} / \text{scale}) + \text{zero\_point} ) ) - \text{zero\_point} ) \times \text{scale} Args: input (Tensor): the input value(s), ``torch.float32`` tensor scale (double scalar or ``float32`` Tensor): quantization scale zero_point (int64 scalar or ``int32`` Tensor): quantization zero_point quant_min (int64): lower bound of the quantized domain quant_max (int64): upper bound of the quantized domain Returns: Tensor: A newly fake_quantized ``torch.float32`` tensor Example:: >>> x = torch.randn(4) >>> x tensor([ 0.0552, 0.9730, 0.3973, -1.0780]) >>> torch.fake_quantize_per_tensor_affine(x, 0.1, 0, 0, 255) tensor([0.1000, 1.0000, 0.4000, 0.0000]) >>> torch.fake_quantize_per_tensor_affine(x, torch.tensor(0.1), torch.tensor(0), 0, 255) tensor([0.1000, 1.0000, 0.4000, 0.0000]) """ ... @overload def fake_quantize_per_tensor_affine(input: Tensor, scale: Tensor, zero_point: Tensor, quant_min: _int, quant_max: _int) -> Tensor: r""" fake_quantize_per_tensor_affine(input, scale, zero_point, quant_min, quant_max) -> Tensor Returns a new tensor with the data in :attr:`input` fake quantized using :attr:`scale`, :attr:`zero_point`, :attr:`quant_min` and :attr:`quant_max`. .. math:: \text{output} = ( min( \text{quant\_max}, max( \text{quant\_min}, \text{std::nearby\_int}(\text{input} / \text{scale}) + \text{zero\_point} ) ) - \text{zero\_point} ) \times \text{scale} Args: input (Tensor): the input value(s), ``torch.float32`` tensor scale (double scalar or ``float32`` Tensor): quantization scale zero_point (int64 scalar or ``int32`` Tensor): quantization zero_point quant_min (int64): lower bound of the quantized domain quant_max (int64): upper bound of the quantized domain Returns: Tensor: A newly fake_quantized ``torch.float32`` tensor Example:: >>> x = torch.randn(4) >>> x tensor([ 0.0552, 0.9730, 0.3973, -1.0780]) >>> torch.fake_quantize_per_tensor_affine(x, 0.1, 0, 0, 255) tensor([0.1000, 1.0000, 0.4000, 0.0000]) >>> torch.fake_quantize_per_tensor_affine(x, torch.tensor(0.1), torch.tensor(0), 0, 255) tensor([0.1000, 1.0000, 0.4000, 0.0000]) """ ... def fbgemm_linear_fp16_weight(input: Tensor, packed_weight: Tensor, bias: Tensor) -> Tensor: ... def fbgemm_linear_fp16_weight_fp32_activation(input: Tensor, packed_weight: Tensor, bias: Tensor) -> Tensor: ... def fbgemm_linear_int8_weight(input: Tensor, weight: Tensor, packed: Tensor, col_offsets: Tensor, weight_scale: Union[Number, _complex], weight_zero_point: Union[Number, _complex], bias: Tensor) -> Tensor: ... def fbgemm_linear_int8_weight_fp32_activation(input: Tensor, weight: Tensor, packed: Tensor, col_offsets: Tensor, weight_scale: Union[Number, _complex], weight_zero_point: Union[Number, _complex], bias: Tensor) -> Tensor: ... def fbgemm_linear_quantize_weight(input: Tensor) -> Tuple[Tensor, Tensor, _float, _int]: ... def fbgemm_pack_gemm_matrix_fp16(input: Tensor) -> Tensor: ... @overload def fbgemm_pack_quantized_matrix(input: Tensor) -> Tensor: ... @overload def fbgemm_pack_quantized_matrix(input: Tensor, K: _int, N: _int) -> Tensor: ... def feature_alpha_dropout(input: Tensor, p: _float, train: _bool) -> Tensor: ... def feature_alpha_dropout_(input: Tensor, p: _float, train: _bool) -> Tensor: ... def feature_dropout(input: Tensor, p: _float, train: _bool) -> Tensor: ... def feature_dropout_(input: Tensor, p: _float, train: _bool) -> Tensor: ... @overload def fill(input: Tensor, value: Tensor) -> Tensor: ... @overload def fill(input: Tensor, value: Union[Number, _complex]) -> Tensor: ... @overload def fill_(input: Tensor, value: Tensor) -> Tensor: ... @overload def fill_(input: Tensor, value: Union[Number, _complex]) -> Tensor: ... def fix(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" fix(input, *, out=None) -> Tensor Alias for :func:`torch.trunc` """ ... def fix_(input: Tensor) -> Tensor: ... @overload def flatten(input: Tensor, start_dim: _int = 0, end_dim: _int = -1) -> Tensor: r""" flatten(input, start_dim=0, end_dim=-1) -> Tensor Flattens :attr:`input` by reshaping it into a one-dimensional tensor. If :attr:`start_dim` or :attr:`end_dim` are passed, only dimensions starting with :attr:`start_dim` and ending with :attr:`end_dim` are flattened. The order of elements in :attr:`input` is unchanged. Unlike NumPy's flatten, which always copies input's data, this function may return the original object, a view, or copy. If no dimensions are flattened, then the original object :attr:`input` is returned. Otherwise, if input can be viewed as the flattened shape, then that view is returned. Finally, only if the input cannot be viewed as the flattened shape is input's data copied. See :meth:`torch.Tensor.view` for details on when a view will be returned. .. note:: Flattening a zero-dimensional tensor will return a one-dimensional view. Args: input (Tensor): the input tensor. start_dim (int): the first dim to flatten end_dim (int): the last dim to flatten Example:: >>> t = torch.tensor([[[1, 2], ... [3, 4]], ... [[5, 6], ... [7, 8]]]) >>> torch.flatten(t) tensor([1, 2, 3, 4, 5, 6, 7, 8]) >>> torch.flatten(t, start_dim=1) tensor([[1, 2, 3, 4], [5, 6, 7, 8]]) """ ... @overload def flatten(input: Tensor, start_dim: _int, end_dim: _int, out_dim: Union[str, ellipsis, None]) -> Tensor: r""" flatten(input, start_dim=0, end_dim=-1) -> Tensor Flattens :attr:`input` by reshaping it into a one-dimensional tensor. If :attr:`start_dim` or :attr:`end_dim` are passed, only dimensions starting with :attr:`start_dim` and ending with :attr:`end_dim` are flattened. The order of elements in :attr:`input` is unchanged. Unlike NumPy's flatten, which always copies input's data, this function may return the original object, a view, or copy. If no dimensions are flattened, then the original object :attr:`input` is returned. Otherwise, if input can be viewed as the flattened shape, then that view is returned. Finally, only if the input cannot be viewed as the flattened shape is input's data copied. See :meth:`torch.Tensor.view` for details on when a view will be returned. .. note:: Flattening a zero-dimensional tensor will return a one-dimensional view. Args: input (Tensor): the input tensor. start_dim (int): the first dim to flatten end_dim (int): the last dim to flatten Example:: >>> t = torch.tensor([[[1, 2], ... [3, 4]], ... [[5, 6], ... [7, 8]]]) >>> torch.flatten(t) tensor([1, 2, 3, 4, 5, 6, 7, 8]) >>> torch.flatten(t, start_dim=1) tensor([[1, 2, 3, 4], [5, 6, 7, 8]]) """ ... @overload def flatten(input: Tensor, start_dim: Union[str, ellipsis, None], end_dim: Union[str, ellipsis, None], out_dim: Union[str, ellipsis, None]) -> Tensor: r""" flatten(input, start_dim=0, end_dim=-1) -> Tensor Flattens :attr:`input` by reshaping it into a one-dimensional tensor. If :attr:`start_dim` or :attr:`end_dim` are passed, only dimensions starting with :attr:`start_dim` and ending with :attr:`end_dim` are flattened. The order of elements in :attr:`input` is unchanged. Unlike NumPy's flatten, which always copies input's data, this function may return the original object, a view, or copy. If no dimensions are flattened, then the original object :attr:`input` is returned. Otherwise, if input can be viewed as the flattened shape, then that view is returned. Finally, only if the input cannot be viewed as the flattened shape is input's data copied. See :meth:`torch.Tensor.view` for details on when a view will be returned. .. note:: Flattening a zero-dimensional tensor will return a one-dimensional view. Args: input (Tensor): the input tensor. start_dim (int): the first dim to flatten end_dim (int): the last dim to flatten Example:: >>> t = torch.tensor([[[1, 2], ... [3, 4]], ... [[5, 6], ... [7, 8]]]) >>> torch.flatten(t) tensor([1, 2, 3, 4, 5, 6, 7, 8]) >>> torch.flatten(t, start_dim=1) tensor([[1, 2, 3, 4], [5, 6, 7, 8]]) """ ... @overload def flatten(input: Tensor, dims: Sequence[Union[str, ellipsis, None]], out_dim: Union[str, ellipsis, None]) -> Tensor: r""" flatten(input, start_dim=0, end_dim=-1) -> Tensor Flattens :attr:`input` by reshaping it into a one-dimensional tensor. If :attr:`start_dim` or :attr:`end_dim` are passed, only dimensions starting with :attr:`start_dim` and ending with :attr:`end_dim` are flattened. The order of elements in :attr:`input` is unchanged. Unlike NumPy's flatten, which always copies input's data, this function may return the original object, a view, or copy. If no dimensions are flattened, then the original object :attr:`input` is returned. Otherwise, if input can be viewed as the flattened shape, then that view is returned. Finally, only if the input cannot be viewed as the flattened shape is input's data copied. See :meth:`torch.Tensor.view` for details on when a view will be returned. .. note:: Flattening a zero-dimensional tensor will return a one-dimensional view. Args: input (Tensor): the input tensor. start_dim (int): the first dim to flatten end_dim (int): the last dim to flatten Example:: >>> t = torch.tensor([[[1, 2], ... [3, 4]], ... [[5, 6], ... [7, 8]]]) >>> torch.flatten(t) tensor([1, 2, 3, 4, 5, 6, 7, 8]) >>> torch.flatten(t, start_dim=1) tensor([[1, 2, 3, 4], [5, 6, 7, 8]]) """ ... def flip(input: Tensor, dims: _size) -> Tensor: r""" flip(input, dims) -> Tensor Reverse the order of an n-D tensor along given axis in dims. .. note:: `torch.flip` makes a copy of :attr:`input`'s data. This is different from NumPy's `np.flip`, which returns a view in constant time. Since copying a tensor's data is more work than viewing that data, `torch.flip` is expected to be slower than `np.flip`. Args: input (Tensor): the input tensor. dims (a list or tuple): axis to flip on Example:: >>> x = torch.arange(8).view(2, 2, 2) >>> x tensor([[[ 0, 1], [ 2, 3]], [[ 4, 5], [ 6, 7]]]) >>> torch.flip(x, [0, 1]) tensor([[[ 6, 7], [ 4, 5]], [[ 2, 3], [ 0, 1]]]) """ ... def fliplr(input: Tensor) -> Tensor: r""" fliplr(input) -> Tensor Flip tensor in the left/right direction, returning a new tensor. Flip the entries in each row in the left/right direction. Columns are preserved, but appear in a different order than before. Note: Requires the tensor to be at least 2-D. .. note:: `torch.fliplr` makes a copy of :attr:`input`'s data. This is different from NumPy's `np.fliplr`, which returns a view in constant time. Since copying a tensor's data is more work than viewing that data, `torch.fliplr` is expected to be slower than `np.fliplr`. Args: input (Tensor): Must be at least 2-dimensional. Example:: >>> x = torch.arange(4).view(2, 2) >>> x tensor([[0, 1], [2, 3]]) >>> torch.fliplr(x) tensor([[1, 0], [3, 2]]) """ ... def flipud(input: Tensor) -> Tensor: r""" flipud(input) -> Tensor Flip tensor in the up/down direction, returning a new tensor. Flip the entries in each column in the up/down direction. Rows are preserved, but appear in a different order than before. Note: Requires the tensor to be at least 1-D. .. note:: `torch.flipud` makes a copy of :attr:`input`'s data. This is different from NumPy's `np.flipud`, which returns a view in constant time. Since copying a tensor's data is more work than viewing that data, `torch.flipud` is expected to be slower than `np.flipud`. Args: input (Tensor): Must be at least 1-dimensional. Example:: >>> x = torch.arange(4).view(2, 2) >>> x tensor([[0, 1], [2, 3]]) >>> torch.flipud(x) tensor([[2, 3], [0, 1]]) """ ... @overload def float_power(input: Tensor, exponent: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" float_power(input, exponent, *, out=None) -> Tensor Raises :attr:`input` to the power of :attr:`exponent`, elementwise, in double precision. If neither input is complex returns a ``torch.float64`` tensor, and if one or more inputs is complex returns a ``torch.complex128`` tensor. .. note:: This function always computes in double precision, unlike :func:`torch.pow`, which implements more typical :ref:`type promotion `. This is useful when the computation needs to be performed in a wider or more precise dtype, or the results of the computation may contain fractional values not representable in the input dtypes, like when an integer base is raised to a negative integer exponent. Args: input (Tensor or Number): the base value(s) exponent (Tensor or Number): the exponent value(s) Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.randint(10, (4,)) >>> a tensor([6, 4, 7, 1]) >>> torch.float_power(a, 2) tensor([36., 16., 49., 1.], dtype=torch.float64) >>> a = torch.arange(1, 5) >>> a tensor([ 1, 2, 3, 4]) >>> exp = torch.tensor([2, -3, 4, -5]) >>> exp tensor([ 2, -3, 4, -5]) >>> torch.float_power(a, exp) tensor([1.0000e+00, 1.2500e-01, 8.1000e+01, 9.7656e-04], dtype=torch.float64) """ ... @overload def float_power(self: Union[Number, _complex], exponent: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" float_power(input, exponent, *, out=None) -> Tensor Raises :attr:`input` to the power of :attr:`exponent`, elementwise, in double precision. If neither input is complex returns a ``torch.float64`` tensor, and if one or more inputs is complex returns a ``torch.complex128`` tensor. .. note:: This function always computes in double precision, unlike :func:`torch.pow`, which implements more typical :ref:`type promotion `. This is useful when the computation needs to be performed in a wider or more precise dtype, or the results of the computation may contain fractional values not representable in the input dtypes, like when an integer base is raised to a negative integer exponent. Args: input (Tensor or Number): the base value(s) exponent (Tensor or Number): the exponent value(s) Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.randint(10, (4,)) >>> a tensor([6, 4, 7, 1]) >>> torch.float_power(a, 2) tensor([36., 16., 49., 1.], dtype=torch.float64) >>> a = torch.arange(1, 5) >>> a tensor([ 1, 2, 3, 4]) >>> exp = torch.tensor([2, -3, 4, -5]) >>> exp tensor([ 2, -3, 4, -5]) >>> torch.float_power(a, exp) tensor([1.0000e+00, 1.2500e-01, 8.1000e+01, 9.7656e-04], dtype=torch.float64) """ ... @overload def float_power(input: Tensor, exponent: Union[Number, _complex], *, out: Optional[Tensor] = None) -> Tensor: r""" float_power(input, exponent, *, out=None) -> Tensor Raises :attr:`input` to the power of :attr:`exponent`, elementwise, in double precision. If neither input is complex returns a ``torch.float64`` tensor, and if one or more inputs is complex returns a ``torch.complex128`` tensor. .. note:: This function always computes in double precision, unlike :func:`torch.pow`, which implements more typical :ref:`type promotion `. This is useful when the computation needs to be performed in a wider or more precise dtype, or the results of the computation may contain fractional values not representable in the input dtypes, like when an integer base is raised to a negative integer exponent. Args: input (Tensor or Number): the base value(s) exponent (Tensor or Number): the exponent value(s) Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.randint(10, (4,)) >>> a tensor([6, 4, 7, 1]) >>> torch.float_power(a, 2) tensor([36., 16., 49., 1.], dtype=torch.float64) >>> a = torch.arange(1, 5) >>> a tensor([ 1, 2, 3, 4]) >>> exp = torch.tensor([2, -3, 4, -5]) >>> exp tensor([ 2, -3, 4, -5]) >>> torch.float_power(a, exp) tensor([1.0000e+00, 1.2500e-01, 8.1000e+01, 9.7656e-04], dtype=torch.float64) """ ... def floor(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" floor(input, *, out=None) -> Tensor Returns a new tensor with the floor of the elements of :attr:`input`, the largest integer less than or equal to each element. For integer inputs, follows the array-api convention of returning a copy of the input tensor. .. math:: \text{out}_{i} = \left\lfloor \text{input}_{i} \right\rfloor Args: input (Tensor): the input tensor. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.randn(4) >>> a tensor([-0.8166, 1.5308, -0.2530, -0.2091]) >>> torch.floor(a) tensor([-1., 1., -1., -1.]) """ ... def floor_(input: Tensor) -> Tensor: ... def floor_divide(input: Union[Tensor, Number], other: Union[Tensor, Number], *, out: Optional[Tensor] = None) -> Tensor: r""" floor_divide(input, other, *, out=None) -> Tensor .. note:: Before PyTorch 1.13 :func:`torch.floor_divide` incorrectly performed truncation division. To restore the previous behavior use :func:`torch.div` with ``rounding_mode='trunc'``. Computes :attr:`input` divided by :attr:`other`, elementwise, and floors the result. .. math:: \text{{out}}_i = \text{floor} \left( \frac{{\text{{input}}_i}}{{\text{{other}}_i}} \right) Supports broadcasting to a common shape, type promotion, and integer and float inputs. Args: input (Tensor or Number): the dividend other (Tensor or Number): the divisor Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.tensor([4.0, 3.0]) >>> b = torch.tensor([2.0, 2.0]) >>> torch.floor_divide(a, b) tensor([2.0, 1.0]) >>> torch.floor_divide(a, 1.4) tensor([2.0, 2.0]) """ ... def fmax(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" fmax(input, other, *, out=None) -> Tensor Computes the element-wise maximum of :attr:`input` and :attr:`other`. This is like :func:`torch.maximum` except it handles NaNs differently: if exactly one of the two elements being compared is a NaN then the non-NaN element is taken as the maximum. Only if both elements are NaN is NaN propagated. This function is a wrapper around C++'s ``std::fmax`` and is similar to NumPy's ``fmax`` function. Supports :ref:`broadcasting to a common shape `, :ref:`type promotion `, and integer and floating-point inputs. Args: input (Tensor): the input tensor. other (Tensor): the second input tensor Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.tensor([9.7, float('nan'), 3.1, float('nan')]) >>> b = torch.tensor([-2.2, 0.5, float('nan'), float('nan')]) >>> torch.fmax(a, b) tensor([9.7000, 0.5000, 3.1000, nan]) """ ... def fmin(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" fmin(input, other, *, out=None) -> Tensor Computes the element-wise minimum of :attr:`input` and :attr:`other`. This is like :func:`torch.minimum` except it handles NaNs differently: if exactly one of the two elements being compared is a NaN then the non-NaN element is taken as the minimum. Only if both elements are NaN is NaN propagated. This function is a wrapper around C++'s ``std::fmin`` and is similar to NumPy's ``fmin`` function. Supports :ref:`broadcasting to a common shape `, :ref:`type promotion `, and integer and floating-point inputs. Args: input (Tensor): the input tensor. other (Tensor): the second input tensor Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.tensor([2.2, float('nan'), 2.1, float('nan')]) >>> b = torch.tensor([-9.3, 0.1, float('nan'), float('nan')]) >>> torch.fmin(a, b) tensor([-9.3000, 0.1000, 2.1000, nan]) """ ... @overload def fmod(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" fmod(input, other, *, out=None) -> Tensor Applies C++'s `std::fmod `_ entrywise. The result has the same sign as the dividend :attr:`input` and its absolute value is less than that of :attr:`other`. This function may be defined in terms of :func:`torch.div` as .. code:: python torch.fmod(a, b) == a - a.div(b, rounding_mode="trunc") * b Supports :ref:`broadcasting to a common shape `, :ref:`type promotion `, and integer and float inputs. .. note:: When the divisor is zero, returns ``NaN`` for floating point dtypes on both CPU and GPU; raises ``RuntimeError`` for integer division by zero on CPU; Integer division by zero on GPU may return any value. .. note:: Complex inputs are not supported. In some cases, it is not mathematically possible to satisfy the definition of a modulo operation with complex numbers. .. seealso:: :func:`torch.remainder` which implements Python's modulus operator. This one is defined using division rounding down the result. Args: input (Tensor): the dividend other (Tensor or Scalar): the divisor Keyword args: out (Tensor, optional): the output tensor. Example:: >>> torch.fmod(torch.tensor([-3., -2, -1, 1, 2, 3]), 2) tensor([-1., -0., -1., 1., 0., 1.]) >>> torch.fmod(torch.tensor([1, 2, 3, 4, 5]), -1.5) tensor([1.0000, 0.5000, 0.0000, 1.0000, 0.5000]) """ ... @overload def fmod(input: Tensor, other: Union[Number, _complex], *, out: Optional[Tensor] = None) -> Tensor: r""" fmod(input, other, *, out=None) -> Tensor Applies C++'s `std::fmod `_ entrywise. The result has the same sign as the dividend :attr:`input` and its absolute value is less than that of :attr:`other`. This function may be defined in terms of :func:`torch.div` as .. code:: python torch.fmod(a, b) == a - a.div(b, rounding_mode="trunc") * b Supports :ref:`broadcasting to a common shape `, :ref:`type promotion `, and integer and float inputs. .. note:: When the divisor is zero, returns ``NaN`` for floating point dtypes on both CPU and GPU; raises ``RuntimeError`` for integer division by zero on CPU; Integer division by zero on GPU may return any value. .. note:: Complex inputs are not supported. In some cases, it is not mathematically possible to satisfy the definition of a modulo operation with complex numbers. .. seealso:: :func:`torch.remainder` which implements Python's modulus operator. This one is defined using division rounding down the result. Args: input (Tensor): the dividend other (Tensor or Scalar): the divisor Keyword args: out (Tensor, optional): the output tensor. Example:: >>> torch.fmod(torch.tensor([-3., -2, -1, 1, 2, 3]), 2) tensor([-1., -0., -1., 1., 0., 1.]) >>> torch.fmod(torch.tensor([1, 2, 3, 4, 5]), -1.5) tensor([1.0000, 0.5000, 0.0000, 1.0000, 0.5000]) """ ... def frac(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" frac(input, *, out=None) -> Tensor Computes the fractional portion of each element in :attr:`input`. .. math:: \text{out}_{i} = \text{input}_{i} - \left\lfloor |\text{input}_{i}| \right\rfloor * \operatorname{sgn}(\text{input}_{i}) Example:: >>> torch.frac(torch.tensor([1, 2.5, -3.2])) tensor([ 0.0000, 0.5000, -0.2000]) """ ... def frac_(input: Tensor) -> Tensor: ... def frexp(input: Tensor, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.frexp: r""" frexp(input, *, out=None) -> (Tensor mantissa, Tensor exponent) Decomposes :attr:`input` into mantissa and exponent tensors such that :math:`\text{input} = \text{mantissa} \times 2^{\text{exponent}}`. The range of mantissa is the open interval (-1, 1). Supports float inputs. Args: input (Tensor): the input tensor Keyword args: out (tuple, optional): the output tensors Example:: >>> x = torch.arange(9.) >>> mantissa, exponent = torch.frexp(x) >>> mantissa tensor([0.0000, 0.5000, 0.5000, 0.7500, 0.5000, 0.6250, 0.7500, 0.8750, 0.5000]) >>> exponent tensor([0, 1, 2, 2, 3, 3, 3, 3, 4], dtype=torch.int32) >>> torch.ldexp(mantissa, exponent) tensor([0., 1., 2., 3., 4., 5., 6., 7., 8.]) """ ... def frobenius_norm(input: Tensor, dim: Union[_int, _size], keepdim: _bool = False, *, out: Optional[Tensor] = None) -> Tensor: ... def from_file(filename: str, shared: Optional[_bool] = None, size: Optional[_int] = 0, *, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" from_file(filename, shared=None, size=0, *, dtype=None, layout=None, device=None, pin_memory=False) Creates a CPU tensor with a storage backed by a memory-mapped file. If ``shared`` is True, then memory is shared between processes. All changes are written to the file. If ``shared`` is False, then changes to the tensor do not affect the file. ``size`` is the number of elements in the Tensor. If ``shared`` is ``False``, then the file must contain at least ``size * sizeof(dtype)`` bytes. If ``shared`` is ``True`` the file will be created if needed. .. note:: Only CPU tensors can be mapped to files. .. note:: For now, tensors with storages backed by a memory-mapped file cannot be created in pinned memory. Args: filename (str): file name to map shared (bool): whether to share memory (whether ``MAP_SHARED`` or ``MAP_PRIVATE`` is passed to the underlying `mmap(2) call `_) size (int): number of elements in the tensor Keyword args: dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. pin_memory (bool, optional): If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default: ``False``. Example:: >>> t = torch.randn(2, 5, dtype=torch.float64) >>> t.numpy().tofile('storage.pt') >>> t_mapped = torch.from_file('storage.pt', shared=False, size=10, dtype=torch.float64) """ ... def from_numpy(ndarray) -> Tensor: r""" from_numpy(ndarray) -> Tensor Creates a :class:`Tensor` from a :class:`numpy.ndarray`. The returned tensor and :attr:`ndarray` share the same memory. Modifications to the tensor will be reflected in the :attr:`ndarray` and vice versa. The returned tensor is not resizable. It currently accepts :attr:`ndarray` with dtypes of ``numpy.float64``, ``numpy.float32``, ``numpy.float16``, ``numpy.complex64``, ``numpy.complex128``, ``numpy.int64``, ``numpy.int32``, ``numpy.int16``, ``numpy.int8``, ``numpy.uint8``, and ``bool``. .. warning:: Writing to a tensor created from a read-only NumPy array is not supported and will result in undefined behavior. Example:: >>> a = numpy.array([1, 2, 3]) >>> t = torch.from_numpy(a) >>> t tensor([ 1, 2, 3]) >>> t[0] = -1 >>> a array([-1, 2, 3]) """ ... def frombuffer(buffer: Any, *, dtype: _dtype, count: int = -1, offset: int = 0, requires_grad: _bool = False) -> Tensor: r""" frombuffer(buffer, *, dtype, count=-1, offset=0, requires_grad=False) -> Tensor Creates a 1-dimensional :class:`Tensor` from an object that implements the Python buffer protocol. Skips the first :attr:`offset` bytes in the buffer, and interprets the rest of the raw bytes as a 1-dimensional tensor of type :attr:`dtype` with :attr:`count` elements. Note that either of the following must be true: 1. :attr:`count` is a positive non-zero number, and the total number of bytes in the buffer is more than :attr:`offset` plus :attr:`count` times the size (in bytes) of :attr:`dtype`. 2. :attr:`count` is negative, and the length (number of bytes) of the buffer subtracted by the :attr:`offset` is a multiple of the size (in bytes) of :attr:`dtype`. The returned tensor and buffer share the same memory. Modifications to the tensor will be reflected in the buffer and vice versa. The returned tensor is not resizable. .. note:: This function increments the reference count for the object that owns the shared memory. Therefore, such memory will not be deallocated before the returned tensor goes out of scope. .. warning:: This function's behavior is undefined when passed an object implementing the buffer protocol whose data is not on the CPU. Doing so is likely to cause a segmentation fault. .. warning:: This function does not try to infer the :attr:`dtype` (hence, it is not optional). Passing a different :attr:`dtype` than its source may result in unexpected behavior. Args: buffer (object): a Python object that exposes the buffer interface. Keyword args: dtype (:class:`torch.dtype`): the desired data type of returned tensor. count (int, optional): the number of desired elements to be read. If negative, all the elements (until the end of the buffer) will be read. Default: -1. offset (int, optional): the number of bytes to skip at the start of the buffer. Default: 0. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. Example:: >>> import array >>> a = array.array('i', [1, 2, 3]) >>> t = torch.frombuffer(a, dtype=torch.int32) >>> t tensor([ 1, 2, 3]) >>> t[0] = -1 >>> a array([-1, 2, 3]) >>> # Interprets the signed char bytes as 32-bit integers. >>> # Each 4 signed char elements will be interpreted as >>> # 1 signed 32-bit integer. >>> import array >>> a = array.array('b', [-1, 0, 0, 0]) >>> torch.frombuffer(a, dtype=torch.int32) tensor([255], dtype=torch.int32) """ ... @overload def full(size: _size, fill_value: Union[Number, _complex], *, out: Optional[Tensor] = None, layout: _layout = strided, dtype: Optional[_dtype] = None, device: Optional[DeviceLikeType] = None, requires_grad: _bool = False, pin_memory: _bool = False) -> Tensor: r""" full(size, fill_value, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor Creates a tensor of size :attr:`size` filled with :attr:`fill_value`. The tensor's dtype is inferred from :attr:`fill_value`. Args: size (int...): a list, tuple, or :class:`torch.Size` of integers defining the shape of the output tensor. fill_value (Scalar): the value to fill the output tensor with. Keyword args: out (Tensor, optional): the output tensor. dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. Example:: >>> torch.full((2, 3), 3.141592) tensor([[ 3.1416, 3.1416, 3.1416], [ 3.1416, 3.1416, 3.1416]]) """ ... @overload def full(size: _size, fill_value: Union[Number, _complex], *, names: List[Union[str, None]], layout: _layout = strided, dtype: Optional[_dtype] = None, device: Optional[DeviceLikeType] = None, requires_grad: _bool = False, pin_memory: _bool = False) -> Tensor: r""" full(size, fill_value, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor Creates a tensor of size :attr:`size` filled with :attr:`fill_value`. The tensor's dtype is inferred from :attr:`fill_value`. Args: size (int...): a list, tuple, or :class:`torch.Size` of integers defining the shape of the output tensor. fill_value (Scalar): the value to fill the output tensor with. Keyword args: out (Tensor, optional): the output tensor. dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. Example:: >>> torch.full((2, 3), 3.141592) tensor([[ 3.1416, 3.1416, 3.1416], [ 3.1416, 3.1416, 3.1416]]) """ ... @overload def full(size: Sequence[Union[_int, SymInt]], fill_value: Union[Number, _complex], *, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" full(size, fill_value, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor Creates a tensor of size :attr:`size` filled with :attr:`fill_value`. The tensor's dtype is inferred from :attr:`fill_value`. Args: size (int...): a list, tuple, or :class:`torch.Size` of integers defining the shape of the output tensor. fill_value (Scalar): the value to fill the output tensor with. Keyword args: out (Tensor, optional): the output tensor. dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. Example:: >>> torch.full((2, 3), 3.141592) tensor([[ 3.1416, 3.1416, 3.1416], [ 3.1416, 3.1416, 3.1416]]) """ ... @overload def full(size: _size, fill_value: Union[Number, _complex], *, names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" full(size, fill_value, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor Creates a tensor of size :attr:`size` filled with :attr:`fill_value`. The tensor's dtype is inferred from :attr:`fill_value`. Args: size (int...): a list, tuple, or :class:`torch.Size` of integers defining the shape of the output tensor. fill_value (Scalar): the value to fill the output tensor with. Keyword args: out (Tensor, optional): the output tensor. dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. Example:: >>> torch.full((2, 3), 3.141592) tensor([[ 3.1416, 3.1416, 3.1416], [ 3.1416, 3.1416, 3.1416]]) """ ... def full_like(input: Tensor, fill_value: Union[Number, _complex], *, memory_format: Optional[memory_format] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" full_like(input, fill_value, \*, dtype=None, layout=torch.strided, device=None, requires_grad=False, memory_format=torch.preserve_format) -> Tensor Returns a tensor with the same size as :attr:`input` filled with :attr:`fill_value`. ``torch.full_like(input, fill_value)`` is equivalent to ``torch.full(input.size(), fill_value, dtype=input.dtype, layout=input.layout, device=input.device)``. Args: input (Tensor): the size of :attr:`input` will determine size of the output tensor. fill_value: the number to fill the output tensor with. Keyword args: dtype (:class:`torch.dtype`, optional): the desired data type of returned Tensor. Default: if ``None``, defaults to the dtype of :attr:`input`. layout (:class:`torch.layout`, optional): the desired layout of returned tensor. Default: if ``None``, defaults to the layout of :attr:`input`. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, defaults to the device of :attr:`input`. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. memory_format (:class:`torch.memory_format`, optional): the desired memory format of returned Tensor. Default: ``torch.preserve_format``. """ ... def fused_moving_avg_obs_fake_quant(input: Tensor, observer_on: Tensor, fake_quant_on: Tensor, running_min: Tensor, running_max: Tensor, scale: Tensor, zero_point: Tensor, averaging_const: _float, quant_min: _int, quant_max: _int, ch_axis: _int, per_row_fake_quant: _bool = False, symmetric_quant: _bool = False) -> Tensor: ... @overload def gather(input: Tensor, dim: _int, index: Tensor, *, sparse_grad: _bool = False, out: Optional[Tensor] = None) -> Tensor: r""" gather(input, dim, index, *, sparse_grad=False, out=None) -> Tensor Gathers values along an axis specified by `dim`. For a 3-D tensor the output is specified by:: out[i][j][k] = input[index[i][j][k]][j][k] # if dim == 0 out[i][j][k] = input[i][index[i][j][k]][k] # if dim == 1 out[i][j][k] = input[i][j][index[i][j][k]] # if dim == 2 :attr:`input` and :attr:`index` must have the same number of dimensions. It is also required that ``index.size(d) <= input.size(d)`` for all dimensions ``d != dim``. :attr:`out` will have the same shape as :attr:`index`. Note that ``input`` and ``index`` do not broadcast against each other. Args: input (Tensor): the source tensor dim (int): the axis along which to index index (LongTensor): the indices of elements to gather Keyword arguments: sparse_grad (bool, optional): If ``True``, gradient w.r.t. :attr:`input` will be a sparse tensor. out (Tensor, optional): the destination tensor Example:: >>> t = torch.tensor([[1, 2], [3, 4]]) >>> torch.gather(t, 1, torch.tensor([[0, 0], [1, 0]])) tensor([[ 1, 1], [ 4, 3]]) """ ... @overload def gather(input: Tensor, dim: Union[str, ellipsis, None], index: Tensor, *, sparse_grad: _bool = False, out: Optional[Tensor] = None) -> Tensor: r""" gather(input, dim, index, *, sparse_grad=False, out=None) -> Tensor Gathers values along an axis specified by `dim`. For a 3-D tensor the output is specified by:: out[i][j][k] = input[index[i][j][k]][j][k] # if dim == 0 out[i][j][k] = input[i][index[i][j][k]][k] # if dim == 1 out[i][j][k] = input[i][j][index[i][j][k]] # if dim == 2 :attr:`input` and :attr:`index` must have the same number of dimensions. It is also required that ``index.size(d) <= input.size(d)`` for all dimensions ``d != dim``. :attr:`out` will have the same shape as :attr:`index`. Note that ``input`` and ``index`` do not broadcast against each other. Args: input (Tensor): the source tensor dim (int): the axis along which to index index (LongTensor): the indices of elements to gather Keyword arguments: sparse_grad (bool, optional): If ``True``, gradient w.r.t. :attr:`input` will be a sparse tensor. out (Tensor, optional): the destination tensor Example:: >>> t = torch.tensor([[1, 2], [3, 4]]) >>> torch.gather(t, 1, torch.tensor([[0, 0], [1, 0]])) tensor([[ 1, 1], [ 4, 3]]) """ ... def gcd(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" gcd(input, other, *, out=None) -> Tensor Computes the element-wise greatest common divisor (GCD) of :attr:`input` and :attr:`other`. Both :attr:`input` and :attr:`other` must have integer types. .. note:: This defines :math:`gcd(0, 0) = 0`. Args: input (Tensor): the input tensor. other (Tensor): the second input tensor Keyword arguments: out (Tensor, optional): the output tensor. Example:: >>> a = torch.tensor([5, 10, 15]) >>> b = torch.tensor([3, 4, 5]) >>> torch.gcd(a, b) tensor([1, 2, 5]) >>> c = torch.tensor([3]) >>> torch.gcd(a, c) tensor([1, 1, 3]) """ ... def gcd_(input: Tensor, other: Tensor) -> Tensor: ... @overload def ge(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" ge(input, other, *, out=None) -> Tensor Computes :math:`\text{input} \geq \text{other}` element-wise. The second argument can be a number or a tensor whose shape is :ref:`broadcastable ` with the first argument. Args: input (Tensor): the tensor to compare other (Tensor or float): the tensor or value to compare Keyword args: out (Tensor, optional): the output tensor. Returns: A boolean tensor that is True where :attr:`input` is greater than or equal to :attr:`other` and False elsewhere Example:: >>> torch.ge(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]])) tensor([[True, True], [False, True]]) """ ... @overload def ge(input: Tensor, other: Union[Number, _complex], *, out: Optional[Tensor] = None) -> Tensor: r""" ge(input, other, *, out=None) -> Tensor Computes :math:`\text{input} \geq \text{other}` element-wise. The second argument can be a number or a tensor whose shape is :ref:`broadcastable ` with the first argument. Args: input (Tensor): the tensor to compare other (Tensor or float): the tensor or value to compare Keyword args: out (Tensor, optional): the output tensor. Returns: A boolean tensor that is True where :attr:`input` is greater than or equal to :attr:`other` and False elsewhere Example:: >>> torch.ge(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]])) tensor([[True, True], [False, True]]) """ ... def geqrf(input: Tensor, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.geqrf: r""" geqrf(input, *, out=None) -> (Tensor, Tensor) This is a low-level function for calling LAPACK's geqrf directly. This function returns a namedtuple (a, tau) as defined in `LAPACK documentation for geqrf`_ . Computes a QR decomposition of :attr:`input`. Both `Q` and `R` matrices are stored in the same output tensor `a`. The elements of `R` are stored on and above the diagonal. Elementary reflectors (or Householder vectors) implicitly defining matrix `Q` are stored below the diagonal. The results of this function can be used together with :func:`torch.linalg.householder_product` to obtain the `Q` matrix or with :func:`torch.ormqr`, which uses an implicit representation of the `Q` matrix, for an efficient matrix-matrix multiplication. See `LAPACK documentation for geqrf`_ for further details. .. note:: See also :func:`torch.linalg.qr`, which computes Q and R matrices, and :func:`torch.linalg.lstsq` with the ``driver="gels"`` option for a function that can solve matrix equations using a QR decomposition. Args: input (Tensor): the input matrix Keyword args: out (tuple, optional): the output tuple of (Tensor, Tensor). Ignored if `None`. Default: `None`. .. _LAPACK documentation for geqrf: http://www.netlib.org/lapack/explore-html/df/dc5/group__variants_g_ecomputational_ga3766ea903391b5cf9008132f7440ec7b.html """ ... def ger(input: Tensor, vec2: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" ger(input, vec2, *, out=None) -> Tensor Alias of :func:`torch.outer`. .. warning:: This function is deprecated and will be removed in a future PyTorch release. Use :func:`torch.outer` instead. """ ... def get_default_dtype() -> _dtype: r""" get_default_dtype() -> torch.dtype Get the current default floating point :class:`torch.dtype`. Example:: >>> torch.get_default_dtype() # initial default for floating point is torch.float32 torch.float32 >>> torch.set_default_dtype(torch.float64) >>> torch.get_default_dtype() # default is now changed to torch.float64 torch.float64 """ ... def get_num_interop_threads() -> _int: r""" get_num_interop_threads() -> int Returns the number of threads used for inter-op parallelism on CPU (e.g. in JIT interpreter) """ ... def get_num_threads() -> _int: r""" get_num_threads() -> int Returns the number of threads used for parallelizing CPU operations """ ... @overload def gradient(input: Tensor, *, spacing: Optional[Union[Number, _complex]] = None, dim: Optional[_int] = None, edge_order: _int = 1) -> Tuple[Tensor, ...]: r""" gradient(input, *, spacing=1, dim=None, edge_order=1) -> List of Tensors Estimates the gradient of a function :math:`g : \mathbb{R}^n \rightarrow \mathbb{R}` in one or more dimensions using the `second-order accurate central differences method `_ and either first or second order estimates at the boundaries. The gradient of :math:`g` is estimated using samples. By default, when :attr:`spacing` is not specified, the samples are entirely described by :attr:`input`, and the mapping of input coordinates to an output is the same as the tensor's mapping of indices to values. For example, for a three-dimensional :attr:`input` the function described is :math:`g : \mathbb{R}^3 \rightarrow \mathbb{R}`, and :math:`g(1, 2, 3)\ == input[1, 2, 3]`. When :attr:`spacing` is specified, it modifies the relationship between :attr:`input` and input coordinates. This is detailed in the "Keyword Arguments" section below. The gradient is estimated by estimating each partial derivative of :math:`g` independently. This estimation is accurate if :math:`g` is in :math:`C^3` (it has at least 3 continuous derivatives), and the estimation can be improved by providing closer samples. Mathematically, the value at each interior point of a partial derivative is estimated using `Taylor’s theorem with remainder `_. Letting :math:`x` be an interior point with :math:`x-h_l` and :math:`x+h_r` be points neighboring it to the left and right respectively, :math:`f(x+h_r)` and :math:`f(x-h_l)` can be estimated using: .. math:: \begin{aligned} f(x+h_r) = f(x) + h_r f'(x) + {h_r}^2 \frac{f''(x)}{2} + {h_r}^3 \frac{f'''(\xi_1)}{6}, \xi_1 \in (x, x+h_r) \\ f(x-h_l) = f(x) - h_l f'(x) + {h_l}^2 \frac{f''(x)}{2} - {h_l}^3 \frac{f'''(\xi_2)}{6}, \xi_2 \in (x, x-h_l) \\ \end{aligned} Using the fact that :math:`f \in C^3` and solving the linear system, we derive: .. math:: f'(x) \approx \frac{ {h_l}^2 f(x+h_r) - {h_r}^2 f(x-h_l) + ({h_r}^2-{h_l}^2 ) f(x) }{ {h_r} {h_l}^2 + {h_r}^2 {h_l} } .. note:: We estimate the gradient of functions in complex domain :math:`g : \mathbb{C}^n \rightarrow \mathbb{C}` in the same way. The value of each partial derivative at the boundary points is computed differently. See edge_order below. Args: input (``Tensor``): the tensor that represents the values of the function Keyword args: spacing (``scalar``, ``list of scalar``, ``list of Tensor``, optional): :attr:`spacing` can be used to modify how the :attr:`input` tensor's indices relate to sample coordinates. If :attr:`spacing` is a scalar then the indices are multiplied by the scalar to produce the coordinates. For example, if :attr:`spacing=2` the indices (1, 2, 3) become coordinates (2, 4, 6). If :attr:`spacing` is a list of scalars then the corresponding indices are multiplied. For example, if :attr:`spacing=(2, -1, 3)` the indices (1, 2, 3) become coordinates (2, -2, 9). Finally, if :attr:`spacing` is a list of one-dimensional tensors then each tensor specifies the coordinates for the corresponding dimension. For example, if the indices are (1, 2, 3) and the tensors are (t0, t1, t2), then the coordinates are (t0[1], t1[2], t2[3]) dim (``int``, ``list of int``, optional): the dimension or dimensions to approximate the gradient over. By default the partial gradient in every dimension is computed. Note that when :attr:`dim` is specified the elements of the :attr:`spacing` argument must correspond with the specified dims." edge_order (``int``, optional): 1 or 2, for `first-order `_ or `second-order `_ estimation of the boundary ("edge") values, respectively. Examples:: >>> # Estimates the gradient of f(x)=x^2 at points [-2, -1, 2, 4] >>> coordinates = (torch.tensor([-2., -1., 1., 4.]),) >>> values = torch.tensor([4., 1., 1., 16.], ) >>> torch.gradient(values, spacing = coordinates) (tensor([-3., -2., 2., 5.]),) >>> # Estimates the gradient of the R^2 -> R function whose samples are >>> # described by the tensor t. Implicit coordinates are [0, 1] for the outermost >>> # dimension and [0, 1, 2, 3] for the innermost dimension, and function estimates >>> # partial derivative for both dimensions. >>> t = torch.tensor([[1, 2, 4, 8], [10, 20, 40, 80]]) >>> torch.gradient(t) (tensor([[ 9., 18., 36., 72.], [ 9., 18., 36., 72.]]), tensor([[ 1.0000, 1.5000, 3.0000, 4.0000], [10.0000, 15.0000, 30.0000, 40.0000]])) >>> # A scalar value for spacing modifies the relationship between tensor indices >>> # and input coordinates by multiplying the indices to find the >>> # coordinates. For example, below the indices of the innermost >>> # 0, 1, 2, 3 translate to coordinates of [0, 2, 4, 6], and the indices of >>> # the outermost dimension 0, 1 translate to coordinates of [0, 2]. >>> torch.gradient(t, spacing = 2.0) # dim = None (implicitly [0, 1]) (tensor([[ 4.5000, 9.0000, 18.0000, 36.0000], [ 4.5000, 9.0000, 18.0000, 36.0000]]), tensor([[ 0.5000, 0.7500, 1.5000, 2.0000], [ 5.0000, 7.5000, 15.0000, 20.0000]])) >>> # doubling the spacing between samples halves the estimated partial gradients. >>> >>> # Estimates only the partial derivative for dimension 1 >>> torch.gradient(t, dim = 1) # spacing = None (implicitly 1.) (tensor([[ 1.0000, 1.5000, 3.0000, 4.0000], [10.0000, 15.0000, 30.0000, 40.0000]]),) >>> # When spacing is a list of scalars, the relationship between the tensor >>> # indices and input coordinates changes based on dimension. >>> # For example, below, the indices of the innermost dimension 0, 1, 2, 3 translate >>> # to coordinates of [0, 3, 6, 9], and the indices of the outermost dimension >>> # 0, 1 translate to coordinates of [0, 2]. >>> torch.gradient(t, spacing = [3., 2.]) (tensor([[ 4.5000, 9.0000, 18.0000, 36.0000], [ 4.5000, 9.0000, 18.0000, 36.0000]]), tensor([[ 0.3333, 0.5000, 1.0000, 1.3333], [ 3.3333, 5.0000, 10.0000, 13.3333]])) >>> # The following example is a replication of the previous one with explicit >>> # coordinates. >>> coords = (torch.tensor([0, 2]), torch.tensor([0, 3, 6, 9])) >>> torch.gradient(t, spacing = coords) (tensor([[ 4.5000, 9.0000, 18.0000, 36.0000], [ 4.5000, 9.0000, 18.0000, 36.0000]]), tensor([[ 0.3333, 0.5000, 1.0000, 1.3333], [ 3.3333, 5.0000, 10.0000, 13.3333]])) """ ... @overload def gradient(input: Tensor, *, spacing: Sequence[Union[Number, _complex]], dim: Optional[_int] = None, edge_order: _int = 1) -> Tuple[Tensor, ...]: r""" gradient(input, *, spacing=1, dim=None, edge_order=1) -> List of Tensors Estimates the gradient of a function :math:`g : \mathbb{R}^n \rightarrow \mathbb{R}` in one or more dimensions using the `second-order accurate central differences method `_ and either first or second order estimates at the boundaries. The gradient of :math:`g` is estimated using samples. By default, when :attr:`spacing` is not specified, the samples are entirely described by :attr:`input`, and the mapping of input coordinates to an output is the same as the tensor's mapping of indices to values. For example, for a three-dimensional :attr:`input` the function described is :math:`g : \mathbb{R}^3 \rightarrow \mathbb{R}`, and :math:`g(1, 2, 3)\ == input[1, 2, 3]`. When :attr:`spacing` is specified, it modifies the relationship between :attr:`input` and input coordinates. This is detailed in the "Keyword Arguments" section below. The gradient is estimated by estimating each partial derivative of :math:`g` independently. This estimation is accurate if :math:`g` is in :math:`C^3` (it has at least 3 continuous derivatives), and the estimation can be improved by providing closer samples. Mathematically, the value at each interior point of a partial derivative is estimated using `Taylor’s theorem with remainder `_. Letting :math:`x` be an interior point with :math:`x-h_l` and :math:`x+h_r` be points neighboring it to the left and right respectively, :math:`f(x+h_r)` and :math:`f(x-h_l)` can be estimated using: .. math:: \begin{aligned} f(x+h_r) = f(x) + h_r f'(x) + {h_r}^2 \frac{f''(x)}{2} + {h_r}^3 \frac{f'''(\xi_1)}{6}, \xi_1 \in (x, x+h_r) \\ f(x-h_l) = f(x) - h_l f'(x) + {h_l}^2 \frac{f''(x)}{2} - {h_l}^3 \frac{f'''(\xi_2)}{6}, \xi_2 \in (x, x-h_l) \\ \end{aligned} Using the fact that :math:`f \in C^3` and solving the linear system, we derive: .. math:: f'(x) \approx \frac{ {h_l}^2 f(x+h_r) - {h_r}^2 f(x-h_l) + ({h_r}^2-{h_l}^2 ) f(x) }{ {h_r} {h_l}^2 + {h_r}^2 {h_l} } .. note:: We estimate the gradient of functions in complex domain :math:`g : \mathbb{C}^n \rightarrow \mathbb{C}` in the same way. The value of each partial derivative at the boundary points is computed differently. See edge_order below. Args: input (``Tensor``): the tensor that represents the values of the function Keyword args: spacing (``scalar``, ``list of scalar``, ``list of Tensor``, optional): :attr:`spacing` can be used to modify how the :attr:`input` tensor's indices relate to sample coordinates. If :attr:`spacing` is a scalar then the indices are multiplied by the scalar to produce the coordinates. For example, if :attr:`spacing=2` the indices (1, 2, 3) become coordinates (2, 4, 6). If :attr:`spacing` is a list of scalars then the corresponding indices are multiplied. For example, if :attr:`spacing=(2, -1, 3)` the indices (1, 2, 3) become coordinates (2, -2, 9). Finally, if :attr:`spacing` is a list of one-dimensional tensors then each tensor specifies the coordinates for the corresponding dimension. For example, if the indices are (1, 2, 3) and the tensors are (t0, t1, t2), then the coordinates are (t0[1], t1[2], t2[3]) dim (``int``, ``list of int``, optional): the dimension or dimensions to approximate the gradient over. By default the partial gradient in every dimension is computed. Note that when :attr:`dim` is specified the elements of the :attr:`spacing` argument must correspond with the specified dims." edge_order (``int``, optional): 1 or 2, for `first-order `_ or `second-order `_ estimation of the boundary ("edge") values, respectively. Examples:: >>> # Estimates the gradient of f(x)=x^2 at points [-2, -1, 2, 4] >>> coordinates = (torch.tensor([-2., -1., 1., 4.]),) >>> values = torch.tensor([4., 1., 1., 16.], ) >>> torch.gradient(values, spacing = coordinates) (tensor([-3., -2., 2., 5.]),) >>> # Estimates the gradient of the R^2 -> R function whose samples are >>> # described by the tensor t. Implicit coordinates are [0, 1] for the outermost >>> # dimension and [0, 1, 2, 3] for the innermost dimension, and function estimates >>> # partial derivative for both dimensions. >>> t = torch.tensor([[1, 2, 4, 8], [10, 20, 40, 80]]) >>> torch.gradient(t) (tensor([[ 9., 18., 36., 72.], [ 9., 18., 36., 72.]]), tensor([[ 1.0000, 1.5000, 3.0000, 4.0000], [10.0000, 15.0000, 30.0000, 40.0000]])) >>> # A scalar value for spacing modifies the relationship between tensor indices >>> # and input coordinates by multiplying the indices to find the >>> # coordinates. For example, below the indices of the innermost >>> # 0, 1, 2, 3 translate to coordinates of [0, 2, 4, 6], and the indices of >>> # the outermost dimension 0, 1 translate to coordinates of [0, 2]. >>> torch.gradient(t, spacing = 2.0) # dim = None (implicitly [0, 1]) (tensor([[ 4.5000, 9.0000, 18.0000, 36.0000], [ 4.5000, 9.0000, 18.0000, 36.0000]]), tensor([[ 0.5000, 0.7500, 1.5000, 2.0000], [ 5.0000, 7.5000, 15.0000, 20.0000]])) >>> # doubling the spacing between samples halves the estimated partial gradients. >>> >>> # Estimates only the partial derivative for dimension 1 >>> torch.gradient(t, dim = 1) # spacing = None (implicitly 1.) (tensor([[ 1.0000, 1.5000, 3.0000, 4.0000], [10.0000, 15.0000, 30.0000, 40.0000]]),) >>> # When spacing is a list of scalars, the relationship between the tensor >>> # indices and input coordinates changes based on dimension. >>> # For example, below, the indices of the innermost dimension 0, 1, 2, 3 translate >>> # to coordinates of [0, 3, 6, 9], and the indices of the outermost dimension >>> # 0, 1 translate to coordinates of [0, 2]. >>> torch.gradient(t, spacing = [3., 2.]) (tensor([[ 4.5000, 9.0000, 18.0000, 36.0000], [ 4.5000, 9.0000, 18.0000, 36.0000]]), tensor([[ 0.3333, 0.5000, 1.0000, 1.3333], [ 3.3333, 5.0000, 10.0000, 13.3333]])) >>> # The following example is a replication of the previous one with explicit >>> # coordinates. >>> coords = (torch.tensor([0, 2]), torch.tensor([0, 3, 6, 9])) >>> torch.gradient(t, spacing = coords) (tensor([[ 4.5000, 9.0000, 18.0000, 36.0000], [ 4.5000, 9.0000, 18.0000, 36.0000]]), tensor([[ 0.3333, 0.5000, 1.0000, 1.3333], [ 3.3333, 5.0000, 10.0000, 13.3333]])) """ ... @overload def gradient(input: Tensor, *, spacing: Sequence[Union[Number, _complex]], dim: _size, edge_order: _int = 1) -> Tuple[Tensor, ...]: r""" gradient(input, *, spacing=1, dim=None, edge_order=1) -> List of Tensors Estimates the gradient of a function :math:`g : \mathbb{R}^n \rightarrow \mathbb{R}` in one or more dimensions using the `second-order accurate central differences method `_ and either first or second order estimates at the boundaries. The gradient of :math:`g` is estimated using samples. By default, when :attr:`spacing` is not specified, the samples are entirely described by :attr:`input`, and the mapping of input coordinates to an output is the same as the tensor's mapping of indices to values. For example, for a three-dimensional :attr:`input` the function described is :math:`g : \mathbb{R}^3 \rightarrow \mathbb{R}`, and :math:`g(1, 2, 3)\ == input[1, 2, 3]`. When :attr:`spacing` is specified, it modifies the relationship between :attr:`input` and input coordinates. This is detailed in the "Keyword Arguments" section below. The gradient is estimated by estimating each partial derivative of :math:`g` independently. This estimation is accurate if :math:`g` is in :math:`C^3` (it has at least 3 continuous derivatives), and the estimation can be improved by providing closer samples. Mathematically, the value at each interior point of a partial derivative is estimated using `Taylor’s theorem with remainder `_. Letting :math:`x` be an interior point with :math:`x-h_l` and :math:`x+h_r` be points neighboring it to the left and right respectively, :math:`f(x+h_r)` and :math:`f(x-h_l)` can be estimated using: .. math:: \begin{aligned} f(x+h_r) = f(x) + h_r f'(x) + {h_r}^2 \frac{f''(x)}{2} + {h_r}^3 \frac{f'''(\xi_1)}{6}, \xi_1 \in (x, x+h_r) \\ f(x-h_l) = f(x) - h_l f'(x) + {h_l}^2 \frac{f''(x)}{2} - {h_l}^3 \frac{f'''(\xi_2)}{6}, \xi_2 \in (x, x-h_l) \\ \end{aligned} Using the fact that :math:`f \in C^3` and solving the linear system, we derive: .. math:: f'(x) \approx \frac{ {h_l}^2 f(x+h_r) - {h_r}^2 f(x-h_l) + ({h_r}^2-{h_l}^2 ) f(x) }{ {h_r} {h_l}^2 + {h_r}^2 {h_l} } .. note:: We estimate the gradient of functions in complex domain :math:`g : \mathbb{C}^n \rightarrow \mathbb{C}` in the same way. The value of each partial derivative at the boundary points is computed differently. See edge_order below. Args: input (``Tensor``): the tensor that represents the values of the function Keyword args: spacing (``scalar``, ``list of scalar``, ``list of Tensor``, optional): :attr:`spacing` can be used to modify how the :attr:`input` tensor's indices relate to sample coordinates. If :attr:`spacing` is a scalar then the indices are multiplied by the scalar to produce the coordinates. For example, if :attr:`spacing=2` the indices (1, 2, 3) become coordinates (2, 4, 6). If :attr:`spacing` is a list of scalars then the corresponding indices are multiplied. For example, if :attr:`spacing=(2, -1, 3)` the indices (1, 2, 3) become coordinates (2, -2, 9). Finally, if :attr:`spacing` is a list of one-dimensional tensors then each tensor specifies the coordinates for the corresponding dimension. For example, if the indices are (1, 2, 3) and the tensors are (t0, t1, t2), then the coordinates are (t0[1], t1[2], t2[3]) dim (``int``, ``list of int``, optional): the dimension or dimensions to approximate the gradient over. By default the partial gradient in every dimension is computed. Note that when :attr:`dim` is specified the elements of the :attr:`spacing` argument must correspond with the specified dims." edge_order (``int``, optional): 1 or 2, for `first-order `_ or `second-order `_ estimation of the boundary ("edge") values, respectively. Examples:: >>> # Estimates the gradient of f(x)=x^2 at points [-2, -1, 2, 4] >>> coordinates = (torch.tensor([-2., -1., 1., 4.]),) >>> values = torch.tensor([4., 1., 1., 16.], ) >>> torch.gradient(values, spacing = coordinates) (tensor([-3., -2., 2., 5.]),) >>> # Estimates the gradient of the R^2 -> R function whose samples are >>> # described by the tensor t. Implicit coordinates are [0, 1] for the outermost >>> # dimension and [0, 1, 2, 3] for the innermost dimension, and function estimates >>> # partial derivative for both dimensions. >>> t = torch.tensor([[1, 2, 4, 8], [10, 20, 40, 80]]) >>> torch.gradient(t) (tensor([[ 9., 18., 36., 72.], [ 9., 18., 36., 72.]]), tensor([[ 1.0000, 1.5000, 3.0000, 4.0000], [10.0000, 15.0000, 30.0000, 40.0000]])) >>> # A scalar value for spacing modifies the relationship between tensor indices >>> # and input coordinates by multiplying the indices to find the >>> # coordinates. For example, below the indices of the innermost >>> # 0, 1, 2, 3 translate to coordinates of [0, 2, 4, 6], and the indices of >>> # the outermost dimension 0, 1 translate to coordinates of [0, 2]. >>> torch.gradient(t, spacing = 2.0) # dim = None (implicitly [0, 1]) (tensor([[ 4.5000, 9.0000, 18.0000, 36.0000], [ 4.5000, 9.0000, 18.0000, 36.0000]]), tensor([[ 0.5000, 0.7500, 1.5000, 2.0000], [ 5.0000, 7.5000, 15.0000, 20.0000]])) >>> # doubling the spacing between samples halves the estimated partial gradients. >>> >>> # Estimates only the partial derivative for dimension 1 >>> torch.gradient(t, dim = 1) # spacing = None (implicitly 1.) (tensor([[ 1.0000, 1.5000, 3.0000, 4.0000], [10.0000, 15.0000, 30.0000, 40.0000]]),) >>> # When spacing is a list of scalars, the relationship between the tensor >>> # indices and input coordinates changes based on dimension. >>> # For example, below, the indices of the innermost dimension 0, 1, 2, 3 translate >>> # to coordinates of [0, 3, 6, 9], and the indices of the outermost dimension >>> # 0, 1 translate to coordinates of [0, 2]. >>> torch.gradient(t, spacing = [3., 2.]) (tensor([[ 4.5000, 9.0000, 18.0000, 36.0000], [ 4.5000, 9.0000, 18.0000, 36.0000]]), tensor([[ 0.3333, 0.5000, 1.0000, 1.3333], [ 3.3333, 5.0000, 10.0000, 13.3333]])) >>> # The following example is a replication of the previous one with explicit >>> # coordinates. >>> coords = (torch.tensor([0, 2]), torch.tensor([0, 3, 6, 9])) >>> torch.gradient(t, spacing = coords) (tensor([[ 4.5000, 9.0000, 18.0000, 36.0000], [ 4.5000, 9.0000, 18.0000, 36.0000]]), tensor([[ 0.3333, 0.5000, 1.0000, 1.3333], [ 3.3333, 5.0000, 10.0000, 13.3333]])) """ ... @overload def gradient(input: Tensor, *, spacing: Union[Tuple[Tensor, ...], List[Tensor]], dim: Optional[_int] = None, edge_order: _int = 1) -> Tuple[Tensor, ...]: r""" gradient(input, *, spacing=1, dim=None, edge_order=1) -> List of Tensors Estimates the gradient of a function :math:`g : \mathbb{R}^n \rightarrow \mathbb{R}` in one or more dimensions using the `second-order accurate central differences method `_ and either first or second order estimates at the boundaries. The gradient of :math:`g` is estimated using samples. By default, when :attr:`spacing` is not specified, the samples are entirely described by :attr:`input`, and the mapping of input coordinates to an output is the same as the tensor's mapping of indices to values. For example, for a three-dimensional :attr:`input` the function described is :math:`g : \mathbb{R}^3 \rightarrow \mathbb{R}`, and :math:`g(1, 2, 3)\ == input[1, 2, 3]`. When :attr:`spacing` is specified, it modifies the relationship between :attr:`input` and input coordinates. This is detailed in the "Keyword Arguments" section below. The gradient is estimated by estimating each partial derivative of :math:`g` independently. This estimation is accurate if :math:`g` is in :math:`C^3` (it has at least 3 continuous derivatives), and the estimation can be improved by providing closer samples. Mathematically, the value at each interior point of a partial derivative is estimated using `Taylor’s theorem with remainder `_. Letting :math:`x` be an interior point with :math:`x-h_l` and :math:`x+h_r` be points neighboring it to the left and right respectively, :math:`f(x+h_r)` and :math:`f(x-h_l)` can be estimated using: .. math:: \begin{aligned} f(x+h_r) = f(x) + h_r f'(x) + {h_r}^2 \frac{f''(x)}{2} + {h_r}^3 \frac{f'''(\xi_1)}{6}, \xi_1 \in (x, x+h_r) \\ f(x-h_l) = f(x) - h_l f'(x) + {h_l}^2 \frac{f''(x)}{2} - {h_l}^3 \frac{f'''(\xi_2)}{6}, \xi_2 \in (x, x-h_l) \\ \end{aligned} Using the fact that :math:`f \in C^3` and solving the linear system, we derive: .. math:: f'(x) \approx \frac{ {h_l}^2 f(x+h_r) - {h_r}^2 f(x-h_l) + ({h_r}^2-{h_l}^2 ) f(x) }{ {h_r} {h_l}^2 + {h_r}^2 {h_l} } .. note:: We estimate the gradient of functions in complex domain :math:`g : \mathbb{C}^n \rightarrow \mathbb{C}` in the same way. The value of each partial derivative at the boundary points is computed differently. See edge_order below. Args: input (``Tensor``): the tensor that represents the values of the function Keyword args: spacing (``scalar``, ``list of scalar``, ``list of Tensor``, optional): :attr:`spacing` can be used to modify how the :attr:`input` tensor's indices relate to sample coordinates. If :attr:`spacing` is a scalar then the indices are multiplied by the scalar to produce the coordinates. For example, if :attr:`spacing=2` the indices (1, 2, 3) become coordinates (2, 4, 6). If :attr:`spacing` is a list of scalars then the corresponding indices are multiplied. For example, if :attr:`spacing=(2, -1, 3)` the indices (1, 2, 3) become coordinates (2, -2, 9). Finally, if :attr:`spacing` is a list of one-dimensional tensors then each tensor specifies the coordinates for the corresponding dimension. For example, if the indices are (1, 2, 3) and the tensors are (t0, t1, t2), then the coordinates are (t0[1], t1[2], t2[3]) dim (``int``, ``list of int``, optional): the dimension or dimensions to approximate the gradient over. By default the partial gradient in every dimension is computed. Note that when :attr:`dim` is specified the elements of the :attr:`spacing` argument must correspond with the specified dims." edge_order (``int``, optional): 1 or 2, for `first-order `_ or `second-order `_ estimation of the boundary ("edge") values, respectively. Examples:: >>> # Estimates the gradient of f(x)=x^2 at points [-2, -1, 2, 4] >>> coordinates = (torch.tensor([-2., -1., 1., 4.]),) >>> values = torch.tensor([4., 1., 1., 16.], ) >>> torch.gradient(values, spacing = coordinates) (tensor([-3., -2., 2., 5.]),) >>> # Estimates the gradient of the R^2 -> R function whose samples are >>> # described by the tensor t. Implicit coordinates are [0, 1] for the outermost >>> # dimension and [0, 1, 2, 3] for the innermost dimension, and function estimates >>> # partial derivative for both dimensions. >>> t = torch.tensor([[1, 2, 4, 8], [10, 20, 40, 80]]) >>> torch.gradient(t) (tensor([[ 9., 18., 36., 72.], [ 9., 18., 36., 72.]]), tensor([[ 1.0000, 1.5000, 3.0000, 4.0000], [10.0000, 15.0000, 30.0000, 40.0000]])) >>> # A scalar value for spacing modifies the relationship between tensor indices >>> # and input coordinates by multiplying the indices to find the >>> # coordinates. For example, below the indices of the innermost >>> # 0, 1, 2, 3 translate to coordinates of [0, 2, 4, 6], and the indices of >>> # the outermost dimension 0, 1 translate to coordinates of [0, 2]. >>> torch.gradient(t, spacing = 2.0) # dim = None (implicitly [0, 1]) (tensor([[ 4.5000, 9.0000, 18.0000, 36.0000], [ 4.5000, 9.0000, 18.0000, 36.0000]]), tensor([[ 0.5000, 0.7500, 1.5000, 2.0000], [ 5.0000, 7.5000, 15.0000, 20.0000]])) >>> # doubling the spacing between samples halves the estimated partial gradients. >>> >>> # Estimates only the partial derivative for dimension 1 >>> torch.gradient(t, dim = 1) # spacing = None (implicitly 1.) (tensor([[ 1.0000, 1.5000, 3.0000, 4.0000], [10.0000, 15.0000, 30.0000, 40.0000]]),) >>> # When spacing is a list of scalars, the relationship between the tensor >>> # indices and input coordinates changes based on dimension. >>> # For example, below, the indices of the innermost dimension 0, 1, 2, 3 translate >>> # to coordinates of [0, 3, 6, 9], and the indices of the outermost dimension >>> # 0, 1 translate to coordinates of [0, 2]. >>> torch.gradient(t, spacing = [3., 2.]) (tensor([[ 4.5000, 9.0000, 18.0000, 36.0000], [ 4.5000, 9.0000, 18.0000, 36.0000]]), tensor([[ 0.3333, 0.5000, 1.0000, 1.3333], [ 3.3333, 5.0000, 10.0000, 13.3333]])) >>> # The following example is a replication of the previous one with explicit >>> # coordinates. >>> coords = (torch.tensor([0, 2]), torch.tensor([0, 3, 6, 9])) >>> torch.gradient(t, spacing = coords) (tensor([[ 4.5000, 9.0000, 18.0000, 36.0000], [ 4.5000, 9.0000, 18.0000, 36.0000]]), tensor([[ 0.3333, 0.5000, 1.0000, 1.3333], [ 3.3333, 5.0000, 10.0000, 13.3333]])) """ ... @overload def gradient(input: Tensor, *, spacing: Union[Number, _complex], dim: _size, edge_order: _int = 1) -> Tuple[Tensor, ...]: r""" gradient(input, *, spacing=1, dim=None, edge_order=1) -> List of Tensors Estimates the gradient of a function :math:`g : \mathbb{R}^n \rightarrow \mathbb{R}` in one or more dimensions using the `second-order accurate central differences method `_ and either first or second order estimates at the boundaries. The gradient of :math:`g` is estimated using samples. By default, when :attr:`spacing` is not specified, the samples are entirely described by :attr:`input`, and the mapping of input coordinates to an output is the same as the tensor's mapping of indices to values. For example, for a three-dimensional :attr:`input` the function described is :math:`g : \mathbb{R}^3 \rightarrow \mathbb{R}`, and :math:`g(1, 2, 3)\ == input[1, 2, 3]`. When :attr:`spacing` is specified, it modifies the relationship between :attr:`input` and input coordinates. This is detailed in the "Keyword Arguments" section below. The gradient is estimated by estimating each partial derivative of :math:`g` independently. This estimation is accurate if :math:`g` is in :math:`C^3` (it has at least 3 continuous derivatives), and the estimation can be improved by providing closer samples. Mathematically, the value at each interior point of a partial derivative is estimated using `Taylor’s theorem with remainder `_. Letting :math:`x` be an interior point with :math:`x-h_l` and :math:`x+h_r` be points neighboring it to the left and right respectively, :math:`f(x+h_r)` and :math:`f(x-h_l)` can be estimated using: .. math:: \begin{aligned} f(x+h_r) = f(x) + h_r f'(x) + {h_r}^2 \frac{f''(x)}{2} + {h_r}^3 \frac{f'''(\xi_1)}{6}, \xi_1 \in (x, x+h_r) \\ f(x-h_l) = f(x) - h_l f'(x) + {h_l}^2 \frac{f''(x)}{2} - {h_l}^3 \frac{f'''(\xi_2)}{6}, \xi_2 \in (x, x-h_l) \\ \end{aligned} Using the fact that :math:`f \in C^3` and solving the linear system, we derive: .. math:: f'(x) \approx \frac{ {h_l}^2 f(x+h_r) - {h_r}^2 f(x-h_l) + ({h_r}^2-{h_l}^2 ) f(x) }{ {h_r} {h_l}^2 + {h_r}^2 {h_l} } .. note:: We estimate the gradient of functions in complex domain :math:`g : \mathbb{C}^n \rightarrow \mathbb{C}` in the same way. The value of each partial derivative at the boundary points is computed differently. See edge_order below. Args: input (``Tensor``): the tensor that represents the values of the function Keyword args: spacing (``scalar``, ``list of scalar``, ``list of Tensor``, optional): :attr:`spacing` can be used to modify how the :attr:`input` tensor's indices relate to sample coordinates. If :attr:`spacing` is a scalar then the indices are multiplied by the scalar to produce the coordinates. For example, if :attr:`spacing=2` the indices (1, 2, 3) become coordinates (2, 4, 6). If :attr:`spacing` is a list of scalars then the corresponding indices are multiplied. For example, if :attr:`spacing=(2, -1, 3)` the indices (1, 2, 3) become coordinates (2, -2, 9). Finally, if :attr:`spacing` is a list of one-dimensional tensors then each tensor specifies the coordinates for the corresponding dimension. For example, if the indices are (1, 2, 3) and the tensors are (t0, t1, t2), then the coordinates are (t0[1], t1[2], t2[3]) dim (``int``, ``list of int``, optional): the dimension or dimensions to approximate the gradient over. By default the partial gradient in every dimension is computed. Note that when :attr:`dim` is specified the elements of the :attr:`spacing` argument must correspond with the specified dims." edge_order (``int``, optional): 1 or 2, for `first-order `_ or `second-order `_ estimation of the boundary ("edge") values, respectively. Examples:: >>> # Estimates the gradient of f(x)=x^2 at points [-2, -1, 2, 4] >>> coordinates = (torch.tensor([-2., -1., 1., 4.]),) >>> values = torch.tensor([4., 1., 1., 16.], ) >>> torch.gradient(values, spacing = coordinates) (tensor([-3., -2., 2., 5.]),) >>> # Estimates the gradient of the R^2 -> R function whose samples are >>> # described by the tensor t. Implicit coordinates are [0, 1] for the outermost >>> # dimension and [0, 1, 2, 3] for the innermost dimension, and function estimates >>> # partial derivative for both dimensions. >>> t = torch.tensor([[1, 2, 4, 8], [10, 20, 40, 80]]) >>> torch.gradient(t) (tensor([[ 9., 18., 36., 72.], [ 9., 18., 36., 72.]]), tensor([[ 1.0000, 1.5000, 3.0000, 4.0000], [10.0000, 15.0000, 30.0000, 40.0000]])) >>> # A scalar value for spacing modifies the relationship between tensor indices >>> # and input coordinates by multiplying the indices to find the >>> # coordinates. For example, below the indices of the innermost >>> # 0, 1, 2, 3 translate to coordinates of [0, 2, 4, 6], and the indices of >>> # the outermost dimension 0, 1 translate to coordinates of [0, 2]. >>> torch.gradient(t, spacing = 2.0) # dim = None (implicitly [0, 1]) (tensor([[ 4.5000, 9.0000, 18.0000, 36.0000], [ 4.5000, 9.0000, 18.0000, 36.0000]]), tensor([[ 0.5000, 0.7500, 1.5000, 2.0000], [ 5.0000, 7.5000, 15.0000, 20.0000]])) >>> # doubling the spacing between samples halves the estimated partial gradients. >>> >>> # Estimates only the partial derivative for dimension 1 >>> torch.gradient(t, dim = 1) # spacing = None (implicitly 1.) (tensor([[ 1.0000, 1.5000, 3.0000, 4.0000], [10.0000, 15.0000, 30.0000, 40.0000]]),) >>> # When spacing is a list of scalars, the relationship between the tensor >>> # indices and input coordinates changes based on dimension. >>> # For example, below, the indices of the innermost dimension 0, 1, 2, 3 translate >>> # to coordinates of [0, 3, 6, 9], and the indices of the outermost dimension >>> # 0, 1 translate to coordinates of [0, 2]. >>> torch.gradient(t, spacing = [3., 2.]) (tensor([[ 4.5000, 9.0000, 18.0000, 36.0000], [ 4.5000, 9.0000, 18.0000, 36.0000]]), tensor([[ 0.3333, 0.5000, 1.0000, 1.3333], [ 3.3333, 5.0000, 10.0000, 13.3333]])) >>> # The following example is a replication of the previous one with explicit >>> # coordinates. >>> coords = (torch.tensor([0, 2]), torch.tensor([0, 3, 6, 9])) >>> torch.gradient(t, spacing = coords) (tensor([[ 4.5000, 9.0000, 18.0000, 36.0000], [ 4.5000, 9.0000, 18.0000, 36.0000]]), tensor([[ 0.3333, 0.5000, 1.0000, 1.3333], [ 3.3333, 5.0000, 10.0000, 13.3333]])) """ ... @overload def gradient(input: Tensor, *, spacing: Union[Tuple[Tensor, ...], List[Tensor]], dim: _size, edge_order: _int = 1) -> Tuple[Tensor, ...]: r""" gradient(input, *, spacing=1, dim=None, edge_order=1) -> List of Tensors Estimates the gradient of a function :math:`g : \mathbb{R}^n \rightarrow \mathbb{R}` in one or more dimensions using the `second-order accurate central differences method `_ and either first or second order estimates at the boundaries. The gradient of :math:`g` is estimated using samples. By default, when :attr:`spacing` is not specified, the samples are entirely described by :attr:`input`, and the mapping of input coordinates to an output is the same as the tensor's mapping of indices to values. For example, for a three-dimensional :attr:`input` the function described is :math:`g : \mathbb{R}^3 \rightarrow \mathbb{R}`, and :math:`g(1, 2, 3)\ == input[1, 2, 3]`. When :attr:`spacing` is specified, it modifies the relationship between :attr:`input` and input coordinates. This is detailed in the "Keyword Arguments" section below. The gradient is estimated by estimating each partial derivative of :math:`g` independently. This estimation is accurate if :math:`g` is in :math:`C^3` (it has at least 3 continuous derivatives), and the estimation can be improved by providing closer samples. Mathematically, the value at each interior point of a partial derivative is estimated using `Taylor’s theorem with remainder `_. Letting :math:`x` be an interior point with :math:`x-h_l` and :math:`x+h_r` be points neighboring it to the left and right respectively, :math:`f(x+h_r)` and :math:`f(x-h_l)` can be estimated using: .. math:: \begin{aligned} f(x+h_r) = f(x) + h_r f'(x) + {h_r}^2 \frac{f''(x)}{2} + {h_r}^3 \frac{f'''(\xi_1)}{6}, \xi_1 \in (x, x+h_r) \\ f(x-h_l) = f(x) - h_l f'(x) + {h_l}^2 \frac{f''(x)}{2} - {h_l}^3 \frac{f'''(\xi_2)}{6}, \xi_2 \in (x, x-h_l) \\ \end{aligned} Using the fact that :math:`f \in C^3` and solving the linear system, we derive: .. math:: f'(x) \approx \frac{ {h_l}^2 f(x+h_r) - {h_r}^2 f(x-h_l) + ({h_r}^2-{h_l}^2 ) f(x) }{ {h_r} {h_l}^2 + {h_r}^2 {h_l} } .. note:: We estimate the gradient of functions in complex domain :math:`g : \mathbb{C}^n \rightarrow \mathbb{C}` in the same way. The value of each partial derivative at the boundary points is computed differently. See edge_order below. Args: input (``Tensor``): the tensor that represents the values of the function Keyword args: spacing (``scalar``, ``list of scalar``, ``list of Tensor``, optional): :attr:`spacing` can be used to modify how the :attr:`input` tensor's indices relate to sample coordinates. If :attr:`spacing` is a scalar then the indices are multiplied by the scalar to produce the coordinates. For example, if :attr:`spacing=2` the indices (1, 2, 3) become coordinates (2, 4, 6). If :attr:`spacing` is a list of scalars then the corresponding indices are multiplied. For example, if :attr:`spacing=(2, -1, 3)` the indices (1, 2, 3) become coordinates (2, -2, 9). Finally, if :attr:`spacing` is a list of one-dimensional tensors then each tensor specifies the coordinates for the corresponding dimension. For example, if the indices are (1, 2, 3) and the tensors are (t0, t1, t2), then the coordinates are (t0[1], t1[2], t2[3]) dim (``int``, ``list of int``, optional): the dimension or dimensions to approximate the gradient over. By default the partial gradient in every dimension is computed. Note that when :attr:`dim` is specified the elements of the :attr:`spacing` argument must correspond with the specified dims." edge_order (``int``, optional): 1 or 2, for `first-order `_ or `second-order `_ estimation of the boundary ("edge") values, respectively. Examples:: >>> # Estimates the gradient of f(x)=x^2 at points [-2, -1, 2, 4] >>> coordinates = (torch.tensor([-2., -1., 1., 4.]),) >>> values = torch.tensor([4., 1., 1., 16.], ) >>> torch.gradient(values, spacing = coordinates) (tensor([-3., -2., 2., 5.]),) >>> # Estimates the gradient of the R^2 -> R function whose samples are >>> # described by the tensor t. Implicit coordinates are [0, 1] for the outermost >>> # dimension and [0, 1, 2, 3] for the innermost dimension, and function estimates >>> # partial derivative for both dimensions. >>> t = torch.tensor([[1, 2, 4, 8], [10, 20, 40, 80]]) >>> torch.gradient(t) (tensor([[ 9., 18., 36., 72.], [ 9., 18., 36., 72.]]), tensor([[ 1.0000, 1.5000, 3.0000, 4.0000], [10.0000, 15.0000, 30.0000, 40.0000]])) >>> # A scalar value for spacing modifies the relationship between tensor indices >>> # and input coordinates by multiplying the indices to find the >>> # coordinates. For example, below the indices of the innermost >>> # 0, 1, 2, 3 translate to coordinates of [0, 2, 4, 6], and the indices of >>> # the outermost dimension 0, 1 translate to coordinates of [0, 2]. >>> torch.gradient(t, spacing = 2.0) # dim = None (implicitly [0, 1]) (tensor([[ 4.5000, 9.0000, 18.0000, 36.0000], [ 4.5000, 9.0000, 18.0000, 36.0000]]), tensor([[ 0.5000, 0.7500, 1.5000, 2.0000], [ 5.0000, 7.5000, 15.0000, 20.0000]])) >>> # doubling the spacing between samples halves the estimated partial gradients. >>> >>> # Estimates only the partial derivative for dimension 1 >>> torch.gradient(t, dim = 1) # spacing = None (implicitly 1.) (tensor([[ 1.0000, 1.5000, 3.0000, 4.0000], [10.0000, 15.0000, 30.0000, 40.0000]]),) >>> # When spacing is a list of scalars, the relationship between the tensor >>> # indices and input coordinates changes based on dimension. >>> # For example, below, the indices of the innermost dimension 0, 1, 2, 3 translate >>> # to coordinates of [0, 3, 6, 9], and the indices of the outermost dimension >>> # 0, 1 translate to coordinates of [0, 2]. >>> torch.gradient(t, spacing = [3., 2.]) (tensor([[ 4.5000, 9.0000, 18.0000, 36.0000], [ 4.5000, 9.0000, 18.0000, 36.0000]]), tensor([[ 0.3333, 0.5000, 1.0000, 1.3333], [ 3.3333, 5.0000, 10.0000, 13.3333]])) >>> # The following example is a replication of the previous one with explicit >>> # coordinates. >>> coords = (torch.tensor([0, 2]), torch.tensor([0, 3, 6, 9])) >>> torch.gradient(t, spacing = coords) (tensor([[ 4.5000, 9.0000, 18.0000, 36.0000], [ 4.5000, 9.0000, 18.0000, 36.0000]]), tensor([[ 0.3333, 0.5000, 1.0000, 1.3333], [ 3.3333, 5.0000, 10.0000, 13.3333]])) """ ... @overload def gradient(input: Tensor, *, dim: _size, edge_order: _int = 1) -> Tuple[Tensor, ...]: r""" gradient(input, *, spacing=1, dim=None, edge_order=1) -> List of Tensors Estimates the gradient of a function :math:`g : \mathbb{R}^n \rightarrow \mathbb{R}` in one or more dimensions using the `second-order accurate central differences method `_ and either first or second order estimates at the boundaries. The gradient of :math:`g` is estimated using samples. By default, when :attr:`spacing` is not specified, the samples are entirely described by :attr:`input`, and the mapping of input coordinates to an output is the same as the tensor's mapping of indices to values. For example, for a three-dimensional :attr:`input` the function described is :math:`g : \mathbb{R}^3 \rightarrow \mathbb{R}`, and :math:`g(1, 2, 3)\ == input[1, 2, 3]`. When :attr:`spacing` is specified, it modifies the relationship between :attr:`input` and input coordinates. This is detailed in the "Keyword Arguments" section below. The gradient is estimated by estimating each partial derivative of :math:`g` independently. This estimation is accurate if :math:`g` is in :math:`C^3` (it has at least 3 continuous derivatives), and the estimation can be improved by providing closer samples. Mathematically, the value at each interior point of a partial derivative is estimated using `Taylor’s theorem with remainder `_. Letting :math:`x` be an interior point with :math:`x-h_l` and :math:`x+h_r` be points neighboring it to the left and right respectively, :math:`f(x+h_r)` and :math:`f(x-h_l)` can be estimated using: .. math:: \begin{aligned} f(x+h_r) = f(x) + h_r f'(x) + {h_r}^2 \frac{f''(x)}{2} + {h_r}^3 \frac{f'''(\xi_1)}{6}, \xi_1 \in (x, x+h_r) \\ f(x-h_l) = f(x) - h_l f'(x) + {h_l}^2 \frac{f''(x)}{2} - {h_l}^3 \frac{f'''(\xi_2)}{6}, \xi_2 \in (x, x-h_l) \\ \end{aligned} Using the fact that :math:`f \in C^3` and solving the linear system, we derive: .. math:: f'(x) \approx \frac{ {h_l}^2 f(x+h_r) - {h_r}^2 f(x-h_l) + ({h_r}^2-{h_l}^2 ) f(x) }{ {h_r} {h_l}^2 + {h_r}^2 {h_l} } .. note:: We estimate the gradient of functions in complex domain :math:`g : \mathbb{C}^n \rightarrow \mathbb{C}` in the same way. The value of each partial derivative at the boundary points is computed differently. See edge_order below. Args: input (``Tensor``): the tensor that represents the values of the function Keyword args: spacing (``scalar``, ``list of scalar``, ``list of Tensor``, optional): :attr:`spacing` can be used to modify how the :attr:`input` tensor's indices relate to sample coordinates. If :attr:`spacing` is a scalar then the indices are multiplied by the scalar to produce the coordinates. For example, if :attr:`spacing=2` the indices (1, 2, 3) become coordinates (2, 4, 6). If :attr:`spacing` is a list of scalars then the corresponding indices are multiplied. For example, if :attr:`spacing=(2, -1, 3)` the indices (1, 2, 3) become coordinates (2, -2, 9). Finally, if :attr:`spacing` is a list of one-dimensional tensors then each tensor specifies the coordinates for the corresponding dimension. For example, if the indices are (1, 2, 3) and the tensors are (t0, t1, t2), then the coordinates are (t0[1], t1[2], t2[3]) dim (``int``, ``list of int``, optional): the dimension or dimensions to approximate the gradient over. By default the partial gradient in every dimension is computed. Note that when :attr:`dim` is specified the elements of the :attr:`spacing` argument must correspond with the specified dims." edge_order (``int``, optional): 1 or 2, for `first-order `_ or `second-order `_ estimation of the boundary ("edge") values, respectively. Examples:: >>> # Estimates the gradient of f(x)=x^2 at points [-2, -1, 2, 4] >>> coordinates = (torch.tensor([-2., -1., 1., 4.]),) >>> values = torch.tensor([4., 1., 1., 16.], ) >>> torch.gradient(values, spacing = coordinates) (tensor([-3., -2., 2., 5.]),) >>> # Estimates the gradient of the R^2 -> R function whose samples are >>> # described by the tensor t. Implicit coordinates are [0, 1] for the outermost >>> # dimension and [0, 1, 2, 3] for the innermost dimension, and function estimates >>> # partial derivative for both dimensions. >>> t = torch.tensor([[1, 2, 4, 8], [10, 20, 40, 80]]) >>> torch.gradient(t) (tensor([[ 9., 18., 36., 72.], [ 9., 18., 36., 72.]]), tensor([[ 1.0000, 1.5000, 3.0000, 4.0000], [10.0000, 15.0000, 30.0000, 40.0000]])) >>> # A scalar value for spacing modifies the relationship between tensor indices >>> # and input coordinates by multiplying the indices to find the >>> # coordinates. For example, below the indices of the innermost >>> # 0, 1, 2, 3 translate to coordinates of [0, 2, 4, 6], and the indices of >>> # the outermost dimension 0, 1 translate to coordinates of [0, 2]. >>> torch.gradient(t, spacing = 2.0) # dim = None (implicitly [0, 1]) (tensor([[ 4.5000, 9.0000, 18.0000, 36.0000], [ 4.5000, 9.0000, 18.0000, 36.0000]]), tensor([[ 0.5000, 0.7500, 1.5000, 2.0000], [ 5.0000, 7.5000, 15.0000, 20.0000]])) >>> # doubling the spacing between samples halves the estimated partial gradients. >>> >>> # Estimates only the partial derivative for dimension 1 >>> torch.gradient(t, dim = 1) # spacing = None (implicitly 1.) (tensor([[ 1.0000, 1.5000, 3.0000, 4.0000], [10.0000, 15.0000, 30.0000, 40.0000]]),) >>> # When spacing is a list of scalars, the relationship between the tensor >>> # indices and input coordinates changes based on dimension. >>> # For example, below, the indices of the innermost dimension 0, 1, 2, 3 translate >>> # to coordinates of [0, 3, 6, 9], and the indices of the outermost dimension >>> # 0, 1 translate to coordinates of [0, 2]. >>> torch.gradient(t, spacing = [3., 2.]) (tensor([[ 4.5000, 9.0000, 18.0000, 36.0000], [ 4.5000, 9.0000, 18.0000, 36.0000]]), tensor([[ 0.3333, 0.5000, 1.0000, 1.3333], [ 3.3333, 5.0000, 10.0000, 13.3333]])) >>> # The following example is a replication of the previous one with explicit >>> # coordinates. >>> coords = (torch.tensor([0, 2]), torch.tensor([0, 3, 6, 9])) >>> torch.gradient(t, spacing = coords) (tensor([[ 4.5000, 9.0000, 18.0000, 36.0000], [ 4.5000, 9.0000, 18.0000, 36.0000]]), tensor([[ 0.3333, 0.5000, 1.0000, 1.3333], [ 3.3333, 5.0000, 10.0000, 13.3333]])) """ ... @overload def greater(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" greater(input, other, *, out=None) -> Tensor Alias for :func:`torch.gt`. """ ... @overload def greater(input: Tensor, other: Union[Number, _complex], *, out: Optional[Tensor] = None) -> Tensor: r""" greater(input, other, *, out=None) -> Tensor Alias for :func:`torch.gt`. """ ... @overload def greater_equal(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" greater_equal(input, other, *, out=None) -> Tensor Alias for :func:`torch.ge`. """ ... @overload def greater_equal(input: Tensor, other: Union[Number, _complex], *, out: Optional[Tensor] = None) -> Tensor: r""" greater_equal(input, other, *, out=None) -> Tensor Alias for :func:`torch.ge`. """ ... def grid_sampler(input: Tensor, grid: Tensor, interpolation_mode: _int, padding_mode: _int, align_corners: _bool) -> Tensor: ... def grid_sampler_2d(input: Tensor, grid: Tensor, interpolation_mode: _int, padding_mode: _int, align_corners: _bool) -> Tensor: ... def grid_sampler_3d(input: Tensor, grid: Tensor, interpolation_mode: _int, padding_mode: _int, align_corners: _bool) -> Tensor: ... def group_norm(input: Tensor, num_groups: _int, weight: Optional[Tensor] = None, bias: Optional[Tensor] = None, eps: _float = 1e-05, cudnn_enabled: _bool = True) -> Tensor: ... @overload def gru(data: Tensor, batch_sizes: Tensor, hx: Tensor, params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: _bool, num_layers: _int, dropout: _float, train: _bool, bidirectional: _bool) -> Tuple[Tensor, Tensor]: ... @overload def gru(input: Tensor, hx: Tensor, params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: _bool, num_layers: _int, dropout: _float, train: _bool, bidirectional: _bool, batch_first: _bool) -> Tuple[Tensor, Tensor]: ... def gru_cell(input: Tensor, hx: Tensor, w_ih: Tensor, w_hh: Tensor, b_ih: Optional[Tensor] = None, b_hh: Optional[Tensor] = None) -> Tensor: ... @overload def gt(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" gt(input, other, *, out=None) -> Tensor Computes :math:`\text{input} > \text{other}` element-wise. The second argument can be a number or a tensor whose shape is :ref:`broadcastable ` with the first argument. Args: input (Tensor): the tensor to compare other (Tensor or float): the tensor or value to compare Keyword args: out (Tensor, optional): the output tensor. Returns: A boolean tensor that is True where :attr:`input` is greater than :attr:`other` and False elsewhere Example:: >>> torch.gt(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]])) tensor([[False, True], [False, False]]) """ ... @overload def gt(input: Tensor, other: Union[Number, _complex], *, out: Optional[Tensor] = None) -> Tensor: r""" gt(input, other, *, out=None) -> Tensor Computes :math:`\text{input} > \text{other}` element-wise. The second argument can be a number or a tensor whose shape is :ref:`broadcastable ` with the first argument. Args: input (Tensor): the tensor to compare other (Tensor or float): the tensor or value to compare Keyword args: out (Tensor, optional): the output tensor. Returns: A boolean tensor that is True where :attr:`input` is greater than :attr:`other` and False elsewhere Example:: >>> torch.gt(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]])) tensor([[False, True], [False, False]]) """ ... @overload def hamming_window(window_length: _int, *, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" hamming_window(window_length, periodic=True, alpha=0.54, beta=0.46, *, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor Hamming window function. .. math:: w[n] = \alpha - \beta\ \cos \left( \frac{2 \pi n}{N - 1} \right), where :math:`N` is the full window size. The input :attr:`window_length` is a positive integer controlling the returned window size. :attr:`periodic` flag determines whether the returned window trims off the last duplicate value from the symmetric window and is ready to be used as a periodic window with functions like :meth:`torch.stft`. Therefore, if :attr:`periodic` is true, the :math:`N` in above formula is in fact :math:`\text{window\_length} + 1`. Also, we always have ``torch.hamming_window(L, periodic=True)`` equal to ``torch.hamming_window(L + 1, periodic=False)[:-1])``. .. note:: If :attr:`window_length` :math:`=1`, the returned window contains a single value 1. .. note:: This is a generalized version of :meth:`torch.hann_window`. Arguments: window_length (int): the size of returned window periodic (bool, optional): If True, returns a window to be used as periodic function. If False, return a symmetric window. alpha (float, optional): The coefficient :math:`\alpha` in the equation above beta (float, optional): The coefficient :math:`\beta` in the equation above Keyword args: dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). Only floating point types are supported. layout (:class:`torch.layout`, optional): the desired layout of returned window tensor. Only ``torch.strided`` (dense layout) is supported. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. Returns: Tensor: A 1-D tensor of size :math:`(\text{window\_length},)` containing the window. """ ... @overload def hamming_window(window_length: _int, periodic: _bool, *, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" hamming_window(window_length, periodic=True, alpha=0.54, beta=0.46, *, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor Hamming window function. .. math:: w[n] = \alpha - \beta\ \cos \left( \frac{2 \pi n}{N - 1} \right), where :math:`N` is the full window size. The input :attr:`window_length` is a positive integer controlling the returned window size. :attr:`periodic` flag determines whether the returned window trims off the last duplicate value from the symmetric window and is ready to be used as a periodic window with functions like :meth:`torch.stft`. Therefore, if :attr:`periodic` is true, the :math:`N` in above formula is in fact :math:`\text{window\_length} + 1`. Also, we always have ``torch.hamming_window(L, periodic=True)`` equal to ``torch.hamming_window(L + 1, periodic=False)[:-1])``. .. note:: If :attr:`window_length` :math:`=1`, the returned window contains a single value 1. .. note:: This is a generalized version of :meth:`torch.hann_window`. Arguments: window_length (int): the size of returned window periodic (bool, optional): If True, returns a window to be used as periodic function. If False, return a symmetric window. alpha (float, optional): The coefficient :math:`\alpha` in the equation above beta (float, optional): The coefficient :math:`\beta` in the equation above Keyword args: dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). Only floating point types are supported. layout (:class:`torch.layout`, optional): the desired layout of returned window tensor. Only ``torch.strided`` (dense layout) is supported. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. Returns: Tensor: A 1-D tensor of size :math:`(\text{window\_length},)` containing the window. """ ... @overload def hamming_window(window_length: _int, periodic: _bool, alpha: _float, *, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" hamming_window(window_length, periodic=True, alpha=0.54, beta=0.46, *, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor Hamming window function. .. math:: w[n] = \alpha - \beta\ \cos \left( \frac{2 \pi n}{N - 1} \right), where :math:`N` is the full window size. The input :attr:`window_length` is a positive integer controlling the returned window size. :attr:`periodic` flag determines whether the returned window trims off the last duplicate value from the symmetric window and is ready to be used as a periodic window with functions like :meth:`torch.stft`. Therefore, if :attr:`periodic` is true, the :math:`N` in above formula is in fact :math:`\text{window\_length} + 1`. Also, we always have ``torch.hamming_window(L, periodic=True)`` equal to ``torch.hamming_window(L + 1, periodic=False)[:-1])``. .. note:: If :attr:`window_length` :math:`=1`, the returned window contains a single value 1. .. note:: This is a generalized version of :meth:`torch.hann_window`. Arguments: window_length (int): the size of returned window periodic (bool, optional): If True, returns a window to be used as periodic function. If False, return a symmetric window. alpha (float, optional): The coefficient :math:`\alpha` in the equation above beta (float, optional): The coefficient :math:`\beta` in the equation above Keyword args: dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). Only floating point types are supported. layout (:class:`torch.layout`, optional): the desired layout of returned window tensor. Only ``torch.strided`` (dense layout) is supported. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. Returns: Tensor: A 1-D tensor of size :math:`(\text{window\_length},)` containing the window. """ ... @overload def hamming_window(window_length: _int, periodic: _bool, alpha: _float, beta: _float, *, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" hamming_window(window_length, periodic=True, alpha=0.54, beta=0.46, *, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor Hamming window function. .. math:: w[n] = \alpha - \beta\ \cos \left( \frac{2 \pi n}{N - 1} \right), where :math:`N` is the full window size. The input :attr:`window_length` is a positive integer controlling the returned window size. :attr:`periodic` flag determines whether the returned window trims off the last duplicate value from the symmetric window and is ready to be used as a periodic window with functions like :meth:`torch.stft`. Therefore, if :attr:`periodic` is true, the :math:`N` in above formula is in fact :math:`\text{window\_length} + 1`. Also, we always have ``torch.hamming_window(L, periodic=True)`` equal to ``torch.hamming_window(L + 1, periodic=False)[:-1])``. .. note:: If :attr:`window_length` :math:`=1`, the returned window contains a single value 1. .. note:: This is a generalized version of :meth:`torch.hann_window`. Arguments: window_length (int): the size of returned window periodic (bool, optional): If True, returns a window to be used as periodic function. If False, return a symmetric window. alpha (float, optional): The coefficient :math:`\alpha` in the equation above beta (float, optional): The coefficient :math:`\beta` in the equation above Keyword args: dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). Only floating point types are supported. layout (:class:`torch.layout`, optional): the desired layout of returned window tensor. Only ``torch.strided`` (dense layout) is supported. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. Returns: Tensor: A 1-D tensor of size :math:`(\text{window\_length},)` containing the window. """ ... @overload def hann_window(window_length: _int, *, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" hann_window(window_length, periodic=True, *, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor Hann window function. .. math:: w[n] = \frac{1}{2}\ \left[1 - \cos \left( \frac{2 \pi n}{N - 1} \right)\right] = \sin^2 \left( \frac{\pi n}{N - 1} \right), where :math:`N` is the full window size. The input :attr:`window_length` is a positive integer controlling the returned window size. :attr:`periodic` flag determines whether the returned window trims off the last duplicate value from the symmetric window and is ready to be used as a periodic window with functions like :meth:`torch.stft`. Therefore, if :attr:`periodic` is true, the :math:`N` in above formula is in fact :math:`\text{window\_length} + 1`. Also, we always have ``torch.hann_window(L, periodic=True)`` equal to ``torch.hann_window(L + 1, periodic=False)[:-1])``. .. note:: If :attr:`window_length` :math:`=1`, the returned window contains a single value 1. Arguments: window_length (int): the size of returned window periodic (bool, optional): If True, returns a window to be used as periodic function. If False, return a symmetric window. Keyword args: dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). Only floating point types are supported. layout (:class:`torch.layout`, optional): the desired layout of returned window tensor. Only ``torch.strided`` (dense layout) is supported. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. Returns: Tensor: A 1-D tensor of size :math:`(\text{window\_length},)` containing the window """ ... @overload def hann_window(window_length: _int, periodic: _bool, *, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" hann_window(window_length, periodic=True, *, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor Hann window function. .. math:: w[n] = \frac{1}{2}\ \left[1 - \cos \left( \frac{2 \pi n}{N - 1} \right)\right] = \sin^2 \left( \frac{\pi n}{N - 1} \right), where :math:`N` is the full window size. The input :attr:`window_length` is a positive integer controlling the returned window size. :attr:`periodic` flag determines whether the returned window trims off the last duplicate value from the symmetric window and is ready to be used as a periodic window with functions like :meth:`torch.stft`. Therefore, if :attr:`periodic` is true, the :math:`N` in above formula is in fact :math:`\text{window\_length} + 1`. Also, we always have ``torch.hann_window(L, periodic=True)`` equal to ``torch.hann_window(L + 1, periodic=False)[:-1])``. .. note:: If :attr:`window_length` :math:`=1`, the returned window contains a single value 1. Arguments: window_length (int): the size of returned window periodic (bool, optional): If True, returns a window to be used as periodic function. If False, return a symmetric window. Keyword args: dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). Only floating point types are supported. layout (:class:`torch.layout`, optional): the desired layout of returned window tensor. Only ``torch.strided`` (dense layout) is supported. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. Returns: Tensor: A 1-D tensor of size :math:`(\text{window\_length},)` containing the window """ ... def hardshrink(input: Tensor, lambd: Union[Number, _complex] = 0.5, *, out: Optional[Tensor] = None) -> Tensor: ... def heaviside(input: Tensor, values: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" heaviside(input, values, *, out=None) -> Tensor Computes the Heaviside step function for each element in :attr:`input`. The Heaviside step function is defined as: .. math:: \text{{heaviside}}(input, values) = \begin{cases} 0, & \text{if input < 0}\\ values, & \text{if input == 0}\\ 1, & \text{if input > 0} \end{cases} Args: input (Tensor): the input tensor. values (Tensor): The values to use where :attr:`input` is zero. Keyword arguments: out (Tensor, optional): the output tensor. Example:: >>> input = torch.tensor([-1.5, 0, 2.0]) >>> values = torch.tensor([0.5]) >>> torch.heaviside(input, values) tensor([0.0000, 0.5000, 1.0000]) >>> values = torch.tensor([1.2, -2.0, 3.5]) >>> torch.heaviside(input, values) tensor([0., -2., 1.]) """ ... def hinge_embedding_loss(input: Tensor, target: Tensor, margin: _float = 1.0, reduction: _int = 1) -> Tensor: ... def histc(input: Tensor, bins: _int = 100, min: Union[Number, _complex] = 0, max: Union[Number, _complex] = 0, *, out: Optional[Tensor] = None) -> Tensor: r""" histc(input, bins=100, min=0, max=0, *, out=None) -> Tensor Computes the histogram of a tensor. The elements are sorted into equal width bins between :attr:`min` and :attr:`max`. If :attr:`min` and :attr:`max` are both zero, the minimum and maximum values of the data are used. Elements lower than min and higher than max and ``NaN`` elements are ignored. Args: input (Tensor): the input tensor. bins (int): number of histogram bins min (Scalar): lower end of the range (inclusive) max (Scalar): upper end of the range (inclusive) Keyword args: out (Tensor, optional): the output tensor. Returns: Tensor: Histogram represented as a tensor Example:: >>> torch.histc(torch.tensor([1., 2, 1]), bins=4, min=0, max=3) tensor([ 0., 2., 1., 0.]) """ ... @overload def histogram(input: Tensor, bins: Tensor, *, weight: Optional[Tensor] = None, density: _bool = False, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.histogram: r""" histogram(input, bins, *, range=None, weight=None, density=False, out=None) -> (Tensor, Tensor) Computes a histogram of the values in a tensor. :attr:`bins` can be an integer or a 1D tensor. If :attr:`bins` is an int, it specifies the number of equal-width bins. By default, the lower and upper range of the bins is determined by the minimum and maximum elements of the input tensor. The :attr:`range` argument can be provided to specify a range for the bins. If :attr:`bins` is a 1D tensor, it specifies the sequence of bin edges including the rightmost edge. It should contain at least 2 elements and its elements should be increasing. Args: input (Tensor): the input tensor. bins: int or 1D Tensor. If int, defines the number of equal-width bins. If tensor, defines the sequence of bin edges including the rightmost edge. Keyword args: range (tuple of float): Defines the range of the bins. weight (Tensor): If provided, weight should have the same shape as input. Each value in input contributes its associated weight towards its bin's result. density (bool): If False, the result will contain the count (or total weight) in each bin. If True, the result is the value of the probability density function over the bins, normalized such that the integral over the range of the bins is 1. out (Tensor, optional): the output tensor. (tuple, optional): The result tuple of two output tensors (hist, bin_edges). Returns: hist (Tensor): 1D Tensor containing the values of the histogram. bin_edges(Tensor): 1D Tensor containing the edges of the histogram bins. Example:: >>> torch.histogram(torch.tensor([1., 2, 1]), bins=4, range=(0., 3.), weight=torch.tensor([1., 2., 4.])) (tensor([ 0., 5., 2., 0.]), tensor([0., 0.75, 1.5, 2.25, 3.])) >>> torch.histogram(torch.tensor([1., 2, 1]), bins=4, range=(0., 3.), weight=torch.tensor([1., 2., 4.]), density=True) (tensor([ 0., 0.9524, 0.3810, 0.]), tensor([0., 0.75, 1.5, 2.25, 3.])) """ ... @overload def histogram(input: Tensor, bins: _int = 100, *, range: Optional[Sequence[_float]] = None, weight: Optional[Tensor] = None, density: _bool = False, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.histogram: r""" histogram(input, bins, *, range=None, weight=None, density=False, out=None) -> (Tensor, Tensor) Computes a histogram of the values in a tensor. :attr:`bins` can be an integer or a 1D tensor. If :attr:`bins` is an int, it specifies the number of equal-width bins. By default, the lower and upper range of the bins is determined by the minimum and maximum elements of the input tensor. The :attr:`range` argument can be provided to specify a range for the bins. If :attr:`bins` is a 1D tensor, it specifies the sequence of bin edges including the rightmost edge. It should contain at least 2 elements and its elements should be increasing. Args: input (Tensor): the input tensor. bins: int or 1D Tensor. If int, defines the number of equal-width bins. If tensor, defines the sequence of bin edges including the rightmost edge. Keyword args: range (tuple of float): Defines the range of the bins. weight (Tensor): If provided, weight should have the same shape as input. Each value in input contributes its associated weight towards its bin's result. density (bool): If False, the result will contain the count (or total weight) in each bin. If True, the result is the value of the probability density function over the bins, normalized such that the integral over the range of the bins is 1. out (Tensor, optional): the output tensor. (tuple, optional): The result tuple of two output tensors (hist, bin_edges). Returns: hist (Tensor): 1D Tensor containing the values of the histogram. bin_edges(Tensor): 1D Tensor containing the edges of the histogram bins. Example:: >>> torch.histogram(torch.tensor([1., 2, 1]), bins=4, range=(0., 3.), weight=torch.tensor([1., 2., 4.])) (tensor([ 0., 5., 2., 0.]), tensor([0., 0.75, 1.5, 2.25, 3.])) >>> torch.histogram(torch.tensor([1., 2, 1]), bins=4, range=(0., 3.), weight=torch.tensor([1., 2., 4.]), density=True) (tensor([ 0., 0.9524, 0.3810, 0.]), tensor([0., 0.75, 1.5, 2.25, 3.])) """ ... @overload def histogramdd(input: Tensor, bins: _int, range: Optional[Sequence[_float]] = None, weight: Optional[Tensor] = None, density: _bool = False) -> torch.return_types.histogramdd: r""" histogramdd(input, bins, *, range=None, weight=None, density=False, out=None) -> (Tensor, Tensor[]) Computes a multi-dimensional histogram of the values in a tensor. Interprets the elements of an input tensor whose innermost dimension has size N as a collection of N-dimensional points. Maps each of the points into a set of N-dimensional bins and returns the number of points (or total weight) in each bin. :attr:`input` must be a tensor with at least 2 dimensions. If input has shape (M, N), each of its M rows defines a point in N-dimensional space. If input has three or more dimensions, all but the last dimension are flattened. Each dimension is independently associated with its own strictly increasing sequence of bin edges. Bin edges may be specified explicitly by passing a sequence of 1D tensors. Alternatively, bin edges may be constructed automatically by passing a sequence of integers specifying the number of equal-width bins in each dimension. For each N-dimensional point in input: - Each of its coordinates is binned independently among the bin edges corresponding to its dimension - Binning results are combined to identify the N-dimensional bin (if any) into which the point falls - If the point falls into a bin, the bin's count (or total weight) is incremented - Points which do not fall into any bin do not contribute to the output :attr:`bins` can be a sequence of N 1D tensors, a sequence of N ints, or a single int. If :attr:`bins` is a sequence of N 1D tensors, it explicitly specifies the N sequences of bin edges. Each 1D tensor should contain a strictly increasing sequence with at least one element. A sequence of K bin edges defines K-1 bins, explicitly specifying the left and right edges of all bins. Every bin is exclusive of its left edge. Only the rightmost bin is inclusive of its right edge. If :attr:`bins` is a sequence of N ints, it specifies the number of equal-width bins in each dimension. By default, the leftmost and rightmost bin edges in each dimension are determined by the minimum and maximum elements of the input tensor in the corresponding dimension. The :attr:`range` argument can be provided to manually specify the leftmost and rightmost bin edges in each dimension. If :attr:`bins` is an int, it specifies the number of equal-width bins for all dimensions. .. note:: See also :func:`torch.histogram`, which specifically computes 1D histograms. While :func:`torch.histogramdd` infers the dimensionality of its bins and binned values from the shape of :attr:`input`, :func:`torch.histogram` accepts and flattens :attr:`input` of any shape. Args: input (Tensor): the input tensor. bins: Tensor[], int[], or int. If Tensor[], defines the sequences of bin edges. If int[], defines the number of equal-width bins in each dimension. If int, defines the number of equal-width bins for all dimensions. Keyword args: range (sequence of float): Defines the leftmost and rightmost bin edges in each dimension. weight (Tensor): By default, each value in the input has weight 1. If a weight tensor is passed, each N-dimensional coordinate in input contributes its associated weight towards its bin's result. The weight tensor should have the same shape as the :attr:`input` tensor excluding its innermost dimension N. density (bool): If False (default), the result will contain the count (or total weight) in each bin. If True, each count (weight) is divided by the total count (total weight), then divided by the volume of its associated bin. Returns: hist (Tensor): N-dimensional Tensor containing the values of the histogram. bin_edges(Tensor[]): sequence of N 1D Tensors containing the bin edges. Example:: >>> torch.histogramdd(torch.tensor([[0., 1.], [1., 0.], [2., 0.], [2., 2.]]), bins=[3, 3], ... weight=torch.tensor([1., 2., 4., 8.])) torch.return_types.histogramdd( hist=tensor([[0., 1., 0.], [2., 0., 0.], [4., 0., 8.]]), bin_edges=(tensor([0.0000, 0.6667, 1.3333, 2.0000]), tensor([0.0000, 0.6667, 1.3333, 2.0000]))) >>> torch.histogramdd(torch.tensor([[0., 0.], [1., 1.], [2., 2.]]), bins=[2, 2], ... range=[0., 1., 0., 1.], density=True) torch.return_types.histogramdd( hist=tensor([[2., 0.], [0., 2.]]), bin_edges=(tensor([0.0000, 0.5000, 1.0000]), tensor([0.0000, 0.5000, 1.0000]))) """ ... @overload def histogramdd(input: Tensor, bins: _size, range: Optional[Sequence[_float]] = None, weight: Optional[Tensor] = None, density: _bool = False) -> torch.return_types.histogramdd: r""" histogramdd(input, bins, *, range=None, weight=None, density=False, out=None) -> (Tensor, Tensor[]) Computes a multi-dimensional histogram of the values in a tensor. Interprets the elements of an input tensor whose innermost dimension has size N as a collection of N-dimensional points. Maps each of the points into a set of N-dimensional bins and returns the number of points (or total weight) in each bin. :attr:`input` must be a tensor with at least 2 dimensions. If input has shape (M, N), each of its M rows defines a point in N-dimensional space. If input has three or more dimensions, all but the last dimension are flattened. Each dimension is independently associated with its own strictly increasing sequence of bin edges. Bin edges may be specified explicitly by passing a sequence of 1D tensors. Alternatively, bin edges may be constructed automatically by passing a sequence of integers specifying the number of equal-width bins in each dimension. For each N-dimensional point in input: - Each of its coordinates is binned independently among the bin edges corresponding to its dimension - Binning results are combined to identify the N-dimensional bin (if any) into which the point falls - If the point falls into a bin, the bin's count (or total weight) is incremented - Points which do not fall into any bin do not contribute to the output :attr:`bins` can be a sequence of N 1D tensors, a sequence of N ints, or a single int. If :attr:`bins` is a sequence of N 1D tensors, it explicitly specifies the N sequences of bin edges. Each 1D tensor should contain a strictly increasing sequence with at least one element. A sequence of K bin edges defines K-1 bins, explicitly specifying the left and right edges of all bins. Every bin is exclusive of its left edge. Only the rightmost bin is inclusive of its right edge. If :attr:`bins` is a sequence of N ints, it specifies the number of equal-width bins in each dimension. By default, the leftmost and rightmost bin edges in each dimension are determined by the minimum and maximum elements of the input tensor in the corresponding dimension. The :attr:`range` argument can be provided to manually specify the leftmost and rightmost bin edges in each dimension. If :attr:`bins` is an int, it specifies the number of equal-width bins for all dimensions. .. note:: See also :func:`torch.histogram`, which specifically computes 1D histograms. While :func:`torch.histogramdd` infers the dimensionality of its bins and binned values from the shape of :attr:`input`, :func:`torch.histogram` accepts and flattens :attr:`input` of any shape. Args: input (Tensor): the input tensor. bins: Tensor[], int[], or int. If Tensor[], defines the sequences of bin edges. If int[], defines the number of equal-width bins in each dimension. If int, defines the number of equal-width bins for all dimensions. Keyword args: range (sequence of float): Defines the leftmost and rightmost bin edges in each dimension. weight (Tensor): By default, each value in the input has weight 1. If a weight tensor is passed, each N-dimensional coordinate in input contributes its associated weight towards its bin's result. The weight tensor should have the same shape as the :attr:`input` tensor excluding its innermost dimension N. density (bool): If False (default), the result will contain the count (or total weight) in each bin. If True, each count (weight) is divided by the total count (total weight), then divided by the volume of its associated bin. Returns: hist (Tensor): N-dimensional Tensor containing the values of the histogram. bin_edges(Tensor[]): sequence of N 1D Tensors containing the bin edges. Example:: >>> torch.histogramdd(torch.tensor([[0., 1.], [1., 0.], [2., 0.], [2., 2.]]), bins=[3, 3], ... weight=torch.tensor([1., 2., 4., 8.])) torch.return_types.histogramdd( hist=tensor([[0., 1., 0.], [2., 0., 0.], [4., 0., 8.]]), bin_edges=(tensor([0.0000, 0.6667, 1.3333, 2.0000]), tensor([0.0000, 0.6667, 1.3333, 2.0000]))) >>> torch.histogramdd(torch.tensor([[0., 0.], [1., 1.], [2., 2.]]), bins=[2, 2], ... range=[0., 1., 0., 1.], density=True) torch.return_types.histogramdd( hist=tensor([[2., 0.], [0., 2.]]), bin_edges=(tensor([0.0000, 0.5000, 1.0000]), tensor([0.0000, 0.5000, 1.0000]))) """ ... @overload def histogramdd(input: Tensor, bins: Union[Tuple[Tensor, ...], List[Tensor]], range: Optional[Sequence[_float]] = None, weight: Optional[Tensor] = None, density: _bool = False) -> torch.return_types.histogramdd: r""" histogramdd(input, bins, *, range=None, weight=None, density=False, out=None) -> (Tensor, Tensor[]) Computes a multi-dimensional histogram of the values in a tensor. Interprets the elements of an input tensor whose innermost dimension has size N as a collection of N-dimensional points. Maps each of the points into a set of N-dimensional bins and returns the number of points (or total weight) in each bin. :attr:`input` must be a tensor with at least 2 dimensions. If input has shape (M, N), each of its M rows defines a point in N-dimensional space. If input has three or more dimensions, all but the last dimension are flattened. Each dimension is independently associated with its own strictly increasing sequence of bin edges. Bin edges may be specified explicitly by passing a sequence of 1D tensors. Alternatively, bin edges may be constructed automatically by passing a sequence of integers specifying the number of equal-width bins in each dimension. For each N-dimensional point in input: - Each of its coordinates is binned independently among the bin edges corresponding to its dimension - Binning results are combined to identify the N-dimensional bin (if any) into which the point falls - If the point falls into a bin, the bin's count (or total weight) is incremented - Points which do not fall into any bin do not contribute to the output :attr:`bins` can be a sequence of N 1D tensors, a sequence of N ints, or a single int. If :attr:`bins` is a sequence of N 1D tensors, it explicitly specifies the N sequences of bin edges. Each 1D tensor should contain a strictly increasing sequence with at least one element. A sequence of K bin edges defines K-1 bins, explicitly specifying the left and right edges of all bins. Every bin is exclusive of its left edge. Only the rightmost bin is inclusive of its right edge. If :attr:`bins` is a sequence of N ints, it specifies the number of equal-width bins in each dimension. By default, the leftmost and rightmost bin edges in each dimension are determined by the minimum and maximum elements of the input tensor in the corresponding dimension. The :attr:`range` argument can be provided to manually specify the leftmost and rightmost bin edges in each dimension. If :attr:`bins` is an int, it specifies the number of equal-width bins for all dimensions. .. note:: See also :func:`torch.histogram`, which specifically computes 1D histograms. While :func:`torch.histogramdd` infers the dimensionality of its bins and binned values from the shape of :attr:`input`, :func:`torch.histogram` accepts and flattens :attr:`input` of any shape. Args: input (Tensor): the input tensor. bins: Tensor[], int[], or int. If Tensor[], defines the sequences of bin edges. If int[], defines the number of equal-width bins in each dimension. If int, defines the number of equal-width bins for all dimensions. Keyword args: range (sequence of float): Defines the leftmost and rightmost bin edges in each dimension. weight (Tensor): By default, each value in the input has weight 1. If a weight tensor is passed, each N-dimensional coordinate in input contributes its associated weight towards its bin's result. The weight tensor should have the same shape as the :attr:`input` tensor excluding its innermost dimension N. density (bool): If False (default), the result will contain the count (or total weight) in each bin. If True, each count (weight) is divided by the total count (total weight), then divided by the volume of its associated bin. Returns: hist (Tensor): N-dimensional Tensor containing the values of the histogram. bin_edges(Tensor[]): sequence of N 1D Tensors containing the bin edges. Example:: >>> torch.histogramdd(torch.tensor([[0., 1.], [1., 0.], [2., 0.], [2., 2.]]), bins=[3, 3], ... weight=torch.tensor([1., 2., 4., 8.])) torch.return_types.histogramdd( hist=tensor([[0., 1., 0.], [2., 0., 0.], [4., 0., 8.]]), bin_edges=(tensor([0.0000, 0.6667, 1.3333, 2.0000]), tensor([0.0000, 0.6667, 1.3333, 2.0000]))) >>> torch.histogramdd(torch.tensor([[0., 0.], [1., 1.], [2., 2.]]), bins=[2, 2], ... range=[0., 1., 0., 1.], density=True) torch.return_types.histogramdd( hist=tensor([[2., 0.], [0., 2.]]), bin_edges=(tensor([0.0000, 0.5000, 1.0000]), tensor([0.0000, 0.5000, 1.0000]))) """ ... def hsmm(input: Tensor, mat2: Tensor) -> Tensor: ... @overload def hsplit(input: Tensor, sections: _int) -> Tuple[Tensor, ...]: r""" hsplit(input, indices_or_sections) -> List of Tensors Splits :attr:`input`, a tensor with one or more dimensions, into multiple tensors horizontally according to :attr:`indices_or_sections`. Each split is a view of :attr:`input`. If :attr:`input` is one dimensional this is equivalent to calling torch.tensor_split(input, indices_or_sections, dim=0) (the split dimension is zero), and if :attr:`input` has two or more dimensions it's equivalent to calling torch.tensor_split(input, indices_or_sections, dim=1) (the split dimension is 1), except that if :attr:`indices_or_sections` is an integer it must evenly divide the split dimension or a runtime error will be thrown. This function is based on NumPy's :func:`numpy.hsplit`. Args: input (Tensor): tensor to split. indices_or_sections (int or list or tuple of ints): See argument in :func:`torch.tensor_split`. Example:: >>> t = torch.arange(16.0).reshape(4,4) >>> t tensor([[ 0., 1., 2., 3.], [ 4., 5., 6., 7.], [ 8., 9., 10., 11.], [12., 13., 14., 15.]]) >>> torch.hsplit(t, 2) (tensor([[ 0., 1.], [ 4., 5.], [ 8., 9.], [12., 13.]]), tensor([[ 2., 3.], [ 6., 7.], [10., 11.], [14., 15.]])) >>> torch.hsplit(t, [3, 6]) (tensor([[ 0., 1., 2.], [ 4., 5., 6.], [ 8., 9., 10.], [12., 13., 14.]]), tensor([[ 3.], [ 7.], [11.], [15.]]), tensor([], size=(4, 0))) """ ... @overload def hsplit(input: Tensor, indices: _size) -> Tuple[Tensor, ...]: r""" hsplit(input, indices_or_sections) -> List of Tensors Splits :attr:`input`, a tensor with one or more dimensions, into multiple tensors horizontally according to :attr:`indices_or_sections`. Each split is a view of :attr:`input`. If :attr:`input` is one dimensional this is equivalent to calling torch.tensor_split(input, indices_or_sections, dim=0) (the split dimension is zero), and if :attr:`input` has two or more dimensions it's equivalent to calling torch.tensor_split(input, indices_or_sections, dim=1) (the split dimension is 1), except that if :attr:`indices_or_sections` is an integer it must evenly divide the split dimension or a runtime error will be thrown. This function is based on NumPy's :func:`numpy.hsplit`. Args: input (Tensor): tensor to split. indices_or_sections (int or list or tuple of ints): See argument in :func:`torch.tensor_split`. Example:: >>> t = torch.arange(16.0).reshape(4,4) >>> t tensor([[ 0., 1., 2., 3.], [ 4., 5., 6., 7.], [ 8., 9., 10., 11.], [12., 13., 14., 15.]]) >>> torch.hsplit(t, 2) (tensor([[ 0., 1.], [ 4., 5.], [ 8., 9.], [12., 13.]]), tensor([[ 2., 3.], [ 6., 7.], [10., 11.], [14., 15.]])) >>> torch.hsplit(t, [3, 6]) (tensor([[ 0., 1., 2.], [ 4., 5., 6.], [ 8., 9., 10.], [12., 13., 14.]]), tensor([[ 3.], [ 7.], [11.], [15.]]), tensor([], size=(4, 0))) """ ... def hspmm(mat1: Tensor, mat2: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" hspmm(mat1, mat2, *, out=None) -> Tensor Performs a matrix multiplication of a :ref:`sparse COO matrix ` :attr:`mat1` and a strided matrix :attr:`mat2`. The result is a (1 + 1)-dimensional :ref:`hybrid COO matrix `. Args: mat1 (Tensor): the first sparse matrix to be matrix multiplied mat2 (Tensor): the second strided matrix to be matrix multiplied Keyword args: out (Tensor, optional): the output tensor. """ ... def hstack(tensors: Union[Tuple[Tensor, ...], List[Tensor]], *, out: Optional[Tensor] = None) -> Tensor: r""" hstack(tensors, *, out=None) -> Tensor Stack tensors in sequence horizontally (column wise). This is equivalent to concatenation along the first axis for 1-D tensors, and along the second axis for all other tensors. Args: tensors (sequence of Tensors): sequence of tensors to concatenate Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.tensor([1, 2, 3]) >>> b = torch.tensor([4, 5, 6]) >>> torch.hstack((a,b)) tensor([1, 2, 3, 4, 5, 6]) >>> a = torch.tensor([[1],[2],[3]]) >>> b = torch.tensor([[4],[5],[6]]) >>> torch.hstack((a,b)) tensor([[1, 4], [2, 5], [3, 6]]) """ ... def hypot(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" hypot(input, other, *, out=None) -> Tensor Given the legs of a right triangle, return its hypotenuse. .. math:: \text{out}_{i} = \sqrt{\text{input}_{i}^{2} + \text{other}_{i}^{2}} The shapes of ``input`` and ``other`` must be :ref:`broadcastable `. Args: input (Tensor): the first input tensor other (Tensor): the second input tensor Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.hypot(torch.tensor([4.0]), torch.tensor([3.0, 4.0, 5.0])) tensor([5.0000, 5.6569, 6.4031]) """ ... def i0(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" i0(input, *, out=None) -> Tensor Alias for :func:`torch.special.i0`. """ ... def i0_(input: Tensor) -> Tensor: ... def igamma(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" igamma(input, other, *, out=None) -> Tensor Alias for :func:`torch.special.gammainc`. """ ... def igammac(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" igammac(input, other, *, out=None) -> Tensor Alias for :func:`torch.special.gammaincc`. """ ... def imag(input: Tensor) -> Tensor: r""" imag(input) -> Tensor Returns a new tensor containing imaginary values of the :attr:`self` tensor. The returned tensor and :attr:`self` share the same underlying storage. .. warning:: :func:`imag` is only supported for tensors with complex dtypes. Args: input (Tensor): the input tensor. Example:: >>> x=torch.randn(4, dtype=torch.cfloat) >>> x tensor([(0.3100+0.3553j), (-0.5445-0.7896j), (-1.6492-0.0633j), (-0.0638-0.8119j)]) >>> x.imag tensor([ 0.3553, -0.7896, -0.0633, -0.8119]) """ ... @overload def index_add(input: Tensor, dim: _int, index: Tensor, source: Tensor, *, alpha: Union[Number, _complex] = 1, out: Optional[Tensor] = None) -> Tensor: r""" index_add(input, dim, index, source, *, alpha=1, out=None) -> Tensor See :meth:`~Tensor.index_add_` for function description. """ ... @overload def index_add(input: Tensor, dim: Union[str, ellipsis, None], index: Tensor, source: Tensor, *, alpha: Union[Number, _complex] = 1) -> Tensor: r""" index_add(input, dim, index, source, *, alpha=1, out=None) -> Tensor See :meth:`~Tensor.index_add_` for function description. """ ... @overload def index_copy(input: Tensor, dim: _int, index: Tensor, source: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" index_copy(input, dim, index, source, *, out=None) -> Tensor See :meth:`~Tensor.index_add_` for function description. """ ... @overload def index_copy(input: Tensor, dim: Union[str, ellipsis, None], index: Tensor, source: Tensor) -> Tensor: r""" index_copy(input, dim, index, source, *, out=None) -> Tensor See :meth:`~Tensor.index_add_` for function description. """ ... @overload def index_fill(input: Tensor, dim: _int, index: Tensor, value: Tensor) -> Tensor: ... @overload def index_fill(input: Tensor, dim: Union[str, ellipsis, None], index: Tensor, value: Tensor) -> Tensor: ... @overload def index_fill(input: Tensor, dim: _int, index: Tensor, value: Union[Number, _complex]) -> Tensor: ... @overload def index_fill(input: Tensor, dim: Union[str, ellipsis, None], index: Tensor, value: Union[Number, _complex]) -> Tensor: ... def index_put(input: Tensor, indices: Optional[Union[Tuple[Tensor, ...], List[Tensor]]], values: Tensor, accumulate: _bool = False) -> Tensor: ... def index_put_(input: Tensor, indices: Optional[Union[Tuple[Tensor, ...], List[Tensor]]], values: Tensor, accumulate: _bool = False) -> Tensor: ... def index_reduce(input: Tensor, dim: _int, index: Tensor, source: Tensor, reduce: str, *, include_self: _bool = True, out: Optional[Tensor] = None) -> Tensor: r""" index_reduce(input, dim, index, source, reduce, *, include_self=True, out=None) -> Tensor See :meth:`~Tensor.index_reduce_` for function description. """ ... @overload def index_select(input: Tensor, dim: _int, index: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" index_select(input, dim, index, *, out=None) -> Tensor Returns a new tensor which indexes the :attr:`input` tensor along dimension :attr:`dim` using the entries in :attr:`index` which is a `LongTensor`. The returned tensor has the same number of dimensions as the original tensor (:attr:`input`). The :attr:`dim`\ th dimension has the same size as the length of :attr:`index`; other dimensions have the same size as in the original tensor. .. note:: The returned tensor does **not** use the same storage as the original tensor. If :attr:`out` has a different shape than expected, we silently change it to the correct shape, reallocating the underlying storage if necessary. Args: input (Tensor): the input tensor. dim (int): the dimension in which we index index (IntTensor or LongTensor): the 1-D tensor containing the indices to index Keyword args: out (Tensor, optional): the output tensor. Example:: >>> x = torch.randn(3, 4) >>> x tensor([[ 0.1427, 0.0231, -0.5414, -1.0009], [-0.4664, 0.2647, -0.1228, -1.1068], [-1.1734, -0.6571, 0.7230, -0.6004]]) >>> indices = torch.tensor([0, 2]) >>> torch.index_select(x, 0, indices) tensor([[ 0.1427, 0.0231, -0.5414, -1.0009], [-1.1734, -0.6571, 0.7230, -0.6004]]) >>> torch.index_select(x, 1, indices) tensor([[ 0.1427, -0.5414], [-0.4664, -0.1228], [-1.1734, 0.7230]]) """ ... @overload def index_select(input: Tensor, dim: Union[str, ellipsis, None], index: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" index_select(input, dim, index, *, out=None) -> Tensor Returns a new tensor which indexes the :attr:`input` tensor along dimension :attr:`dim` using the entries in :attr:`index` which is a `LongTensor`. The returned tensor has the same number of dimensions as the original tensor (:attr:`input`). The :attr:`dim`\ th dimension has the same size as the length of :attr:`index`; other dimensions have the same size as in the original tensor. .. note:: The returned tensor does **not** use the same storage as the original tensor. If :attr:`out` has a different shape than expected, we silently change it to the correct shape, reallocating the underlying storage if necessary. Args: input (Tensor): the input tensor. dim (int): the dimension in which we index index (IntTensor or LongTensor): the 1-D tensor containing the indices to index Keyword args: out (Tensor, optional): the output tensor. Example:: >>> x = torch.randn(3, 4) >>> x tensor([[ 0.1427, 0.0231, -0.5414, -1.0009], [-0.4664, 0.2647, -0.1228, -1.1068], [-1.1734, -0.6571, 0.7230, -0.6004]]) >>> indices = torch.tensor([0, 2]) >>> torch.index_select(x, 0, indices) tensor([[ 0.1427, 0.0231, -0.5414, -1.0009], [-1.1734, -0.6571, 0.7230, -0.6004]]) >>> torch.index_select(x, 1, indices) tensor([[ 0.1427, -0.5414], [-0.4664, -0.1228], [-1.1734, 0.7230]]) """ ... def indices_copy(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" Performs the same operation as :func:`torch.indices`, but all output tensors are freshly created instead of aliasing the input. """ ... def init_num_threads() -> None: ... def inner(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" inner(input, other, *, out=None) -> Tensor Computes the dot product for 1D tensors. For higher dimensions, sums the product of elements from :attr:`input` and :attr:`other` along their last dimension. .. note:: If either :attr:`input` or :attr:`other` is a scalar, the result is equivalent to `torch.mul(input, other)`. If both :attr:`input` and :attr:`other` are non-scalars, the size of their last dimension must match and the result is equivalent to `torch.tensordot(input, other, dims=([-1], [-1]))` Args: input (Tensor): First input tensor other (Tensor): Second input tensor Keyword args: out (Tensor, optional): Optional output tensor to write result into. The output shape is `input.shape[:-1] + other.shape[:-1]`. Example:: # Dot product >>> torch.inner(torch.tensor([1, 2, 3]), torch.tensor([0, 2, 1])) tensor(7) # Multidimensional input tensors >>> a = torch.randn(2, 3) >>> a tensor([[0.8173, 1.0874, 1.1784], [0.3279, 0.1234, 2.7894]]) >>> b = torch.randn(2, 4, 3) >>> b tensor([[[-0.4682, -0.7159, 0.1506], [ 0.4034, -0.3657, 1.0387], [ 0.9892, -0.6684, 0.1774], [ 0.9482, 1.3261, 0.3917]], [[ 0.4537, 0.7493, 1.1724], [ 0.2291, 0.5749, -0.2267], [-0.7920, 0.3607, -0.3701], [ 1.3666, -0.5850, -1.7242]]]) >>> torch.inner(a, b) tensor([[[-0.9837, 1.1560, 0.2907, 2.6785], [ 2.5671, 0.5452, -0.6912, -1.5509]], [[ 0.1782, 2.9843, 0.7366, 1.5672], [ 3.5115, -0.4864, -1.2476, -4.4337]]]) # Scalar input >>> torch.inner(a, torch.tensor(2)) tensor([[1.6347, 2.1748, 2.3567], [0.6558, 0.2469, 5.5787]]) """ ... def instance_norm(input: Tensor, weight: Optional[Tensor], bias: Optional[Tensor], running_mean: Optional[Tensor], running_var: Optional[Tensor], use_input_stats: _bool, momentum: _float, eps: _float, cudnn_enabled: _bool) -> Tensor: ... def int_repr(input: Tensor) -> Tensor: ... def inverse(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" inverse(input, *, out=None) -> Tensor Alias for :func:`torch.linalg.inv` """ ... def is_complex(input: Tensor) -> _bool: r""" is_complex(input) -> (bool) Returns True if the data type of :attr:`input` is a complex data type i.e., one of ``torch.complex64``, and ``torch.complex128``. Args: input (Tensor): the input tensor. """ ... def is_conj(input: Tensor) -> _bool: r""" is_conj(input) -> (bool) Returns True if the :attr:`input` is a conjugated tensor, i.e. its conjugate bit is set to `True`. Args: input (Tensor): the input tensor. """ ... def is_distributed(input: Tensor) -> _bool: ... def is_floating_point(input: Tensor) -> _bool: r""" is_floating_point(input) -> (bool) Returns True if the data type of :attr:`input` is a floating point data type i.e., one of ``torch.float64``, ``torch.float32``, ``torch.float16``, and ``torch.bfloat16``. Args: input (Tensor): the input tensor. """ ... def is_grad_enabled() -> _bool: r""" is_grad_enabled() -> (bool) Returns True if grad mode is currently enabled. """ ... def is_inference(input: Tensor) -> _bool: r""" is_inference(input) -> (bool) Returns True if :attr:`input` is an inference tensor. A non-view tensor is an inference tensor if and only if it was allocated during inference mode. A view tensor is an inference tensor if and only if the tensor it is a view of is an inference tensor. For details on inference mode please see `Inference Mode `_. Args: input (Tensor): the input tensor. """ ... def is_inference_mode_enabled() -> _bool: r""" is_inference_mode_enabled() -> (bool) Returns True if inference mode is currently enabled. """ ... def is_neg(input: Tensor) -> _bool: ... def is_nonzero(input: Tensor) -> _bool: r""" is_nonzero(input) -> (bool) Returns True if the :attr:`input` is a single element tensor which is not equal to zero after type conversions. i.e. not equal to ``torch.tensor([0.])`` or ``torch.tensor([0])`` or ``torch.tensor([False])``. Throws a ``RuntimeError`` if ``torch.numel() != 1`` (even in case of sparse tensors). Args: input (Tensor): the input tensor. Examples:: >>> torch.is_nonzero(torch.tensor([0.])) False >>> torch.is_nonzero(torch.tensor([1.5])) True >>> torch.is_nonzero(torch.tensor([False])) False >>> torch.is_nonzero(torch.tensor([3])) True >>> torch.is_nonzero(torch.tensor([1, 3, 5])) Traceback (most recent call last): ... RuntimeError: bool value of Tensor with more than one value is ambiguous >>> torch.is_nonzero(torch.tensor([])) Traceback (most recent call last): ... RuntimeError: bool value of Tensor with no values is ambiguous """ ... def is_same_size(input: Tensor, other: Tensor) -> _bool: ... def is_signed(input: Tensor) -> _bool: ... def is_vulkan_available() -> _bool: ... def isclose(input: Tensor, other: Tensor, rtol: _float = 1e-05, atol: _float = 1e-08, equal_nan: _bool = False) -> Tensor: r""" isclose(input, other, rtol=1e-05, atol=1e-08, equal_nan=False) -> Tensor Returns a new tensor with boolean elements representing if each element of :attr:`input` is "close" to the corresponding element of :attr:`other`. Closeness is defined as: .. math:: \lvert \text{input} - \text{other} \rvert \leq \texttt{atol} + \texttt{rtol} \times \lvert \text{other} \rvert where :attr:`input` and :attr:`other` are finite. Where :attr:`input` and/or :attr:`other` are nonfinite they are close if and only if they are equal, with NaNs being considered equal to each other when :attr:`equal_nan` is True. Args: input (Tensor): first tensor to compare other (Tensor): second tensor to compare atol (float, optional): absolute tolerance. Default: 1e-08 rtol (float, optional): relative tolerance. Default: 1e-05 equal_nan (bool, optional): if ``True``, then two ``NaN`` s will be considered equal. Default: ``False`` Examples:: >>> torch.isclose(torch.tensor((1., 2, 3)), torch.tensor((1 + 1e-10, 3, 4))) tensor([ True, False, False]) >>> torch.isclose(torch.tensor((float('inf'), 4)), torch.tensor((float('inf'), 6)), rtol=.5) tensor([True, True]) """ ... def isfinite(input: Tensor) -> Tensor: r""" isfinite(input) -> Tensor Returns a new tensor with boolean elements representing if each element is `finite` or not. Real values are finite when they are not NaN, negative infinity, or infinity. Complex values are finite when both their real and imaginary parts are finite. Args: input (Tensor): the input tensor. Returns: A boolean tensor that is True where :attr:`input` is finite and False elsewhere Example:: >>> torch.isfinite(torch.tensor([1, float('inf'), 2, float('-inf'), float('nan')])) tensor([True, False, True, False, False]) """ ... @overload def isin(elements: Tensor, test_elements: Tensor, *, assume_unique: _bool = False, invert: _bool = False, out: Optional[Tensor] = None) -> Tensor: r""" isin(elements, test_elements, *, assume_unique=False, invert=False) -> Tensor Tests if each element of :attr:`elements` is in :attr:`test_elements`. Returns a boolean tensor of the same shape as :attr:`elements` that is True for elements in :attr:`test_elements` and False otherwise. .. note:: One of :attr:`elements` or :attr:`test_elements` can be a scalar, but not both. Args: elements (Tensor or Scalar): Input elements test_elements (Tensor or Scalar): Values against which to test for each input element assume_unique (bool, optional): If True, assumes both :attr:`elements` and :attr:`test_elements` contain unique elements, which can speed up the calculation. Default: False invert (bool, optional): If True, inverts the boolean return tensor, resulting in True values for elements *not* in :attr:`test_elements`. Default: False Returns: A boolean tensor of the same shape as :attr:`elements` that is True for elements in :attr:`test_elements` and False otherwise Example: >>> torch.isin(torch.tensor([[1, 2], [3, 4]]), torch.tensor([2, 3])) tensor([[False, True], [ True, False]]) """ ... @overload def isin(element: Union[Number, _complex], test_elements: Tensor, *, assume_unique: _bool = False, invert: _bool = False, out: Optional[Tensor] = None) -> Tensor: r""" isin(elements, test_elements, *, assume_unique=False, invert=False) -> Tensor Tests if each element of :attr:`elements` is in :attr:`test_elements`. Returns a boolean tensor of the same shape as :attr:`elements` that is True for elements in :attr:`test_elements` and False otherwise. .. note:: One of :attr:`elements` or :attr:`test_elements` can be a scalar, but not both. Args: elements (Tensor or Scalar): Input elements test_elements (Tensor or Scalar): Values against which to test for each input element assume_unique (bool, optional): If True, assumes both :attr:`elements` and :attr:`test_elements` contain unique elements, which can speed up the calculation. Default: False invert (bool, optional): If True, inverts the boolean return tensor, resulting in True values for elements *not* in :attr:`test_elements`. Default: False Returns: A boolean tensor of the same shape as :attr:`elements` that is True for elements in :attr:`test_elements` and False otherwise Example: >>> torch.isin(torch.tensor([[1, 2], [3, 4]]), torch.tensor([2, 3])) tensor([[False, True], [ True, False]]) """ ... @overload def isin(elements: Tensor, test_element: Union[Number, _complex], *, assume_unique: _bool = False, invert: _bool = False, out: Optional[Tensor] = None) -> Tensor: r""" isin(elements, test_elements, *, assume_unique=False, invert=False) -> Tensor Tests if each element of :attr:`elements` is in :attr:`test_elements`. Returns a boolean tensor of the same shape as :attr:`elements` that is True for elements in :attr:`test_elements` and False otherwise. .. note:: One of :attr:`elements` or :attr:`test_elements` can be a scalar, but not both. Args: elements (Tensor or Scalar): Input elements test_elements (Tensor or Scalar): Values against which to test for each input element assume_unique (bool, optional): If True, assumes both :attr:`elements` and :attr:`test_elements` contain unique elements, which can speed up the calculation. Default: False invert (bool, optional): If True, inverts the boolean return tensor, resulting in True values for elements *not* in :attr:`test_elements`. Default: False Returns: A boolean tensor of the same shape as :attr:`elements` that is True for elements in :attr:`test_elements` and False otherwise Example: >>> torch.isin(torch.tensor([[1, 2], [3, 4]]), torch.tensor([2, 3])) tensor([[False, True], [ True, False]]) """ ... def isinf(input: Tensor) -> Tensor: r""" isinf(input) -> Tensor Tests if each element of :attr:`input` is infinite (positive or negative infinity) or not. .. note:: Complex values are infinite when their real or imaginary part is infinite. Args: input (Tensor): the input tensor. Returns: A boolean tensor that is True where :attr:`input` is infinite and False elsewhere Example:: >>> torch.isinf(torch.tensor([1, float('inf'), 2, float('-inf'), float('nan')])) tensor([False, True, False, True, False]) """ ... def isnan(input: Tensor) -> Tensor: r""" isnan(input) -> Tensor Returns a new tensor with boolean elements representing if each element of :attr:`input` is NaN or not. Complex values are considered NaN when either their real and/or imaginary part is NaN. Arguments: input (Tensor): the input tensor. Returns: A boolean tensor that is True where :attr:`input` is NaN and False elsewhere Example:: >>> torch.isnan(torch.tensor([1, float('nan'), 2])) tensor([False, True, False]) """ ... def isneginf(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" isneginf(input, *, out=None) -> Tensor Tests if each element of :attr:`input` is negative infinity or not. Args: input (Tensor): the input tensor. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.tensor([-float('inf'), float('inf'), 1.2]) >>> torch.isneginf(a) tensor([ True, False, False]) """ ... def isposinf(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" isposinf(input, *, out=None) -> Tensor Tests if each element of :attr:`input` is positive infinity or not. Args: input (Tensor): the input tensor. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.tensor([-float('inf'), float('inf'), 1.2]) >>> torch.isposinf(a) tensor([False, True, False]) """ ... def isreal(input: Tensor) -> Tensor: r""" isreal(input) -> Tensor Returns a new tensor with boolean elements representing if each element of :attr:`input` is real-valued or not. All real-valued types are considered real. Complex values are considered real when their imaginary part is 0. Arguments: input (Tensor): the input tensor. Returns: A boolean tensor that is True where :attr:`input` is real and False elsewhere Example:: >>> torch.isreal(torch.tensor([1, 1+1j, 2+0j])) tensor([True, False, True]) """ ... def istft(input: Tensor, n_fft: _int, hop_length: Optional[_int] = None, win_length: Optional[_int] = None, window: Optional[Tensor] = None, center: _bool = True, normalized: _bool = False, onesided: Optional[_bool] = None, length: Optional[_int] = None, return_complex: _bool = False) -> Tensor: ... @overload def kaiser_window(window_length: _int, *, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" kaiser_window(window_length, periodic=True, beta=12.0, *, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor Computes the Kaiser window with window length :attr:`window_length` and shape parameter :attr:`beta`. Let I_0 be the zeroth order modified Bessel function of the first kind (see :func:`torch.i0`) and ``N = L - 1`` if :attr:`periodic` is False and ``L`` if :attr:`periodic` is True, where ``L`` is the :attr:`window_length`. This function computes: .. math:: out_i = I_0 \left( \beta \sqrt{1 - \left( {\frac{i - N/2}{N/2}} \right) ^2 } \right) / I_0( \beta ) Calling ``torch.kaiser_window(L, B, periodic=True)`` is equivalent to calling ``torch.kaiser_window(L + 1, B, periodic=False)[:-1])``. The :attr:`periodic` argument is intended as a helpful shorthand to produce a periodic window as input to functions like :func:`torch.stft`. .. note:: If :attr:`window_length` is one, then the returned window is a single element tensor containing a one. Args: window_length (int): length of the window. periodic (bool, optional): If True, returns a periodic window suitable for use in spectral analysis. If False, returns a symmetric window suitable for use in filter design. beta (float, optional): shape parameter for the window. Keyword args: dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). layout (:class:`torch.layout`, optional): the desired layout of returned window tensor. Only ``torch.strided`` (dense layout) is supported. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. """ ... @overload def kaiser_window(window_length: _int, periodic: _bool, *, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" kaiser_window(window_length, periodic=True, beta=12.0, *, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor Computes the Kaiser window with window length :attr:`window_length` and shape parameter :attr:`beta`. Let I_0 be the zeroth order modified Bessel function of the first kind (see :func:`torch.i0`) and ``N = L - 1`` if :attr:`periodic` is False and ``L`` if :attr:`periodic` is True, where ``L`` is the :attr:`window_length`. This function computes: .. math:: out_i = I_0 \left( \beta \sqrt{1 - \left( {\frac{i - N/2}{N/2}} \right) ^2 } \right) / I_0( \beta ) Calling ``torch.kaiser_window(L, B, periodic=True)`` is equivalent to calling ``torch.kaiser_window(L + 1, B, periodic=False)[:-1])``. The :attr:`periodic` argument is intended as a helpful shorthand to produce a periodic window as input to functions like :func:`torch.stft`. .. note:: If :attr:`window_length` is one, then the returned window is a single element tensor containing a one. Args: window_length (int): length of the window. periodic (bool, optional): If True, returns a periodic window suitable for use in spectral analysis. If False, returns a symmetric window suitable for use in filter design. beta (float, optional): shape parameter for the window. Keyword args: dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). layout (:class:`torch.layout`, optional): the desired layout of returned window tensor. Only ``torch.strided`` (dense layout) is supported. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. """ ... @overload def kaiser_window(window_length: _int, periodic: _bool, beta: _float, *, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" kaiser_window(window_length, periodic=True, beta=12.0, *, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor Computes the Kaiser window with window length :attr:`window_length` and shape parameter :attr:`beta`. Let I_0 be the zeroth order modified Bessel function of the first kind (see :func:`torch.i0`) and ``N = L - 1`` if :attr:`periodic` is False and ``L`` if :attr:`periodic` is True, where ``L`` is the :attr:`window_length`. This function computes: .. math:: out_i = I_0 \left( \beta \sqrt{1 - \left( {\frac{i - N/2}{N/2}} \right) ^2 } \right) / I_0( \beta ) Calling ``torch.kaiser_window(L, B, periodic=True)`` is equivalent to calling ``torch.kaiser_window(L + 1, B, periodic=False)[:-1])``. The :attr:`periodic` argument is intended as a helpful shorthand to produce a periodic window as input to functions like :func:`torch.stft`. .. note:: If :attr:`window_length` is one, then the returned window is a single element tensor containing a one. Args: window_length (int): length of the window. periodic (bool, optional): If True, returns a periodic window suitable for use in spectral analysis. If False, returns a symmetric window suitable for use in filter design. beta (float, optional): shape parameter for the window. Keyword args: dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). layout (:class:`torch.layout`, optional): the desired layout of returned window tensor. Only ``torch.strided`` (dense layout) is supported. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. """ ... def kl_div(input: Tensor, target: Tensor, reduction: _int = 1, *, log_target: _bool = False) -> Tensor: ... def kron(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" kron(input, other, *, out=None) -> Tensor Computes the Kronecker product, denoted by :math:`\otimes`, of :attr:`input` and :attr:`other`. If :attr:`input` is a :math:`(a_0 \times a_1 \times \dots \times a_n)` tensor and :attr:`other` is a :math:`(b_0 \times b_1 \times \dots \times b_n)` tensor, the result will be a :math:`(a_0*b_0 \times a_1*b_1 \times \dots \times a_n*b_n)` tensor with the following entries: .. math:: (\text{input} \otimes \text{other})_{k_0, k_1, \dots, k_n} = \text{input}_{i_0, i_1, \dots, i_n} * \text{other}_{j_0, j_1, \dots, j_n}, where :math:`k_t = i_t * b_t + j_t` for :math:`0 \leq t \leq n`. If one tensor has fewer dimensions than the other it is unsqueezed until it has the same number of dimensions. Supports real-valued and complex-valued inputs. .. note:: This function generalizes the typical definition of the Kronecker product for two matrices to two tensors, as described above. When :attr:`input` is a :math:`(m \times n)` matrix and :attr:`other` is a :math:`(p \times q)` matrix, the result will be a :math:`(p*m \times q*n)` block matrix: .. math:: \mathbf{A} \otimes \mathbf{B}=\begin{bmatrix} a_{11} \mathbf{B} & \cdots & a_{1 n} \mathbf{B} \\ \vdots & \ddots & \vdots \\ a_{m 1} \mathbf{B} & \cdots & a_{m n} \mathbf{B} \end{bmatrix} where :attr:`input` is :math:`\mathbf{A}` and :attr:`other` is :math:`\mathbf{B}`. Arguments: input (Tensor) other (Tensor) Keyword args: out (Tensor, optional): The output tensor. Ignored if ``None``. Default: ``None`` Examples:: >>> mat1 = torch.eye(2) >>> mat2 = torch.ones(2, 2) >>> torch.kron(mat1, mat2) tensor([[1., 1., 0., 0.], [1., 1., 0., 0.], [0., 0., 1., 1.], [0., 0., 1., 1.]]) >>> mat1 = torch.eye(2) >>> mat2 = torch.arange(1, 5).reshape(2, 2) >>> torch.kron(mat1, mat2) tensor([[1., 2., 0., 0.], [3., 4., 0., 0.], [0., 0., 1., 2.], [0., 0., 3., 4.]]) """ ... @overload def kthvalue(input: Tensor, k: _int, dim: _int = -1, keepdim: _bool = False, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.kthvalue: r""" kthvalue(input, k, dim=None, keepdim=False, *, out=None) -> (Tensor, LongTensor) Returns a namedtuple ``(values, indices)`` where ``values`` is the :attr:`k` th smallest element of each row of the :attr:`input` tensor in the given dimension :attr:`dim`. And ``indices`` is the index location of each element found. If :attr:`dim` is not given, the last dimension of the `input` is chosen. If :attr:`keepdim` is ``True``, both the :attr:`values` and :attr:`indices` tensors are the same size as :attr:`input`, except in the dimension :attr:`dim` where they are of size 1. Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in both the :attr:`values` and :attr:`indices` tensors having 1 fewer dimension than the :attr:`input` tensor. .. note:: When :attr:`input` is a CUDA tensor and there are multiple valid :attr:`k` th values, this function may nondeterministically return :attr:`indices` for any of them. Args: input (Tensor): the input tensor. k (int): k for the k-th smallest element dim (int, optional): the dimension to find the kth value along keepdim (bool): whether the output tensor has :attr:`dim` retained or not. Keyword args: out (tuple, optional): the output tuple of (Tensor, LongTensor) can be optionally given to be used as output buffers Example:: >>> x = torch.arange(1., 6.) >>> x tensor([ 1., 2., 3., 4., 5.]) >>> torch.kthvalue(x, 4) torch.return_types.kthvalue(values=tensor(4.), indices=tensor(3)) >>> x=torch.arange(1.,7.).resize_(2,3) >>> x tensor([[ 1., 2., 3.], [ 4., 5., 6.]]) >>> torch.kthvalue(x, 2, 0, True) torch.return_types.kthvalue(values=tensor([[4., 5., 6.]]), indices=tensor([[1, 1, 1]])) """ ... @overload def kthvalue(input: Tensor, k: _int, dim: Union[str, ellipsis, None], keepdim: _bool = False, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.kthvalue: r""" kthvalue(input, k, dim=None, keepdim=False, *, out=None) -> (Tensor, LongTensor) Returns a namedtuple ``(values, indices)`` where ``values`` is the :attr:`k` th smallest element of each row of the :attr:`input` tensor in the given dimension :attr:`dim`. And ``indices`` is the index location of each element found. If :attr:`dim` is not given, the last dimension of the `input` is chosen. If :attr:`keepdim` is ``True``, both the :attr:`values` and :attr:`indices` tensors are the same size as :attr:`input`, except in the dimension :attr:`dim` where they are of size 1. Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in both the :attr:`values` and :attr:`indices` tensors having 1 fewer dimension than the :attr:`input` tensor. .. note:: When :attr:`input` is a CUDA tensor and there are multiple valid :attr:`k` th values, this function may nondeterministically return :attr:`indices` for any of them. Args: input (Tensor): the input tensor. k (int): k for the k-th smallest element dim (int, optional): the dimension to find the kth value along keepdim (bool): whether the output tensor has :attr:`dim` retained or not. Keyword args: out (tuple, optional): the output tuple of (Tensor, LongTensor) can be optionally given to be used as output buffers Example:: >>> x = torch.arange(1., 6.) >>> x tensor([ 1., 2., 3., 4., 5.]) >>> torch.kthvalue(x, 4) torch.return_types.kthvalue(values=tensor(4.), indices=tensor(3)) >>> x=torch.arange(1.,7.).resize_(2,3) >>> x tensor([[ 1., 2., 3.], [ 4., 5., 6.]]) >>> torch.kthvalue(x, 2, 0, True) torch.return_types.kthvalue(values=tensor([[4., 5., 6.]]), indices=tensor([[1, 1, 1]])) """ ... def layer_norm(input: Tensor, normalized_shape: Sequence[Union[_int, SymInt]], weight: Optional[Tensor] = None, bias: Optional[Tensor] = None, eps: _float = 1e-05, cudnn_enable: _bool = True) -> Tensor: ... def lcm(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" lcm(input, other, *, out=None) -> Tensor Computes the element-wise least common multiple (LCM) of :attr:`input` and :attr:`other`. Both :attr:`input` and :attr:`other` must have integer types. .. note:: This defines :math:`lcm(0, 0) = 0` and :math:`lcm(0, a) = 0`. Args: input (Tensor): the input tensor. other (Tensor): the second input tensor Keyword arguments: out (Tensor, optional): the output tensor. Example:: >>> a = torch.tensor([5, 10, 15]) >>> b = torch.tensor([3, 4, 5]) >>> torch.lcm(a, b) tensor([15, 20, 15]) >>> c = torch.tensor([3]) >>> torch.lcm(a, c) tensor([15, 30, 15]) """ ... def lcm_(input: Tensor, other: Tensor) -> Tensor: ... def ldexp(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" ldexp(input, other, *, out=None) -> Tensor Multiplies :attr:`input` by 2 ** :attr:`other`. .. math:: \text{{out}}_i = \text{{input}}_i * 2^\text{{other}}_i Typically this function is used to construct floating point numbers by multiplying mantissas in :attr:`input` with integral powers of two created from the exponents in :attr:`other`. Args: input (Tensor): the input tensor. other (Tensor): a tensor of exponents, typically integers. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> torch.ldexp(torch.tensor([1.]), torch.tensor([1])) tensor([2.]) >>> torch.ldexp(torch.tensor([1.0]), torch.tensor([1, 2, 3, 4])) tensor([ 2., 4., 8., 16.]) """ ... def ldexp_(input: Tensor, other: Tensor) -> Tensor: ... @overload def le(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" le(input, other, *, out=None) -> Tensor Computes :math:`\text{input} \leq \text{other}` element-wise. The second argument can be a number or a tensor whose shape is :ref:`broadcastable ` with the first argument. Args: input (Tensor): the tensor to compare other (Tensor or Scalar): the tensor or value to compare Keyword args: out (Tensor, optional): the output tensor. Returns: A boolean tensor that is True where :attr:`input` is less than or equal to :attr:`other` and False elsewhere Example:: >>> torch.le(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]])) tensor([[True, False], [True, True]]) """ ... @overload def le(input: Tensor, other: Union[Number, _complex], *, out: Optional[Tensor] = None) -> Tensor: r""" le(input, other, *, out=None) -> Tensor Computes :math:`\text{input} \leq \text{other}` element-wise. The second argument can be a number or a tensor whose shape is :ref:`broadcastable ` with the first argument. Args: input (Tensor): the tensor to compare other (Tensor or Scalar): the tensor or value to compare Keyword args: out (Tensor, optional): the output tensor. Returns: A boolean tensor that is True where :attr:`input` is less than or equal to :attr:`other` and False elsewhere Example:: >>> torch.le(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]])) tensor([[True, False], [True, True]]) """ ... @overload def lerp(input: Tensor, end: Tensor, weight: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" lerp(input, end, weight, *, out=None) Does a linear interpolation of two tensors :attr:`start` (given by :attr:`input`) and :attr:`end` based on a scalar or tensor :attr:`weight` and returns the resulting :attr:`out` tensor. .. math:: \text{out}_i = \text{start}_i + \text{weight}_i \times (\text{end}_i - \text{start}_i) The shapes of :attr:`start` and :attr:`end` must be :ref:`broadcastable `. If :attr:`weight` is a tensor, then the shapes of :attr:`weight`, :attr:`start`, and :attr:`end` must be :ref:`broadcastable `. Args: input (Tensor): the tensor with the starting points end (Tensor): the tensor with the ending points weight (float or tensor): the weight for the interpolation formula Keyword args: out (Tensor, optional): the output tensor. Example:: >>> start = torch.arange(1., 5.) >>> end = torch.empty(4).fill_(10) >>> start tensor([ 1., 2., 3., 4.]) >>> end tensor([ 10., 10., 10., 10.]) >>> torch.lerp(start, end, 0.5) tensor([ 5.5000, 6.0000, 6.5000, 7.0000]) >>> torch.lerp(start, end, torch.full_like(start, 0.5)) tensor([ 5.5000, 6.0000, 6.5000, 7.0000]) """ ... @overload def lerp(input: Tensor, end: Tensor, weight: Union[Number, _complex], *, out: Optional[Tensor] = None) -> Tensor: r""" lerp(input, end, weight, *, out=None) Does a linear interpolation of two tensors :attr:`start` (given by :attr:`input`) and :attr:`end` based on a scalar or tensor :attr:`weight` and returns the resulting :attr:`out` tensor. .. math:: \text{out}_i = \text{start}_i + \text{weight}_i \times (\text{end}_i - \text{start}_i) The shapes of :attr:`start` and :attr:`end` must be :ref:`broadcastable `. If :attr:`weight` is a tensor, then the shapes of :attr:`weight`, :attr:`start`, and :attr:`end` must be :ref:`broadcastable `. Args: input (Tensor): the tensor with the starting points end (Tensor): the tensor with the ending points weight (float or tensor): the weight for the interpolation formula Keyword args: out (Tensor, optional): the output tensor. Example:: >>> start = torch.arange(1., 5.) >>> end = torch.empty(4).fill_(10) >>> start tensor([ 1., 2., 3., 4.]) >>> end tensor([ 10., 10., 10., 10.]) >>> torch.lerp(start, end, 0.5) tensor([ 5.5000, 6.0000, 6.5000, 7.0000]) >>> torch.lerp(start, end, torch.full_like(start, 0.5)) tensor([ 5.5000, 6.0000, 6.5000, 7.0000]) """ ... @overload def less(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" less(input, other, *, out=None) -> Tensor Alias for :func:`torch.lt`. """ ... @overload def less(input: Tensor, other: Union[Number, _complex], *, out: Optional[Tensor] = None) -> Tensor: r""" less(input, other, *, out=None) -> Tensor Alias for :func:`torch.lt`. """ ... @overload def less_equal(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" less_equal(input, other, *, out=None) -> Tensor Alias for :func:`torch.le`. """ ... @overload def less_equal(input: Tensor, other: Union[Number, _complex], *, out: Optional[Tensor] = None) -> Tensor: r""" less_equal(input, other, *, out=None) -> Tensor Alias for :func:`torch.le`. """ ... def lgamma(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" lgamma(input, *, out=None) -> Tensor Computes the natural logarithm of the absolute value of the gamma function on :attr:`input`. .. math:: \text{out}_{i} = \ln |\Gamma(\text{input}_{i})| Args: input (Tensor): the input tensor. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.arange(0.5, 2, 0.5) >>> torch.lgamma(a) tensor([ 0.5724, 0.0000, -0.1208]) """ ... @overload def linspace(start: Number, end: Number, steps: Optional[_int] = None, *, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, device: Optional[DeviceLikeType] = None, requires_grad: _bool = False, pin_memory: _bool = False) -> Tensor: r""" linspace(start, end, steps, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor Creates a one-dimensional tensor of size :attr:`steps` whose values are evenly spaced from :attr:`start` to :attr:`end`, inclusive. That is, the value are: .. math:: (\text{start}, \text{start} + \frac{\text{end} - \text{start}}{\text{steps} - 1}, \ldots, \text{start} + (\text{steps} - 2) * \frac{\text{end} - \text{start}}{\text{steps} - 1}, \text{end}) From PyTorch 1.11 linspace requires the steps argument. Use steps=100 to restore the previous behavior. Args: start (float or Tensor): the starting value for the set of points. If `Tensor`, it must be 0-dimensional end (float or Tensor): the ending value for the set of points. If `Tensor`, it must be 0-dimensional steps (int): size of the constructed tensor Keyword arguments: out (Tensor, optional): the output tensor. dtype (torch.dtype, optional): the data type to perform the computation in. Default: if None, uses the global default dtype (see torch.get_default_dtype()) when both :attr:`start` and :attr:`end` are real, and corresponding complex dtype when either is complex. layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. Example:: >>> torch.linspace(3, 10, steps=5) tensor([ 3.0000, 4.7500, 6.5000, 8.2500, 10.0000]) >>> torch.linspace(-10, 10, steps=5) tensor([-10., -5., 0., 5., 10.]) >>> torch.linspace(start=-10, end=10, steps=5) tensor([-10., -5., 0., 5., 10.]) >>> torch.linspace(start=-10, end=10, steps=1) tensor([-10.]) """ ... @overload def linspace(start: Tensor, end: Tensor, steps: _int, *, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" linspace(start, end, steps, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor Creates a one-dimensional tensor of size :attr:`steps` whose values are evenly spaced from :attr:`start` to :attr:`end`, inclusive. That is, the value are: .. math:: (\text{start}, \text{start} + \frac{\text{end} - \text{start}}{\text{steps} - 1}, \ldots, \text{start} + (\text{steps} - 2) * \frac{\text{end} - \text{start}}{\text{steps} - 1}, \text{end}) From PyTorch 1.11 linspace requires the steps argument. Use steps=100 to restore the previous behavior. Args: start (float or Tensor): the starting value for the set of points. If `Tensor`, it must be 0-dimensional end (float or Tensor): the ending value for the set of points. If `Tensor`, it must be 0-dimensional steps (int): size of the constructed tensor Keyword arguments: out (Tensor, optional): the output tensor. dtype (torch.dtype, optional): the data type to perform the computation in. Default: if None, uses the global default dtype (see torch.get_default_dtype()) when both :attr:`start` and :attr:`end` are real, and corresponding complex dtype when either is complex. layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. Example:: >>> torch.linspace(3, 10, steps=5) tensor([ 3.0000, 4.7500, 6.5000, 8.2500, 10.0000]) >>> torch.linspace(-10, 10, steps=5) tensor([-10., -5., 0., 5., 10.]) >>> torch.linspace(start=-10, end=10, steps=5) tensor([-10., -5., 0., 5., 10.]) >>> torch.linspace(start=-10, end=10, steps=1) tensor([-10.]) """ ... @overload def linspace(start: Union[Number, _complex], end: Tensor, steps: _int, *, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" linspace(start, end, steps, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor Creates a one-dimensional tensor of size :attr:`steps` whose values are evenly spaced from :attr:`start` to :attr:`end`, inclusive. That is, the value are: .. math:: (\text{start}, \text{start} + \frac{\text{end} - \text{start}}{\text{steps} - 1}, \ldots, \text{start} + (\text{steps} - 2) * \frac{\text{end} - \text{start}}{\text{steps} - 1}, \text{end}) From PyTorch 1.11 linspace requires the steps argument. Use steps=100 to restore the previous behavior. Args: start (float or Tensor): the starting value for the set of points. If `Tensor`, it must be 0-dimensional end (float or Tensor): the ending value for the set of points. If `Tensor`, it must be 0-dimensional steps (int): size of the constructed tensor Keyword arguments: out (Tensor, optional): the output tensor. dtype (torch.dtype, optional): the data type to perform the computation in. Default: if None, uses the global default dtype (see torch.get_default_dtype()) when both :attr:`start` and :attr:`end` are real, and corresponding complex dtype when either is complex. layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. Example:: >>> torch.linspace(3, 10, steps=5) tensor([ 3.0000, 4.7500, 6.5000, 8.2500, 10.0000]) >>> torch.linspace(-10, 10, steps=5) tensor([-10., -5., 0., 5., 10.]) >>> torch.linspace(start=-10, end=10, steps=5) tensor([-10., -5., 0., 5., 10.]) >>> torch.linspace(start=-10, end=10, steps=1) tensor([-10.]) """ ... @overload def linspace(start: Tensor, end: Union[Number, _complex], steps: _int, *, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" linspace(start, end, steps, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor Creates a one-dimensional tensor of size :attr:`steps` whose values are evenly spaced from :attr:`start` to :attr:`end`, inclusive. That is, the value are: .. math:: (\text{start}, \text{start} + \frac{\text{end} - \text{start}}{\text{steps} - 1}, \ldots, \text{start} + (\text{steps} - 2) * \frac{\text{end} - \text{start}}{\text{steps} - 1}, \text{end}) From PyTorch 1.11 linspace requires the steps argument. Use steps=100 to restore the previous behavior. Args: start (float or Tensor): the starting value for the set of points. If `Tensor`, it must be 0-dimensional end (float or Tensor): the ending value for the set of points. If `Tensor`, it must be 0-dimensional steps (int): size of the constructed tensor Keyword arguments: out (Tensor, optional): the output tensor. dtype (torch.dtype, optional): the data type to perform the computation in. Default: if None, uses the global default dtype (see torch.get_default_dtype()) when both :attr:`start` and :attr:`end` are real, and corresponding complex dtype when either is complex. layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. Example:: >>> torch.linspace(3, 10, steps=5) tensor([ 3.0000, 4.7500, 6.5000, 8.2500, 10.0000]) >>> torch.linspace(-10, 10, steps=5) tensor([-10., -5., 0., 5., 10.]) >>> torch.linspace(start=-10, end=10, steps=5) tensor([-10., -5., 0., 5., 10.]) >>> torch.linspace(start=-10, end=10, steps=1) tensor([-10.]) """ ... @overload def linspace(start: Union[Number, _complex], end: Union[Number, _complex], steps: _int, *, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" linspace(start, end, steps, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor Creates a one-dimensional tensor of size :attr:`steps` whose values are evenly spaced from :attr:`start` to :attr:`end`, inclusive. That is, the value are: .. math:: (\text{start}, \text{start} + \frac{\text{end} - \text{start}}{\text{steps} - 1}, \ldots, \text{start} + (\text{steps} - 2) * \frac{\text{end} - \text{start}}{\text{steps} - 1}, \text{end}) From PyTorch 1.11 linspace requires the steps argument. Use steps=100 to restore the previous behavior. Args: start (float or Tensor): the starting value for the set of points. If `Tensor`, it must be 0-dimensional end (float or Tensor): the ending value for the set of points. If `Tensor`, it must be 0-dimensional steps (int): size of the constructed tensor Keyword arguments: out (Tensor, optional): the output tensor. dtype (torch.dtype, optional): the data type to perform the computation in. Default: if None, uses the global default dtype (see torch.get_default_dtype()) when both :attr:`start` and :attr:`end` are real, and corresponding complex dtype when either is complex. layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. Example:: >>> torch.linspace(3, 10, steps=5) tensor([ 3.0000, 4.7500, 6.5000, 8.2500, 10.0000]) >>> torch.linspace(-10, 10, steps=5) tensor([-10., -5., 0., 5., 10.]) >>> torch.linspace(start=-10, end=10, steps=5) tensor([-10., -5., 0., 5., 10.]) >>> torch.linspace(start=-10, end=10, steps=1) tensor([-10.]) """ ... def log(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" log(input, *, out=None) -> Tensor Returns a new tensor with the natural logarithm of the elements of :attr:`input`. .. math:: y_{i} = \log_{e} (x_{i}) Args: input (Tensor): the input tensor. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.rand(5) * 5 >>> a tensor([4.7767, 4.3234, 1.2156, 0.2411, 4.5739]) >>> torch.log(a) tensor([ 1.5637, 1.4640, 0.1952, -1.4226, 1.5204]) """ ... def log10(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" log10(input, *, out=None) -> Tensor Returns a new tensor with the logarithm to the base 10 of the elements of :attr:`input`. .. math:: y_{i} = \log_{10} (x_{i}) Args: input (Tensor): the input tensor. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.rand(5) >>> a tensor([ 0.5224, 0.9354, 0.7257, 0.1301, 0.2251]) >>> torch.log10(a) tensor([-0.2820, -0.0290, -0.1392, -0.8857, -0.6476]) """ ... def log10_(input: Tensor) -> Tensor: ... def log1p(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" log1p(input, *, out=None) -> Tensor Returns a new tensor with the natural logarithm of (1 + :attr:`input`). .. math:: y_i = \log_{e} (x_i + 1) .. note:: This function is more accurate than :func:`torch.log` for small values of :attr:`input` Args: input (Tensor): the input tensor. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.randn(5) >>> a tensor([-1.0090, -0.9923, 1.0249, -0.5372, 0.2492]) >>> torch.log1p(a) tensor([ nan, -4.8653, 0.7055, -0.7705, 0.2225]) """ ... def log1p_(input: Tensor) -> Tensor: ... def log2(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" log2(input, *, out=None) -> Tensor Returns a new tensor with the logarithm to the base 2 of the elements of :attr:`input`. .. math:: y_{i} = \log_{2} (x_{i}) Args: input (Tensor): the input tensor. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.rand(5) >>> a tensor([ 0.8419, 0.8003, 0.9971, 0.5287, 0.0490]) >>> torch.log2(a) tensor([-0.2483, -0.3213, -0.0042, -0.9196, -4.3504]) """ ... def log2_(input: Tensor) -> Tensor: ... def log_(input: Tensor) -> Tensor: ... @overload def log_softmax(input: Tensor, dim: _int, dtype: Optional[_dtype] = None, *, out: Optional[Tensor] = None) -> Tensor: ... @overload def log_softmax(input: Tensor, dim: Union[str, ellipsis, None], *, dtype: Optional[_dtype] = None) -> Tensor: ... def logaddexp(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" logaddexp(input, other, *, out=None) -> Tensor Logarithm of the sum of exponentiations of the inputs. Calculates pointwise :math:`\log\left(e^x + e^y\right)`. This function is useful in statistics where the calculated probabilities of events may be so small as to exceed the range of normal floating point numbers. In such cases the logarithm of the calculated probability is stored. This function allows adding probabilities stored in such a fashion. This op should be disambiguated with :func:`torch.logsumexp` which performs a reduction on a single tensor. Args: input (Tensor): the input tensor. other (Tensor): the second input tensor Keyword arguments: out (Tensor, optional): the output tensor. Example:: >>> torch.logaddexp(torch.tensor([-1.0]), torch.tensor([-1.0, -2, -3])) tensor([-0.3069, -0.6867, -0.8731]) >>> torch.logaddexp(torch.tensor([-100.0, -200, -300]), torch.tensor([-1.0, -2, -3])) tensor([-1., -2., -3.]) >>> torch.logaddexp(torch.tensor([1.0, 2000, 30000]), torch.tensor([-1.0, -2, -3])) tensor([1.1269e+00, 2.0000e+03, 3.0000e+04]) """ ... def logaddexp2(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" logaddexp2(input, other, *, out=None) -> Tensor Logarithm of the sum of exponentiations of the inputs in base-2. Calculates pointwise :math:`\log_2\left(2^x + 2^y\right)`. See :func:`torch.logaddexp` for more details. Args: input (Tensor): the input tensor. other (Tensor): the second input tensor Keyword arguments: out (Tensor, optional): the output tensor. """ ... @overload def logcumsumexp(input: Tensor, dim: _int, *, out: Optional[Tensor] = None) -> Tensor: r""" logcumsumexp(input, dim, *, out=None) -> Tensor Returns the logarithm of the cumulative summation of the exponentiation of elements of :attr:`input` in the dimension :attr:`dim`. For summation index :math:`j` given by `dim` and other indices :math:`i`, the result is .. math:: \text{logcumsumexp}(x)_{ij} = \log \sum\limits_{j=0}^{i} \exp(x_{ij}) Args: input (Tensor): the input tensor. dim (int): the dimension to do the operation over Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.randn(10) >>> torch.logcumsumexp(a, dim=0) tensor([-0.42296738, -0.04462666, 0.86278635, 0.94622083, 1.05277811, 1.39202815, 1.83525007, 1.84492621, 2.06084887, 2.06844475])) """ ... @overload def logcumsumexp(input: Tensor, dim: Union[str, ellipsis, None], *, out: Optional[Tensor] = None) -> Tensor: r""" logcumsumexp(input, dim, *, out=None) -> Tensor Returns the logarithm of the cumulative summation of the exponentiation of elements of :attr:`input` in the dimension :attr:`dim`. For summation index :math:`j` given by `dim` and other indices :math:`i`, the result is .. math:: \text{logcumsumexp}(x)_{ij} = \log \sum\limits_{j=0}^{i} \exp(x_{ij}) Args: input (Tensor): the input tensor. dim (int): the dimension to do the operation over Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.randn(10) >>> torch.logcumsumexp(a, dim=0) tensor([-0.42296738, -0.04462666, 0.86278635, 0.94622083, 1.05277811, 1.39202815, 1.83525007, 1.84492621, 2.06084887, 2.06844475])) """ ... def logdet(input: Tensor) -> Tensor: r""" logdet(input) -> Tensor Calculates log determinant of a square matrix or batches of square matrices. It returns ``-inf`` if the input has a determinant of zero, and ``NaN`` if it has a negative determinant. .. note:: Backward through :meth:`logdet` internally uses SVD results when :attr:`input` is not invertible. In this case, double backward through :meth:`logdet` will be unstable in when :attr:`input` doesn't have distinct singular values. See :func:`torch.linalg.svd` for details. .. seealso:: :func:`torch.linalg.slogdet` computes the sign (resp. angle) and natural logarithm of the absolute value of the determinant of real-valued (resp. complex) square matrices. Arguments: input (Tensor): the input tensor of size ``(*, n, n)`` where ``*`` is zero or more batch dimensions. Example:: >>> A = torch.randn(3, 3) >>> torch.det(A) tensor(0.2611) >>> torch.logdet(A) tensor(-1.3430) >>> A tensor([[[ 0.9254, -0.6213], [-0.5787, 1.6843]], [[ 0.3242, -0.9665], [ 0.4539, -0.0887]], [[ 1.1336, -0.4025], [-0.7089, 0.9032]]]) >>> A.det() tensor([1.1990, 0.4099, 0.7386]) >>> A.det().log() tensor([ 0.1815, -0.8917, -0.3031]) """ ... def logical_and(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" logical_and(input, other, *, out=None) -> Tensor Computes the element-wise logical AND of the given input tensors. Zeros are treated as ``False`` and nonzeros are treated as ``True``. Args: input (Tensor): the input tensor. other (Tensor): the tensor to compute AND with Keyword args: out (Tensor, optional): the output tensor. Example:: >>> torch.logical_and(torch.tensor([True, False, True]), torch.tensor([True, False, False])) tensor([ True, False, False]) >>> a = torch.tensor([0, 1, 10, 0], dtype=torch.int8) >>> b = torch.tensor([4, 0, 1, 0], dtype=torch.int8) >>> torch.logical_and(a, b) tensor([False, False, True, False]) >>> torch.logical_and(a.double(), b.double()) tensor([False, False, True, False]) >>> torch.logical_and(a.double(), b) tensor([False, False, True, False]) >>> torch.logical_and(a, b, out=torch.empty(4, dtype=torch.bool)) tensor([False, False, True, False]) """ ... def logical_not(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" logical_not(input, *, out=None) -> Tensor Computes the element-wise logical NOT of the given input tensor. If not specified, the output tensor will have the bool dtype. If the input tensor is not a bool tensor, zeros are treated as ``False`` and non-zeros are treated as ``True``. Args: input (Tensor): the input tensor. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> torch.logical_not(torch.tensor([True, False])) tensor([False, True]) >>> torch.logical_not(torch.tensor([0, 1, -10], dtype=torch.int8)) tensor([ True, False, False]) >>> torch.logical_not(torch.tensor([0., 1.5, -10.], dtype=torch.double)) tensor([ True, False, False]) >>> torch.logical_not(torch.tensor([0., 1., -10.], dtype=torch.double), out=torch.empty(3, dtype=torch.int16)) tensor([1, 0, 0], dtype=torch.int16) """ ... def logical_or(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" logical_or(input, other, *, out=None) -> Tensor Computes the element-wise logical OR of the given input tensors. Zeros are treated as ``False`` and nonzeros are treated as ``True``. Args: input (Tensor): the input tensor. other (Tensor): the tensor to compute OR with Keyword args: out (Tensor, optional): the output tensor. Example:: >>> torch.logical_or(torch.tensor([True, False, True]), torch.tensor([True, False, False])) tensor([ True, False, True]) >>> a = torch.tensor([0, 1, 10, 0], dtype=torch.int8) >>> b = torch.tensor([4, 0, 1, 0], dtype=torch.int8) >>> torch.logical_or(a, b) tensor([ True, True, True, False]) >>> torch.logical_or(a.double(), b.double()) tensor([ True, True, True, False]) >>> torch.logical_or(a.double(), b) tensor([ True, True, True, False]) >>> torch.logical_or(a, b, out=torch.empty(4, dtype=torch.bool)) tensor([ True, True, True, False]) """ ... def logical_xor(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" logical_xor(input, other, *, out=None) -> Tensor Computes the element-wise logical XOR of the given input tensors. Zeros are treated as ``False`` and nonzeros are treated as ``True``. Args: input (Tensor): the input tensor. other (Tensor): the tensor to compute XOR with Keyword args: out (Tensor, optional): the output tensor. Example:: >>> torch.logical_xor(torch.tensor([True, False, True]), torch.tensor([True, False, False])) tensor([False, False, True]) >>> a = torch.tensor([0, 1, 10, 0], dtype=torch.int8) >>> b = torch.tensor([4, 0, 1, 0], dtype=torch.int8) >>> torch.logical_xor(a, b) tensor([ True, True, False, False]) >>> torch.logical_xor(a.double(), b.double()) tensor([ True, True, False, False]) >>> torch.logical_xor(a.double(), b) tensor([ True, True, False, False]) >>> torch.logical_xor(a, b, out=torch.empty(4, dtype=torch.bool)) tensor([ True, True, False, False]) """ ... def logit(input: Tensor, eps: Optional[_float] = None, *, out: Optional[Tensor] = None) -> Tensor: r""" logit(input, eps=None, *, out=None) -> Tensor Alias for :func:`torch.special.logit`. """ ... def logit_(input: Tensor, eps: Optional[_float] = None) -> Tensor: ... @overload def logspace(start: Number, end: Number, steps: Optional[_int] = None, base: _float = 10.0, *, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, device: Optional[DeviceLikeType] = None, requires_grad: _bool = False, pin_memory: _bool = False) -> Tensor: r""" logspace(start, end, steps, base=10.0, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor Creates a one-dimensional tensor of size :attr:`steps` whose values are evenly spaced from :math:`{{\text{{base}}}}^{{\text{{start}}}}` to :math:`{{\text{{base}}}}^{{\text{{end}}}}`, inclusive, on a logarithmic scale with base :attr:`base`. That is, the values are: .. math:: (\text{base}^{\text{start}}, \text{base}^{(\text{start} + \frac{\text{end} - \text{start}}{ \text{steps} - 1})}, \ldots, \text{base}^{(\text{start} + (\text{steps} - 2) * \frac{\text{end} - \text{start}}{ \text{steps} - 1})}, \text{base}^{\text{end}}) From PyTorch 1.11 logspace requires the steps argument. Use steps=100 to restore the previous behavior. Args: start (float or Tensor): the starting value for the set of points. If `Tensor`, it must be 0-dimensional end (float or Tensor): the ending value for the set of points. If `Tensor`, it must be 0-dimensional steps (int): size of the constructed tensor base (float, optional): base of the logarithm function. Default: ``10.0``. Keyword arguments: out (Tensor, optional): the output tensor. dtype (torch.dtype, optional): the data type to perform the computation in. Default: if None, uses the global default dtype (see torch.get_default_dtype()) when both :attr:`start` and :attr:`end` are real, and corresponding complex dtype when either is complex. layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. Example:: >>> torch.logspace(start=-10, end=10, steps=5) tensor([ 1.0000e-10, 1.0000e-05, 1.0000e+00, 1.0000e+05, 1.0000e+10]) >>> torch.logspace(start=0.1, end=1.0, steps=5) tensor([ 1.2589, 2.1135, 3.5481, 5.9566, 10.0000]) >>> torch.logspace(start=0.1, end=1.0, steps=1) tensor([1.2589]) >>> torch.logspace(start=2, end=2, steps=1, base=2) tensor([4.0]) """ ... @overload def logspace(start: Tensor, end: Tensor, steps: _int, base: _float = 10.0, *, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" logspace(start, end, steps, base=10.0, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor Creates a one-dimensional tensor of size :attr:`steps` whose values are evenly spaced from :math:`{{\text{{base}}}}^{{\text{{start}}}}` to :math:`{{\text{{base}}}}^{{\text{{end}}}}`, inclusive, on a logarithmic scale with base :attr:`base`. That is, the values are: .. math:: (\text{base}^{\text{start}}, \text{base}^{(\text{start} + \frac{\text{end} - \text{start}}{ \text{steps} - 1})}, \ldots, \text{base}^{(\text{start} + (\text{steps} - 2) * \frac{\text{end} - \text{start}}{ \text{steps} - 1})}, \text{base}^{\text{end}}) From PyTorch 1.11 logspace requires the steps argument. Use steps=100 to restore the previous behavior. Args: start (float or Tensor): the starting value for the set of points. If `Tensor`, it must be 0-dimensional end (float or Tensor): the ending value for the set of points. If `Tensor`, it must be 0-dimensional steps (int): size of the constructed tensor base (float, optional): base of the logarithm function. Default: ``10.0``. Keyword arguments: out (Tensor, optional): the output tensor. dtype (torch.dtype, optional): the data type to perform the computation in. Default: if None, uses the global default dtype (see torch.get_default_dtype()) when both :attr:`start` and :attr:`end` are real, and corresponding complex dtype when either is complex. layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. Example:: >>> torch.logspace(start=-10, end=10, steps=5) tensor([ 1.0000e-10, 1.0000e-05, 1.0000e+00, 1.0000e+05, 1.0000e+10]) >>> torch.logspace(start=0.1, end=1.0, steps=5) tensor([ 1.2589, 2.1135, 3.5481, 5.9566, 10.0000]) >>> torch.logspace(start=0.1, end=1.0, steps=1) tensor([1.2589]) >>> torch.logspace(start=2, end=2, steps=1, base=2) tensor([4.0]) """ ... @overload def logspace(start: Union[Number, _complex], end: Tensor, steps: _int, base: _float = 10.0, *, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" logspace(start, end, steps, base=10.0, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor Creates a one-dimensional tensor of size :attr:`steps` whose values are evenly spaced from :math:`{{\text{{base}}}}^{{\text{{start}}}}` to :math:`{{\text{{base}}}}^{{\text{{end}}}}`, inclusive, on a logarithmic scale with base :attr:`base`. That is, the values are: .. math:: (\text{base}^{\text{start}}, \text{base}^{(\text{start} + \frac{\text{end} - \text{start}}{ \text{steps} - 1})}, \ldots, \text{base}^{(\text{start} + (\text{steps} - 2) * \frac{\text{end} - \text{start}}{ \text{steps} - 1})}, \text{base}^{\text{end}}) From PyTorch 1.11 logspace requires the steps argument. Use steps=100 to restore the previous behavior. Args: start (float or Tensor): the starting value for the set of points. If `Tensor`, it must be 0-dimensional end (float or Tensor): the ending value for the set of points. If `Tensor`, it must be 0-dimensional steps (int): size of the constructed tensor base (float, optional): base of the logarithm function. Default: ``10.0``. Keyword arguments: out (Tensor, optional): the output tensor. dtype (torch.dtype, optional): the data type to perform the computation in. Default: if None, uses the global default dtype (see torch.get_default_dtype()) when both :attr:`start` and :attr:`end` are real, and corresponding complex dtype when either is complex. layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. Example:: >>> torch.logspace(start=-10, end=10, steps=5) tensor([ 1.0000e-10, 1.0000e-05, 1.0000e+00, 1.0000e+05, 1.0000e+10]) >>> torch.logspace(start=0.1, end=1.0, steps=5) tensor([ 1.2589, 2.1135, 3.5481, 5.9566, 10.0000]) >>> torch.logspace(start=0.1, end=1.0, steps=1) tensor([1.2589]) >>> torch.logspace(start=2, end=2, steps=1, base=2) tensor([4.0]) """ ... @overload def logspace(start: Tensor, end: Union[Number, _complex], steps: _int, base: _float = 10.0, *, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" logspace(start, end, steps, base=10.0, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor Creates a one-dimensional tensor of size :attr:`steps` whose values are evenly spaced from :math:`{{\text{{base}}}}^{{\text{{start}}}}` to :math:`{{\text{{base}}}}^{{\text{{end}}}}`, inclusive, on a logarithmic scale with base :attr:`base`. That is, the values are: .. math:: (\text{base}^{\text{start}}, \text{base}^{(\text{start} + \frac{\text{end} - \text{start}}{ \text{steps} - 1})}, \ldots, \text{base}^{(\text{start} + (\text{steps} - 2) * \frac{\text{end} - \text{start}}{ \text{steps} - 1})}, \text{base}^{\text{end}}) From PyTorch 1.11 logspace requires the steps argument. Use steps=100 to restore the previous behavior. Args: start (float or Tensor): the starting value for the set of points. If `Tensor`, it must be 0-dimensional end (float or Tensor): the ending value for the set of points. If `Tensor`, it must be 0-dimensional steps (int): size of the constructed tensor base (float, optional): base of the logarithm function. Default: ``10.0``. Keyword arguments: out (Tensor, optional): the output tensor. dtype (torch.dtype, optional): the data type to perform the computation in. Default: if None, uses the global default dtype (see torch.get_default_dtype()) when both :attr:`start` and :attr:`end` are real, and corresponding complex dtype when either is complex. layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. Example:: >>> torch.logspace(start=-10, end=10, steps=5) tensor([ 1.0000e-10, 1.0000e-05, 1.0000e+00, 1.0000e+05, 1.0000e+10]) >>> torch.logspace(start=0.1, end=1.0, steps=5) tensor([ 1.2589, 2.1135, 3.5481, 5.9566, 10.0000]) >>> torch.logspace(start=0.1, end=1.0, steps=1) tensor([1.2589]) >>> torch.logspace(start=2, end=2, steps=1, base=2) tensor([4.0]) """ ... @overload def logspace(start: Union[Number, _complex], end: Union[Number, _complex], steps: _int, base: _float = 10.0, *, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" logspace(start, end, steps, base=10.0, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor Creates a one-dimensional tensor of size :attr:`steps` whose values are evenly spaced from :math:`{{\text{{base}}}}^{{\text{{start}}}}` to :math:`{{\text{{base}}}}^{{\text{{end}}}}`, inclusive, on a logarithmic scale with base :attr:`base`. That is, the values are: .. math:: (\text{base}^{\text{start}}, \text{base}^{(\text{start} + \frac{\text{end} - \text{start}}{ \text{steps} - 1})}, \ldots, \text{base}^{(\text{start} + (\text{steps} - 2) * \frac{\text{end} - \text{start}}{ \text{steps} - 1})}, \text{base}^{\text{end}}) From PyTorch 1.11 logspace requires the steps argument. Use steps=100 to restore the previous behavior. Args: start (float or Tensor): the starting value for the set of points. If `Tensor`, it must be 0-dimensional end (float or Tensor): the ending value for the set of points. If `Tensor`, it must be 0-dimensional steps (int): size of the constructed tensor base (float, optional): base of the logarithm function. Default: ``10.0``. Keyword arguments: out (Tensor, optional): the output tensor. dtype (torch.dtype, optional): the data type to perform the computation in. Default: if None, uses the global default dtype (see torch.get_default_dtype()) when both :attr:`start` and :attr:`end` are real, and corresponding complex dtype when either is complex. layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. Example:: >>> torch.logspace(start=-10, end=10, steps=5) tensor([ 1.0000e-10, 1.0000e-05, 1.0000e+00, 1.0000e+05, 1.0000e+10]) >>> torch.logspace(start=0.1, end=1.0, steps=5) tensor([ 1.2589, 2.1135, 3.5481, 5.9566, 10.0000]) >>> torch.logspace(start=0.1, end=1.0, steps=1) tensor([1.2589]) >>> torch.logspace(start=2, end=2, steps=1, base=2) tensor([4.0]) """ ... @overload def logsumexp(input: Tensor, dim: Union[_int, _size], keepdim: _bool = False, *, out: Optional[Tensor] = None) -> Tensor: r""" logsumexp(input, dim, keepdim=False, *, out=None) Returns the log of summed exponentials of each row of the :attr:`input` tensor in the given dimension :attr:`dim`. The computation is numerically stabilized. For summation index :math:`j` given by `dim` and other indices :math:`i`, the result is .. math:: \text{logsumexp}(x)_{i} = \log \sum_j \exp(x_{ij}) If :attr:`keepdim` is ``True``, the output tensor is of the same size as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the output tensor having 1 (or ``len(dim)``) fewer dimension(s). Args: input (Tensor): the input tensor. dim (int or tuple of ints, optional): the dimension or dimensions to reduce. If ``None``, all dimensions are reduced. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.randn(3, 3) >>> torch.logsumexp(a, 1) tensor([1.4907, 1.0593, 1.5696]) >>> torch.dist(torch.logsumexp(a, 1), torch.log(torch.sum(torch.exp(a), 1))) tensor(1.6859e-07) """ ... @overload def logsumexp(input: Tensor, dim: Sequence[Union[str, ellipsis, None]], keepdim: _bool = False, *, out: Optional[Tensor] = None) -> Tensor: r""" logsumexp(input, dim, keepdim=False, *, out=None) Returns the log of summed exponentials of each row of the :attr:`input` tensor in the given dimension :attr:`dim`. The computation is numerically stabilized. For summation index :math:`j` given by `dim` and other indices :math:`i`, the result is .. math:: \text{logsumexp}(x)_{i} = \log \sum_j \exp(x_{ij}) If :attr:`keepdim` is ``True``, the output tensor is of the same size as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the output tensor having 1 (or ``len(dim)``) fewer dimension(s). Args: input (Tensor): the input tensor. dim (int or tuple of ints, optional): the dimension or dimensions to reduce. If ``None``, all dimensions are reduced. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.randn(3, 3) >>> torch.logsumexp(a, 1) tensor([1.4907, 1.0593, 1.5696]) >>> torch.dist(torch.logsumexp(a, 1), torch.log(torch.sum(torch.exp(a), 1))) tensor(1.6859e-07) """ ... @overload def lstm(data: Tensor, batch_sizes: Tensor, hx: Union[Tuple[Tensor, ...], List[Tensor]], params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: _bool, num_layers: _int, dropout: _float, train: _bool, bidirectional: _bool) -> Tuple[Tensor, Tensor, Tensor]: ... @overload def lstm(input: Tensor, hx: Union[Tuple[Tensor, ...], List[Tensor]], params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: _bool, num_layers: _int, dropout: _float, train: _bool, bidirectional: _bool, batch_first: _bool) -> Tuple[Tensor, Tensor, Tensor]: ... def lstm_cell(input: Tensor, hx: Union[Tuple[Tensor, ...], List[Tensor]], w_ih: Tensor, w_hh: Tensor, b_ih: Optional[Tensor] = None, b_hh: Optional[Tensor] = None) -> Tuple[Tensor, Tensor]: ... @overload def lt(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" lt(input, other, *, out=None) -> Tensor Computes :math:`\text{input} < \text{other}` element-wise. The second argument can be a number or a tensor whose shape is :ref:`broadcastable ` with the first argument. Args: input (Tensor): the tensor to compare other (Tensor or float): the tensor or value to compare Keyword args: out (Tensor, optional): the output tensor. Returns: A boolean tensor that is True where :attr:`input` is less than :attr:`other` and False elsewhere Example:: >>> torch.lt(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]])) tensor([[False, False], [True, False]]) """ ... @overload def lt(input: Tensor, other: Union[Number, _complex], *, out: Optional[Tensor] = None) -> Tensor: r""" lt(input, other, *, out=None) -> Tensor Computes :math:`\text{input} < \text{other}` element-wise. The second argument can be a number or a tensor whose shape is :ref:`broadcastable ` with the first argument. Args: input (Tensor): the tensor to compare other (Tensor or float): the tensor or value to compare Keyword args: out (Tensor, optional): the output tensor. Returns: A boolean tensor that is True where :attr:`input` is less than :attr:`other` and False elsewhere Example:: >>> torch.lt(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]])) tensor([[False, False], [True, False]]) """ ... def lu_solve(input: Tensor, LU_data: Tensor, LU_pivots: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" lu_solve(b, LU_data, LU_pivots, *, out=None) -> Tensor Returns the LU solve of the linear system :math:`Ax = b` using the partially pivoted LU factorization of A from :func:`~linalg.lu_factor`. This function supports ``float``, ``double``, ``cfloat`` and ``cdouble`` dtypes for :attr:`input`. .. warning:: :func:`torch.lu_solve` is deprecated in favor of :func:`torch.linalg.lu_solve`. :func:`torch.lu_solve` will be removed in a future PyTorch release. ``X = torch.lu_solve(B, LU, pivots)`` should be replaced with .. code:: python X = linalg.lu_solve(LU, pivots, B) Arguments: b (Tensor): the RHS tensor of size :math:`(*, m, k)`, where :math:`*` is zero or more batch dimensions. LU_data (Tensor): the pivoted LU factorization of A from :meth:`~linalg.lu_factor` of size :math:`(*, m, m)`, where :math:`*` is zero or more batch dimensions. LU_pivots (IntTensor): the pivots of the LU factorization from :meth:`~linalg.lu_factor` of size :math:`(*, m)`, where :math:`*` is zero or more batch dimensions. The batch dimensions of :attr:`LU_pivots` must be equal to the batch dimensions of :attr:`LU_data`. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> A = torch.randn(2, 3, 3) >>> b = torch.randn(2, 3, 1) >>> LU, pivots = torch.linalg.lu_factor(A) >>> x = torch.lu_solve(b, LU, pivots) >>> torch.dist(A @ x, b) tensor(1.00000e-07 * 2.8312) """ ... def lu_unpack(LU_data: Tensor, LU_pivots: Tensor, unpack_data: _bool = True, unpack_pivots: _bool = True, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.lu_unpack: r""" lu_unpack(LU_data, LU_pivots, unpack_data=True, unpack_pivots=True, *, out=None) -> (Tensor, Tensor, Tensor) Unpacks the LU decomposition returned by :func:`~linalg.lu_factor` into the `P, L, U` matrices. .. seealso:: :func:`~linalg.lu` returns the matrices from the LU decomposition. Its gradient formula is more efficient than that of doing :func:`~linalg.lu_factor` followed by :func:`~linalg.lu_unpack`. Args: LU_data (Tensor): the packed LU factorization data LU_pivots (Tensor): the packed LU factorization pivots unpack_data (bool): flag indicating if the data should be unpacked. If ``False``, then the returned ``L`` and ``U`` are empty tensors. Default: ``True`` unpack_pivots (bool): flag indicating if the pivots should be unpacked into a permutation matrix ``P``. If ``False``, then the returned ``P`` is an empty tensor. Default: ``True`` Keyword args: out (tuple, optional): output tuple of three tensors. Ignored if `None`. Returns: A namedtuple ``(P, L, U)`` Examples:: >>> A = torch.randn(2, 3, 3) >>> LU, pivots = torch.linalg.lu_factor(A) >>> P, L, U = torch.lu_unpack(LU, pivots) >>> # We can recover A from the factorization >>> A_ = P @ L @ U >>> torch.allclose(A, A_) True >>> # LU factorization of a rectangular matrix: >>> A = torch.randn(2, 3, 2) >>> LU, pivots = torch.linalg.lu_factor(A) >>> P, L, U = torch.lu_unpack(LU, pivots) >>> # P, L, U are the same as returned by linalg.lu >>> P_, L_, U_ = torch.linalg.lu(A) >>> torch.allclose(P, P_) and torch.allclose(L, L_) and torch.allclose(U, U_) True """ ... def margin_ranking_loss(input1: Tensor, input2: Tensor, target: Tensor, margin: _float = 0.0, reduction: _int = 1) -> Tensor: ... @overload def masked_fill(input: Tensor, mask: Tensor, value: Tensor) -> Tensor: ... @overload def masked_fill(input: Tensor, mask: Tensor, value: Union[Number, _complex]) -> Tensor: ... def masked_scatter(input: Tensor, mask: Tensor, source: Tensor) -> Tensor: ... def masked_select(input: Tensor, mask: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" masked_select(input, mask, *, out=None) -> Tensor Returns a new 1-D tensor which indexes the :attr:`input` tensor according to the boolean mask :attr:`mask` which is a `BoolTensor`. The shapes of the :attr:`mask` tensor and the :attr:`input` tensor don't need to match, but they must be :ref:`broadcastable `. .. note:: The returned tensor does **not** use the same storage as the original tensor Args: input (Tensor): the input tensor. mask (BoolTensor): the tensor containing the binary mask to index with Keyword args: out (Tensor, optional): the output tensor. Example:: >>> x = torch.randn(3, 4) >>> x tensor([[ 0.3552, -2.3825, -0.8297, 0.3477], [-1.2035, 1.2252, 0.5002, 0.6248], [ 0.1307, -2.0608, 0.1244, 2.0139]]) >>> mask = x.ge(0.5) >>> mask tensor([[False, False, False, False], [False, True, True, True], [False, False, False, True]]) >>> torch.masked_select(x, mask) tensor([ 1.2252, 0.5002, 0.6248, 2.0139]) """ ... def matmul(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" matmul(input, other, *, out=None) -> Tensor Matrix product of two tensors. The behavior depends on the dimensionality of the tensors as follows: - If both tensors are 1-dimensional, the dot product (scalar) is returned. - If both arguments are 2-dimensional, the matrix-matrix product is returned. - If the first argument is 1-dimensional and the second argument is 2-dimensional, a 1 is prepended to its dimension for the purpose of the matrix multiply. After the matrix multiply, the prepended dimension is removed. - If the first argument is 2-dimensional and the second argument is 1-dimensional, the matrix-vector product is returned. - If both arguments are at least 1-dimensional and at least one argument is N-dimensional (where N > 2), then a batched matrix multiply is returned. If the first argument is 1-dimensional, a 1 is prepended to its dimension for the purpose of the batched matrix multiply and removed after. If the second argument is 1-dimensional, a 1 is appended to its dimension for the purpose of the batched matrix multiple and removed after. The non-matrix (i.e. batch) dimensions are :ref:`broadcasted ` (and thus must be broadcastable). For example, if :attr:`input` is a :math:`(j \times 1 \times n \times n)` tensor and :attr:`other` is a :math:`(k \times n \times n)` tensor, :attr:`out` will be a :math:`(j \times k \times n \times n)` tensor. Note that the broadcasting logic only looks at the batch dimensions when determining if the inputs are broadcastable, and not the matrix dimensions. For example, if :attr:`input` is a :math:`(j \times 1 \times n \times m)` tensor and :attr:`other` is a :math:`(k \times m \times p)` tensor, these inputs are valid for broadcasting even though the final two dimensions (i.e. the matrix dimensions) are different. :attr:`out` will be a :math:`(j \times k \times n \times p)` tensor. This operation has support for arguments with :ref:`sparse layouts`. In particular the matrix-matrix (both arguments 2-dimensional) supports sparse arguments with the same restrictions as :func:`torch.mm` .. warning:: Sparse support is a beta feature and some layout(s)/dtype/device combinations may not be supported, or may not have autograd support. If you notice missing functionality please open a feature request. This operator supports :ref:`TensorFloat32`. On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision` for backward. .. note:: The 1-dimensional dot product version of this function does not support an :attr:`out` parameter. Arguments: input (Tensor): the first tensor to be multiplied other (Tensor): the second tensor to be multiplied Keyword args: out (Tensor, optional): the output tensor. Example:: >>> # vector x vector >>> tensor1 = torch.randn(3) >>> tensor2 = torch.randn(3) >>> torch.matmul(tensor1, tensor2).size() torch.Size([]) >>> # matrix x vector >>> tensor1 = torch.randn(3, 4) >>> tensor2 = torch.randn(4) >>> torch.matmul(tensor1, tensor2).size() torch.Size([3]) >>> # batched matrix x broadcasted vector >>> tensor1 = torch.randn(10, 3, 4) >>> tensor2 = torch.randn(4) >>> torch.matmul(tensor1, tensor2).size() torch.Size([10, 3]) >>> # batched matrix x batched matrix >>> tensor1 = torch.randn(10, 3, 4) >>> tensor2 = torch.randn(10, 4, 5) >>> torch.matmul(tensor1, tensor2).size() torch.Size([10, 3, 5]) >>> # batched matrix x broadcasted matrix >>> tensor1 = torch.randn(10, 3, 4) >>> tensor2 = torch.randn(4, 5) >>> torch.matmul(tensor1, tensor2).size() torch.Size([10, 3, 5]) """ ... def matrix_exp(input: Tensor) -> Tensor: r""" matrix_exp(A) -> Tensor Alias for :func:`torch.linalg.matrix_exp`. """ ... def matrix_power(input: Tensor, n: _int, *, out: Optional[Tensor] = None) -> Tensor: r""" matrix_power(input, n, *, out=None) -> Tensor Alias for :func:`torch.linalg.matrix_power` """ ... @overload def max(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" max(input) -> Tensor Returns the maximum value of all elements in the ``input`` tensor. .. warning:: This function produces deterministic (sub)gradients unlike ``max(dim=0)`` Args: input (Tensor): the input tensor. Example:: >>> a = torch.randn(1, 3) >>> a tensor([[ 0.6763, 0.7445, -2.2369]]) >>> torch.max(a) tensor(0.7445) .. function:: max(input, dim, keepdim=False, *, out=None) -> (Tensor, LongTensor) :noindex: Returns a namedtuple ``(values, indices)`` where ``values`` is the maximum value of each row of the :attr:`input` tensor in the given dimension :attr:`dim`. And ``indices`` is the index location of each maximum value found (argmax). If ``keepdim`` is ``True``, the output tensors are of the same size as ``input`` except in the dimension ``dim`` where they are of size 1. Otherwise, ``dim`` is squeezed (see :func:`torch.squeeze`), resulting in the output tensors having 1 fewer dimension than ``input``. .. note:: If there are multiple maximal values in a reduced row then the indices of the first maximal value are returned. Args: input (Tensor): the input tensor. dim (int): the dimension to reduce. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. Default: ``False``. Keyword args: out (tuple, optional): the result tuple of two output tensors (max, max_indices) Example:: >>> a = torch.randn(4, 4) >>> a tensor([[-1.2360, -0.2942, -0.1222, 0.8475], [ 1.1949, -1.1127, -2.2379, -0.6702], [ 1.5717, -0.9207, 0.1297, -1.8768], [-0.6172, 1.0036, -0.6060, -0.2432]]) >>> torch.max(a, 1) torch.return_types.max(values=tensor([0.8475, 1.1949, 1.5717, 1.0036]), indices=tensor([3, 0, 0, 1])) .. function:: max(input, other, *, out=None) -> Tensor :noindex: See :func:`torch.maximum`. """ ... @overload def max(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" max(input) -> Tensor Returns the maximum value of all elements in the ``input`` tensor. .. warning:: This function produces deterministic (sub)gradients unlike ``max(dim=0)`` Args: input (Tensor): the input tensor. Example:: >>> a = torch.randn(1, 3) >>> a tensor([[ 0.6763, 0.7445, -2.2369]]) >>> torch.max(a) tensor(0.7445) .. function:: max(input, dim, keepdim=False, *, out=None) -> (Tensor, LongTensor) :noindex: Returns a namedtuple ``(values, indices)`` where ``values`` is the maximum value of each row of the :attr:`input` tensor in the given dimension :attr:`dim`. And ``indices`` is the index location of each maximum value found (argmax). If ``keepdim`` is ``True``, the output tensors are of the same size as ``input`` except in the dimension ``dim`` where they are of size 1. Otherwise, ``dim`` is squeezed (see :func:`torch.squeeze`), resulting in the output tensors having 1 fewer dimension than ``input``. .. note:: If there are multiple maximal values in a reduced row then the indices of the first maximal value are returned. Args: input (Tensor): the input tensor. dim (int): the dimension to reduce. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. Default: ``False``. Keyword args: out (tuple, optional): the result tuple of two output tensors (max, max_indices) Example:: >>> a = torch.randn(4, 4) >>> a tensor([[-1.2360, -0.2942, -0.1222, 0.8475], [ 1.1949, -1.1127, -2.2379, -0.6702], [ 1.5717, -0.9207, 0.1297, -1.8768], [-0.6172, 1.0036, -0.6060, -0.2432]]) >>> torch.max(a, 1) torch.return_types.max(values=tensor([0.8475, 1.1949, 1.5717, 1.0036]), indices=tensor([3, 0, 0, 1])) .. function:: max(input, other, *, out=None) -> Tensor :noindex: See :func:`torch.maximum`. """ ... @overload def max(input: Tensor, dim: _int, keepdim: _bool = False, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.max: r""" max(input) -> Tensor Returns the maximum value of all elements in the ``input`` tensor. .. warning:: This function produces deterministic (sub)gradients unlike ``max(dim=0)`` Args: input (Tensor): the input tensor. Example:: >>> a = torch.randn(1, 3) >>> a tensor([[ 0.6763, 0.7445, -2.2369]]) >>> torch.max(a) tensor(0.7445) .. function:: max(input, dim, keepdim=False, *, out=None) -> (Tensor, LongTensor) :noindex: Returns a namedtuple ``(values, indices)`` where ``values`` is the maximum value of each row of the :attr:`input` tensor in the given dimension :attr:`dim`. And ``indices`` is the index location of each maximum value found (argmax). If ``keepdim`` is ``True``, the output tensors are of the same size as ``input`` except in the dimension ``dim`` where they are of size 1. Otherwise, ``dim`` is squeezed (see :func:`torch.squeeze`), resulting in the output tensors having 1 fewer dimension than ``input``. .. note:: If there are multiple maximal values in a reduced row then the indices of the first maximal value are returned. Args: input (Tensor): the input tensor. dim (int): the dimension to reduce. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. Default: ``False``. Keyword args: out (tuple, optional): the result tuple of two output tensors (max, max_indices) Example:: >>> a = torch.randn(4, 4) >>> a tensor([[-1.2360, -0.2942, -0.1222, 0.8475], [ 1.1949, -1.1127, -2.2379, -0.6702], [ 1.5717, -0.9207, 0.1297, -1.8768], [-0.6172, 1.0036, -0.6060, -0.2432]]) >>> torch.max(a, 1) torch.return_types.max(values=tensor([0.8475, 1.1949, 1.5717, 1.0036]), indices=tensor([3, 0, 0, 1])) .. function:: max(input, other, *, out=None) -> Tensor :noindex: See :func:`torch.maximum`. """ ... @overload def max(input: Tensor, dim: Union[str, ellipsis, None], keepdim: _bool = False, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.max: r""" max(input) -> Tensor Returns the maximum value of all elements in the ``input`` tensor. .. warning:: This function produces deterministic (sub)gradients unlike ``max(dim=0)`` Args: input (Tensor): the input tensor. Example:: >>> a = torch.randn(1, 3) >>> a tensor([[ 0.6763, 0.7445, -2.2369]]) >>> torch.max(a) tensor(0.7445) .. function:: max(input, dim, keepdim=False, *, out=None) -> (Tensor, LongTensor) :noindex: Returns a namedtuple ``(values, indices)`` where ``values`` is the maximum value of each row of the :attr:`input` tensor in the given dimension :attr:`dim`. And ``indices`` is the index location of each maximum value found (argmax). If ``keepdim`` is ``True``, the output tensors are of the same size as ``input`` except in the dimension ``dim`` where they are of size 1. Otherwise, ``dim`` is squeezed (see :func:`torch.squeeze`), resulting in the output tensors having 1 fewer dimension than ``input``. .. note:: If there are multiple maximal values in a reduced row then the indices of the first maximal value are returned. Args: input (Tensor): the input tensor. dim (int): the dimension to reduce. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. Default: ``False``. Keyword args: out (tuple, optional): the result tuple of two output tensors (max, max_indices) Example:: >>> a = torch.randn(4, 4) >>> a tensor([[-1.2360, -0.2942, -0.1222, 0.8475], [ 1.1949, -1.1127, -2.2379, -0.6702], [ 1.5717, -0.9207, 0.1297, -1.8768], [-0.6172, 1.0036, -0.6060, -0.2432]]) >>> torch.max(a, 1) torch.return_types.max(values=tensor([0.8475, 1.1949, 1.5717, 1.0036]), indices=tensor([3, 0, 0, 1])) .. function:: max(input, other, *, out=None) -> Tensor :noindex: See :func:`torch.maximum`. """ ... def max_pool1d(input: Tensor, kernel_size: Union[_int, _size], stride: Union[_int, _size] = (), padding: Union[_int, _size] = 0, dilation: Union[_int, _size] = 1, ceil_mode: _bool = False) -> Tensor: ... def max_pool1d_with_indices(input: Tensor, kernel_size: Union[_int, _size], stride: Union[_int, _size] = (), padding: Union[_int, _size] = 0, dilation: Union[_int, _size] = 1, ceil_mode: _bool = False) -> Tuple[Tensor, Tensor]: ... def max_pool2d(input: Tensor, kernel_size: Union[_int, _size], stride: Union[_int, _size] = (), padding: Union[_int, _size] = 0, dilation: Union[_int, _size] = 1, ceil_mode: _bool = False) -> Tensor: ... def max_pool3d(input: Tensor, kernel_size: Union[_int, _size], stride: Union[_int, _size] = (), padding: Union[_int, _size] = 0, dilation: Union[_int, _size] = 1, ceil_mode: _bool = False) -> Tensor: ... def maximum(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" maximum(input, other, *, out=None) -> Tensor Computes the element-wise maximum of :attr:`input` and :attr:`other`. .. note:: If one of the elements being compared is a NaN, then that element is returned. :func:`maximum` is not supported for tensors with complex dtypes. Args: input (Tensor): the input tensor. other (Tensor): the second input tensor Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.tensor((1, 2, -1)) >>> b = torch.tensor((3, 0, 4)) >>> torch.maximum(a, b) tensor([3, 2, 4]) """ ... @overload def mean(input: Tensor, *, dtype: Optional[_dtype] = None) -> Tensor: r""" mean(input, *, dtype=None) -> Tensor Returns the mean value of all elements in the :attr:`input` tensor. Input must be floating point or complex. Args: input (Tensor): the input tensor, either of floating point or complex dtype Keyword args: dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. If specified, the input tensor is casted to :attr:`dtype` before the operation is performed. This is useful for preventing data type overflows. Default: None. Example:: >>> a = torch.randn(1, 3) >>> a tensor([[ 0.2294, -0.5481, 1.3288]]) >>> torch.mean(a) tensor(0.3367) .. function:: mean(input, dim, keepdim=False, *, dtype=None, out=None) -> Tensor :noindex: Returns the mean value of each row of the :attr:`input` tensor in the given dimension :attr:`dim`. If :attr:`dim` is a list of dimensions, reduce over all of them. If :attr:`keepdim` is ``True``, the output tensor is of the same size as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the output tensor having 1 (or ``len(dim)``) fewer dimension(s). Args: input (Tensor): the input tensor. dim (int or tuple of ints): the dimension or dimensions to reduce. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. Keyword args: dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. If specified, the input tensor is casted to :attr:`dtype` before the operation is performed. This is useful for preventing data type overflows. Default: None. out (Tensor, optional): the output tensor. .. seealso:: :func:`torch.nanmean` computes the mean value of `non-NaN` elements. Example:: >>> a = torch.randn(4, 4) >>> a tensor([[-0.3841, 0.6320, 0.4254, -0.7384], [-0.9644, 1.0131, -0.6549, -1.4279], [-0.2951, -1.3350, -0.7694, 0.5600], [ 1.0842, -0.9580, 0.3623, 0.2343]]) >>> torch.mean(a, 1) tensor([-0.0163, -0.5085, -0.4599, 0.1807]) >>> torch.mean(a, 1, True) tensor([[-0.0163], [-0.5085], [-0.4599], [ 0.1807]]) """ ... @overload def mean(input: Tensor, dim: Optional[Union[_int, _size]], keepdim: _bool = False, *, dtype: Optional[_dtype] = None, out: Optional[Tensor] = None) -> Tensor: r""" mean(input, *, dtype=None) -> Tensor Returns the mean value of all elements in the :attr:`input` tensor. Input must be floating point or complex. Args: input (Tensor): the input tensor, either of floating point or complex dtype Keyword args: dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. If specified, the input tensor is casted to :attr:`dtype` before the operation is performed. This is useful for preventing data type overflows. Default: None. Example:: >>> a = torch.randn(1, 3) >>> a tensor([[ 0.2294, -0.5481, 1.3288]]) >>> torch.mean(a) tensor(0.3367) .. function:: mean(input, dim, keepdim=False, *, dtype=None, out=None) -> Tensor :noindex: Returns the mean value of each row of the :attr:`input` tensor in the given dimension :attr:`dim`. If :attr:`dim` is a list of dimensions, reduce over all of them. If :attr:`keepdim` is ``True``, the output tensor is of the same size as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the output tensor having 1 (or ``len(dim)``) fewer dimension(s). Args: input (Tensor): the input tensor. dim (int or tuple of ints): the dimension or dimensions to reduce. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. Keyword args: dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. If specified, the input tensor is casted to :attr:`dtype` before the operation is performed. This is useful for preventing data type overflows. Default: None. out (Tensor, optional): the output tensor. .. seealso:: :func:`torch.nanmean` computes the mean value of `non-NaN` elements. Example:: >>> a = torch.randn(4, 4) >>> a tensor([[-0.3841, 0.6320, 0.4254, -0.7384], [-0.9644, 1.0131, -0.6549, -1.4279], [-0.2951, -1.3350, -0.7694, 0.5600], [ 1.0842, -0.9580, 0.3623, 0.2343]]) >>> torch.mean(a, 1) tensor([-0.0163, -0.5085, -0.4599, 0.1807]) >>> torch.mean(a, 1, True) tensor([[-0.0163], [-0.5085], [-0.4599], [ 0.1807]]) """ ... @overload def mean(input: Tensor, dim: Sequence[Union[str, ellipsis, None]], keepdim: _bool = False, *, dtype: Optional[_dtype] = None, out: Optional[Tensor] = None) -> Tensor: r""" mean(input, *, dtype=None) -> Tensor Returns the mean value of all elements in the :attr:`input` tensor. Input must be floating point or complex. Args: input (Tensor): the input tensor, either of floating point or complex dtype Keyword args: dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. If specified, the input tensor is casted to :attr:`dtype` before the operation is performed. This is useful for preventing data type overflows. Default: None. Example:: >>> a = torch.randn(1, 3) >>> a tensor([[ 0.2294, -0.5481, 1.3288]]) >>> torch.mean(a) tensor(0.3367) .. function:: mean(input, dim, keepdim=False, *, dtype=None, out=None) -> Tensor :noindex: Returns the mean value of each row of the :attr:`input` tensor in the given dimension :attr:`dim`. If :attr:`dim` is a list of dimensions, reduce over all of them. If :attr:`keepdim` is ``True``, the output tensor is of the same size as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the output tensor having 1 (or ``len(dim)``) fewer dimension(s). Args: input (Tensor): the input tensor. dim (int or tuple of ints): the dimension or dimensions to reduce. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. Keyword args: dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. If specified, the input tensor is casted to :attr:`dtype` before the operation is performed. This is useful for preventing data type overflows. Default: None. out (Tensor, optional): the output tensor. .. seealso:: :func:`torch.nanmean` computes the mean value of `non-NaN` elements. Example:: >>> a = torch.randn(4, 4) >>> a tensor([[-0.3841, 0.6320, 0.4254, -0.7384], [-0.9644, 1.0131, -0.6549, -1.4279], [-0.2951, -1.3350, -0.7694, 0.5600], [ 1.0842, -0.9580, 0.3623, 0.2343]]) >>> torch.mean(a, 1) tensor([-0.0163, -0.5085, -0.4599, 0.1807]) >>> torch.mean(a, 1, True) tensor([[-0.0163], [-0.5085], [-0.4599], [ 0.1807]]) """ ... @overload def median(input: Tensor) -> Tensor: r""" median(input) -> Tensor Returns the median of the values in :attr:`input`. .. note:: The median is not unique for :attr:`input` tensors with an even number of elements. In this case the lower of the two medians is returned. To compute the mean of both medians, use :func:`torch.quantile` with ``q=0.5`` instead. .. warning:: This function produces deterministic (sub)gradients unlike ``median(dim=0)`` Args: input (Tensor): the input tensor. Example:: >>> a = torch.randn(1, 3) >>> a tensor([[ 1.5219, -1.5212, 0.2202]]) >>> torch.median(a) tensor(0.2202) .. function:: median(input, dim=-1, keepdim=False, *, out=None) -> (Tensor, LongTensor) :noindex: Returns a namedtuple ``(values, indices)`` where ``values`` contains the median of each row of :attr:`input` in the dimension :attr:`dim`, and ``indices`` contains the index of the median values found in the dimension :attr:`dim`. By default, :attr:`dim` is the last dimension of the :attr:`input` tensor. If :attr:`keepdim` is ``True``, the output tensors are of the same size as :attr:`input` except in the dimension :attr:`dim` where they are of size 1. Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the outputs tensor having 1 fewer dimension than :attr:`input`. .. note:: The median is not unique for :attr:`input` tensors with an even number of elements in the dimension :attr:`dim`. In this case the lower of the two medians is returned. To compute the mean of both medians in :attr:`input`, use :func:`torch.quantile` with ``q=0.5`` instead. .. warning:: ``indices`` does not necessarily contain the first occurrence of each median value found, unless it is unique. The exact implementation details are device-specific. Do not expect the same result when run on CPU and GPU in general. For the same reason do not expect the gradients to be deterministic. Args: input (Tensor): the input tensor. dim (int): the dimension to reduce. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. Keyword args: out ((Tensor, Tensor), optional): The first tensor will be populated with the median values and the second tensor, which must have dtype long, with their indices in the dimension :attr:`dim` of :attr:`input`. Example:: >>> a = torch.randn(4, 5) >>> a tensor([[ 0.2505, -0.3982, -0.9948, 0.3518, -1.3131], [ 0.3180, -0.6993, 1.0436, 0.0438, 0.2270], [-0.2751, 0.7303, 0.2192, 0.3321, 0.2488], [ 1.0778, -1.9510, 0.7048, 0.4742, -0.7125]]) >>> torch.median(a, 1) torch.return_types.median(values=tensor([-0.3982, 0.2270, 0.2488, 0.4742]), indices=tensor([1, 4, 4, 3])) """ ... @overload def median(input: Tensor, dim: _int, keepdim: _bool = False, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.median: r""" median(input) -> Tensor Returns the median of the values in :attr:`input`. .. note:: The median is not unique for :attr:`input` tensors with an even number of elements. In this case the lower of the two medians is returned. To compute the mean of both medians, use :func:`torch.quantile` with ``q=0.5`` instead. .. warning:: This function produces deterministic (sub)gradients unlike ``median(dim=0)`` Args: input (Tensor): the input tensor. Example:: >>> a = torch.randn(1, 3) >>> a tensor([[ 1.5219, -1.5212, 0.2202]]) >>> torch.median(a) tensor(0.2202) .. function:: median(input, dim=-1, keepdim=False, *, out=None) -> (Tensor, LongTensor) :noindex: Returns a namedtuple ``(values, indices)`` where ``values`` contains the median of each row of :attr:`input` in the dimension :attr:`dim`, and ``indices`` contains the index of the median values found in the dimension :attr:`dim`. By default, :attr:`dim` is the last dimension of the :attr:`input` tensor. If :attr:`keepdim` is ``True``, the output tensors are of the same size as :attr:`input` except in the dimension :attr:`dim` where they are of size 1. Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the outputs tensor having 1 fewer dimension than :attr:`input`. .. note:: The median is not unique for :attr:`input` tensors with an even number of elements in the dimension :attr:`dim`. In this case the lower of the two medians is returned. To compute the mean of both medians in :attr:`input`, use :func:`torch.quantile` with ``q=0.5`` instead. .. warning:: ``indices`` does not necessarily contain the first occurrence of each median value found, unless it is unique. The exact implementation details are device-specific. Do not expect the same result when run on CPU and GPU in general. For the same reason do not expect the gradients to be deterministic. Args: input (Tensor): the input tensor. dim (int): the dimension to reduce. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. Keyword args: out ((Tensor, Tensor), optional): The first tensor will be populated with the median values and the second tensor, which must have dtype long, with their indices in the dimension :attr:`dim` of :attr:`input`. Example:: >>> a = torch.randn(4, 5) >>> a tensor([[ 0.2505, -0.3982, -0.9948, 0.3518, -1.3131], [ 0.3180, -0.6993, 1.0436, 0.0438, 0.2270], [-0.2751, 0.7303, 0.2192, 0.3321, 0.2488], [ 1.0778, -1.9510, 0.7048, 0.4742, -0.7125]]) >>> torch.median(a, 1) torch.return_types.median(values=tensor([-0.3982, 0.2270, 0.2488, 0.4742]), indices=tensor([1, 4, 4, 3])) """ ... @overload def median(input: Tensor, dim: Union[str, ellipsis, None], keepdim: _bool = False, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.median: r""" median(input) -> Tensor Returns the median of the values in :attr:`input`. .. note:: The median is not unique for :attr:`input` tensors with an even number of elements. In this case the lower of the two medians is returned. To compute the mean of both medians, use :func:`torch.quantile` with ``q=0.5`` instead. .. warning:: This function produces deterministic (sub)gradients unlike ``median(dim=0)`` Args: input (Tensor): the input tensor. Example:: >>> a = torch.randn(1, 3) >>> a tensor([[ 1.5219, -1.5212, 0.2202]]) >>> torch.median(a) tensor(0.2202) .. function:: median(input, dim=-1, keepdim=False, *, out=None) -> (Tensor, LongTensor) :noindex: Returns a namedtuple ``(values, indices)`` where ``values`` contains the median of each row of :attr:`input` in the dimension :attr:`dim`, and ``indices`` contains the index of the median values found in the dimension :attr:`dim`. By default, :attr:`dim` is the last dimension of the :attr:`input` tensor. If :attr:`keepdim` is ``True``, the output tensors are of the same size as :attr:`input` except in the dimension :attr:`dim` where they are of size 1. Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the outputs tensor having 1 fewer dimension than :attr:`input`. .. note:: The median is not unique for :attr:`input` tensors with an even number of elements in the dimension :attr:`dim`. In this case the lower of the two medians is returned. To compute the mean of both medians in :attr:`input`, use :func:`torch.quantile` with ``q=0.5`` instead. .. warning:: ``indices`` does not necessarily contain the first occurrence of each median value found, unless it is unique. The exact implementation details are device-specific. Do not expect the same result when run on CPU and GPU in general. For the same reason do not expect the gradients to be deterministic. Args: input (Tensor): the input tensor. dim (int): the dimension to reduce. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. Keyword args: out ((Tensor, Tensor), optional): The first tensor will be populated with the median values and the second tensor, which must have dtype long, with their indices in the dimension :attr:`dim` of :attr:`input`. Example:: >>> a = torch.randn(4, 5) >>> a tensor([[ 0.2505, -0.3982, -0.9948, 0.3518, -1.3131], [ 0.3180, -0.6993, 1.0436, 0.0438, 0.2270], [-0.2751, 0.7303, 0.2192, 0.3321, 0.2488], [ 1.0778, -1.9510, 0.7048, 0.4742, -0.7125]]) >>> torch.median(a, 1) torch.return_types.median(values=tensor([-0.3982, 0.2270, 0.2488, 0.4742]), indices=tensor([1, 4, 4, 3])) """ ... @overload def min(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" min(input) -> Tensor Returns the minimum value of all elements in the :attr:`input` tensor. .. warning:: This function produces deterministic (sub)gradients unlike ``min(dim=0)`` Args: input (Tensor): the input tensor. Example:: >>> a = torch.randn(1, 3) >>> a tensor([[ 0.6750, 1.0857, 1.7197]]) >>> torch.min(a) tensor(0.6750) .. function:: min(input, dim, keepdim=False, *, out=None) -> (Tensor, LongTensor) :noindex: Returns a namedtuple ``(values, indices)`` where ``values`` is the minimum value of each row of the :attr:`input` tensor in the given dimension :attr:`dim`. And ``indices`` is the index location of each minimum value found (argmin). If :attr:`keepdim` is ``True``, the output tensors are of the same size as :attr:`input` except in the dimension :attr:`dim` where they are of size 1. Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the output tensors having 1 fewer dimension than :attr:`input`. .. note:: If there are multiple minimal values in a reduced row then the indices of the first minimal value are returned. Args: input (Tensor): the input tensor. dim (int): the dimension to reduce. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. Keyword args: out (tuple, optional): the tuple of two output tensors (min, min_indices) Example:: >>> a = torch.randn(4, 4) >>> a tensor([[-0.6248, 1.1334, -1.1899, -0.2803], [-1.4644, -0.2635, -0.3651, 0.6134], [ 0.2457, 0.0384, 1.0128, 0.7015], [-0.1153, 2.9849, 2.1458, 0.5788]]) >>> torch.min(a, 1) torch.return_types.min(values=tensor([-1.1899, -1.4644, 0.0384, -0.1153]), indices=tensor([2, 0, 1, 0])) .. function:: min(input, other, *, out=None) -> Tensor :noindex: See :func:`torch.minimum`. """ ... @overload def min(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" min(input) -> Tensor Returns the minimum value of all elements in the :attr:`input` tensor. .. warning:: This function produces deterministic (sub)gradients unlike ``min(dim=0)`` Args: input (Tensor): the input tensor. Example:: >>> a = torch.randn(1, 3) >>> a tensor([[ 0.6750, 1.0857, 1.7197]]) >>> torch.min(a) tensor(0.6750) .. function:: min(input, dim, keepdim=False, *, out=None) -> (Tensor, LongTensor) :noindex: Returns a namedtuple ``(values, indices)`` where ``values`` is the minimum value of each row of the :attr:`input` tensor in the given dimension :attr:`dim`. And ``indices`` is the index location of each minimum value found (argmin). If :attr:`keepdim` is ``True``, the output tensors are of the same size as :attr:`input` except in the dimension :attr:`dim` where they are of size 1. Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the output tensors having 1 fewer dimension than :attr:`input`. .. note:: If there are multiple minimal values in a reduced row then the indices of the first minimal value are returned. Args: input (Tensor): the input tensor. dim (int): the dimension to reduce. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. Keyword args: out (tuple, optional): the tuple of two output tensors (min, min_indices) Example:: >>> a = torch.randn(4, 4) >>> a tensor([[-0.6248, 1.1334, -1.1899, -0.2803], [-1.4644, -0.2635, -0.3651, 0.6134], [ 0.2457, 0.0384, 1.0128, 0.7015], [-0.1153, 2.9849, 2.1458, 0.5788]]) >>> torch.min(a, 1) torch.return_types.min(values=tensor([-1.1899, -1.4644, 0.0384, -0.1153]), indices=tensor([2, 0, 1, 0])) .. function:: min(input, other, *, out=None) -> Tensor :noindex: See :func:`torch.minimum`. """ ... @overload def min(input: Tensor, dim: _int, keepdim: _bool = False, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.min: r""" min(input) -> Tensor Returns the minimum value of all elements in the :attr:`input` tensor. .. warning:: This function produces deterministic (sub)gradients unlike ``min(dim=0)`` Args: input (Tensor): the input tensor. Example:: >>> a = torch.randn(1, 3) >>> a tensor([[ 0.6750, 1.0857, 1.7197]]) >>> torch.min(a) tensor(0.6750) .. function:: min(input, dim, keepdim=False, *, out=None) -> (Tensor, LongTensor) :noindex: Returns a namedtuple ``(values, indices)`` where ``values`` is the minimum value of each row of the :attr:`input` tensor in the given dimension :attr:`dim`. And ``indices`` is the index location of each minimum value found (argmin). If :attr:`keepdim` is ``True``, the output tensors are of the same size as :attr:`input` except in the dimension :attr:`dim` where they are of size 1. Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the output tensors having 1 fewer dimension than :attr:`input`. .. note:: If there are multiple minimal values in a reduced row then the indices of the first minimal value are returned. Args: input (Tensor): the input tensor. dim (int): the dimension to reduce. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. Keyword args: out (tuple, optional): the tuple of two output tensors (min, min_indices) Example:: >>> a = torch.randn(4, 4) >>> a tensor([[-0.6248, 1.1334, -1.1899, -0.2803], [-1.4644, -0.2635, -0.3651, 0.6134], [ 0.2457, 0.0384, 1.0128, 0.7015], [-0.1153, 2.9849, 2.1458, 0.5788]]) >>> torch.min(a, 1) torch.return_types.min(values=tensor([-1.1899, -1.4644, 0.0384, -0.1153]), indices=tensor([2, 0, 1, 0])) .. function:: min(input, other, *, out=None) -> Tensor :noindex: See :func:`torch.minimum`. """ ... @overload def min(input: Tensor, dim: Union[str, ellipsis, None], keepdim: _bool = False, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.min: r""" min(input) -> Tensor Returns the minimum value of all elements in the :attr:`input` tensor. .. warning:: This function produces deterministic (sub)gradients unlike ``min(dim=0)`` Args: input (Tensor): the input tensor. Example:: >>> a = torch.randn(1, 3) >>> a tensor([[ 0.6750, 1.0857, 1.7197]]) >>> torch.min(a) tensor(0.6750) .. function:: min(input, dim, keepdim=False, *, out=None) -> (Tensor, LongTensor) :noindex: Returns a namedtuple ``(values, indices)`` where ``values`` is the minimum value of each row of the :attr:`input` tensor in the given dimension :attr:`dim`. And ``indices`` is the index location of each minimum value found (argmin). If :attr:`keepdim` is ``True``, the output tensors are of the same size as :attr:`input` except in the dimension :attr:`dim` where they are of size 1. Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the output tensors having 1 fewer dimension than :attr:`input`. .. note:: If there are multiple minimal values in a reduced row then the indices of the first minimal value are returned. Args: input (Tensor): the input tensor. dim (int): the dimension to reduce. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. Keyword args: out (tuple, optional): the tuple of two output tensors (min, min_indices) Example:: >>> a = torch.randn(4, 4) >>> a tensor([[-0.6248, 1.1334, -1.1899, -0.2803], [-1.4644, -0.2635, -0.3651, 0.6134], [ 0.2457, 0.0384, 1.0128, 0.7015], [-0.1153, 2.9849, 2.1458, 0.5788]]) >>> torch.min(a, 1) torch.return_types.min(values=tensor([-1.1899, -1.4644, 0.0384, -0.1153]), indices=tensor([2, 0, 1, 0])) .. function:: min(input, other, *, out=None) -> Tensor :noindex: See :func:`torch.minimum`. """ ... def minimum(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" minimum(input, other, *, out=None) -> Tensor Computes the element-wise minimum of :attr:`input` and :attr:`other`. .. note:: If one of the elements being compared is a NaN, then that element is returned. :func:`minimum` is not supported for tensors with complex dtypes. Args: input (Tensor): the input tensor. other (Tensor): the second input tensor Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.tensor((1, 2, -1)) >>> b = torch.tensor((3, 0, 4)) >>> torch.minimum(a, b) tensor([1, 0, -1]) """ ... def miopen_batch_norm(input: Tensor, weight: Tensor, bias: Optional[Tensor], running_mean: Optional[Tensor], running_var: Optional[Tensor], training: _bool, exponential_average_factor: _float, epsilon: _float) -> Tuple[Tensor, Tensor, Tensor]: ... def miopen_convolution(input: Tensor, weight: Tensor, bias: Optional[Tensor], padding: Sequence[Union[_int, SymInt]], stride: Sequence[Union[_int, SymInt]], dilation: Sequence[Union[_int, SymInt]], groups: Union[_int, SymInt], benchmark: _bool, deterministic: _bool) -> Tensor: ... def miopen_convolution_add_relu(input: Tensor, weight: Tensor, z: Tensor, alpha: Optional[Union[Number, _complex]], bias: Optional[Tensor], stride: Sequence[Union[_int, SymInt]], padding: Sequence[Union[_int, SymInt]], dilation: Sequence[Union[_int, SymInt]], groups: Union[_int, SymInt]) -> Tensor: ... def miopen_convolution_relu(input: Tensor, weight: Tensor, bias: Optional[Tensor], stride: Sequence[Union[_int, SymInt]], padding: Sequence[Union[_int, SymInt]], dilation: Sequence[Union[_int, SymInt]], groups: Union[_int, SymInt]) -> Tensor: ... def miopen_convolution_transpose(input: Tensor, weight: Tensor, bias: Optional[Tensor], padding: Sequence[Union[_int, SymInt]], output_padding: Sequence[Union[_int, SymInt]], stride: Sequence[Union[_int, SymInt]], dilation: Sequence[Union[_int, SymInt]], groups: Union[_int, SymInt], benchmark: _bool, deterministic: _bool) -> Tensor: ... def miopen_depthwise_convolution(input: Tensor, weight: Tensor, bias: Optional[Tensor], padding: Sequence[Union[_int, SymInt]], stride: Sequence[Union[_int, SymInt]], dilation: Sequence[Union[_int, SymInt]], groups: Union[_int, SymInt], benchmark: _bool, deterministic: _bool) -> Tensor: ... def miopen_rnn(input: Tensor, weight: Union[Tuple[Tensor, ...], List[Tensor]], weight_stride0: _int, hx: Tensor, cx: Optional[Tensor], mode: _int, hidden_size: _int, num_layers: _int, batch_first: _bool, dropout: _float, train: _bool, bidirectional: _bool, batch_sizes: _size, dropout_state: Optional[Tensor]) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]: ... def mkldnn_adaptive_avg_pool2d(input: Tensor, output_size: Union[_int, _size], *, out: Optional[Tensor] = None) -> Tensor: ... def mkldnn_convolution(input: Tensor, weight: Tensor, bias: Optional[Tensor], padding: Sequence[Union[_int, SymInt]], stride: Sequence[Union[_int, SymInt]], dilation: Sequence[Union[_int, SymInt]], groups: Union[_int, SymInt]) -> Tensor: ... def mkldnn_linear_backward_weights(grad_output: Tensor, input: Tensor, weight: Tensor, bias_defined: _bool) -> Tuple[Tensor, Tensor]: ... def mkldnn_max_pool2d(input: Tensor, kernel_size: Union[_int, _size], stride: Union[_int, _size] = (), padding: Union[_int, _size] = 0, dilation: Union[_int, _size] = 1, ceil_mode: _bool = False) -> Tensor: ... def mkldnn_max_pool3d(input: Tensor, kernel_size: Union[_int, _size], stride: Union[_int, _size] = (), padding: Union[_int, _size] = 0, dilation: Union[_int, _size] = 1, ceil_mode: _bool = False) -> Tensor: ... def mkldnn_rnn_layer(input: Tensor, weight0: Tensor, weight1: Tensor, weight2: Tensor, weight3: Tensor, hx_: Tensor, cx_: Tensor, reverse: _bool, batch_sizes: _size, mode: _int, hidden_size: _int, num_layers: _int, has_biases: _bool, bidirectional: _bool, batch_first: _bool, train: _bool) -> Tuple[Tensor, Tensor, Tensor, Tensor]: ... def mm(input: Tensor, mat2: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" mm(input, mat2, *, out=None) -> Tensor Performs a matrix multiplication of the matrices :attr:`input` and :attr:`mat2`. If :attr:`input` is a :math:`(n \times m)` tensor, :attr:`mat2` is a :math:`(m \times p)` tensor, :attr:`out` will be a :math:`(n \times p)` tensor. .. note:: This function does not :ref:`broadcast `. For broadcasting matrix products, see :func:`torch.matmul`. Supports strided and sparse 2-D tensors as inputs, autograd with respect to strided inputs. This operation has support for arguments with :ref:`sparse layouts`. If :attr:`out` is provided it's layout will be used. Otherwise, the result layout will be deduced from that of :attr:`input`. .. warning:: Sparse support is a beta feature and some layout(s)/dtype/device combinations may not be supported, or may not have autograd support. If you notice missing functionality please open a feature request. This operator supports :ref:`TensorFloat32`. On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision` for backward. Args: input (Tensor): the first matrix to be matrix multiplied mat2 (Tensor): the second matrix to be matrix multiplied Keyword args: out (Tensor, optional): the output tensor. Example:: >>> mat1 = torch.randn(2, 3) >>> mat2 = torch.randn(3, 3) >>> torch.mm(mat1, mat2) tensor([[ 0.4851, 0.5037, -0.3633], [-0.0760, -3.6705, 2.4784]]) """ ... @overload def mode(input: Tensor, dim: _int = -1, keepdim: _bool = False, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.mode: r""" mode(input, dim=-1, keepdim=False, *, out=None) -> (Tensor, LongTensor) Returns a namedtuple ``(values, indices)`` where ``values`` is the mode value of each row of the :attr:`input` tensor in the given dimension :attr:`dim`, i.e. a value which appears most often in that row, and ``indices`` is the index location of each mode value found. By default, :attr:`dim` is the last dimension of the :attr:`input` tensor. If :attr:`keepdim` is ``True``, the output tensors are of the same size as :attr:`input` except in the dimension :attr:`dim` where they are of size 1. Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the output tensors having 1 fewer dimension than :attr:`input`. .. note:: This function is not defined for ``torch.cuda.Tensor`` yet. Args: input (Tensor): the input tensor. dim (int): the dimension to reduce. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. Keyword args: out (tuple, optional): the result tuple of two output tensors (values, indices) Example:: >>> b = torch.tensor( [[0, 0, 0, 2, 0, 0, 2], [0, 3, 0, 0, 2, 0, 1], [2, 2, 2, 0, 0, 0, 3], [2, 2, 3, 0, 1, 1, 0], [1, 1, 0, 0, 2, 0, 2]]) >>> torch.mode(b, 0) torch.return_types.mode( values=tensor([0, 2, 0, 0, 0, 0, 2]), indices=tensor([1, 3, 4, 4, 2, 4, 4])) """ ... @overload def mode(input: Tensor, dim: Union[str, ellipsis, None], keepdim: _bool = False, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.mode: r""" mode(input, dim=-1, keepdim=False, *, out=None) -> (Tensor, LongTensor) Returns a namedtuple ``(values, indices)`` where ``values`` is the mode value of each row of the :attr:`input` tensor in the given dimension :attr:`dim`, i.e. a value which appears most often in that row, and ``indices`` is the index location of each mode value found. By default, :attr:`dim` is the last dimension of the :attr:`input` tensor. If :attr:`keepdim` is ``True``, the output tensors are of the same size as :attr:`input` except in the dimension :attr:`dim` where they are of size 1. Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the output tensors having 1 fewer dimension than :attr:`input`. .. note:: This function is not defined for ``torch.cuda.Tensor`` yet. Args: input (Tensor): the input tensor. dim (int): the dimension to reduce. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. Keyword args: out (tuple, optional): the result tuple of two output tensors (values, indices) Example:: >>> b = torch.tensor( [[0, 0, 0, 2, 0, 0, 2], [0, 3, 0, 0, 2, 0, 1], [2, 2, 2, 0, 0, 0, 3], [2, 2, 3, 0, 1, 1, 0], [1, 1, 0, 0, 2, 0, 2]]) >>> torch.mode(b, 0) torch.return_types.mode( values=tensor([0, 2, 0, 0, 0, 0, 2]), indices=tensor([1, 3, 4, 4, 2, 4, 4])) """ ... @overload def moveaxis(input: Tensor, source: _int, destination: _int) -> Tensor: r""" moveaxis(input, source, destination) -> Tensor Alias for :func:`torch.movedim`. This function is equivalent to NumPy's moveaxis function. Examples:: >>> t = torch.randn(3,2,1) >>> t tensor([[[-0.3362], [-0.8437]], [[-0.9627], [ 0.1727]], [[ 0.5173], [-0.1398]]]) >>> torch.moveaxis(t, 1, 0).shape torch.Size([2, 3, 1]) >>> torch.moveaxis(t, 1, 0) tensor([[[-0.3362], [-0.9627], [ 0.5173]], [[-0.8437], [ 0.1727], [-0.1398]]]) >>> torch.moveaxis(t, (1, 2), (0, 1)).shape torch.Size([2, 1, 3]) >>> torch.moveaxis(t, (1, 2), (0, 1)) tensor([[[-0.3362, -0.9627, 0.5173]], [[-0.8437, 0.1727, -0.1398]]]) """ ... @overload def moveaxis(input: Tensor, source: _size, destination: _size) -> Tensor: r""" moveaxis(input, source, destination) -> Tensor Alias for :func:`torch.movedim`. This function is equivalent to NumPy's moveaxis function. Examples:: >>> t = torch.randn(3,2,1) >>> t tensor([[[-0.3362], [-0.8437]], [[-0.9627], [ 0.1727]], [[ 0.5173], [-0.1398]]]) >>> torch.moveaxis(t, 1, 0).shape torch.Size([2, 3, 1]) >>> torch.moveaxis(t, 1, 0) tensor([[[-0.3362], [-0.9627], [ 0.5173]], [[-0.8437], [ 0.1727], [-0.1398]]]) >>> torch.moveaxis(t, (1, 2), (0, 1)).shape torch.Size([2, 1, 3]) >>> torch.moveaxis(t, (1, 2), (0, 1)) tensor([[[-0.3362, -0.9627, 0.5173]], [[-0.8437, 0.1727, -0.1398]]]) """ ... @overload def movedim(input: Tensor, source: _int, destination: _int) -> Tensor: r""" movedim(input, source, destination) -> Tensor Moves the dimension(s) of :attr:`input` at the position(s) in :attr:`source` to the position(s) in :attr:`destination`. Other dimensions of :attr:`input` that are not explicitly moved remain in their original order and appear at the positions not specified in :attr:`destination`. Args: input (Tensor): the input tensor. source (int or tuple of ints): Original positions of the dims to move. These must be unique. destination (int or tuple of ints): Destination positions for each of the original dims. These must also be unique. Examples:: >>> t = torch.randn(3,2,1) >>> t tensor([[[-0.3362], [-0.8437]], [[-0.9627], [ 0.1727]], [[ 0.5173], [-0.1398]]]) >>> torch.movedim(t, 1, 0).shape torch.Size([2, 3, 1]) >>> torch.movedim(t, 1, 0) tensor([[[-0.3362], [-0.9627], [ 0.5173]], [[-0.8437], [ 0.1727], [-0.1398]]]) >>> torch.movedim(t, (1, 2), (0, 1)).shape torch.Size([2, 1, 3]) >>> torch.movedim(t, (1, 2), (0, 1)) tensor([[[-0.3362, -0.9627, 0.5173]], [[-0.8437, 0.1727, -0.1398]]]) """ ... @overload def movedim(input: Tensor, source: _size, destination: _size) -> Tensor: r""" movedim(input, source, destination) -> Tensor Moves the dimension(s) of :attr:`input` at the position(s) in :attr:`source` to the position(s) in :attr:`destination`. Other dimensions of :attr:`input` that are not explicitly moved remain in their original order and appear at the positions not specified in :attr:`destination`. Args: input (Tensor): the input tensor. source (int or tuple of ints): Original positions of the dims to move. These must be unique. destination (int or tuple of ints): Destination positions for each of the original dims. These must also be unique. Examples:: >>> t = torch.randn(3,2,1) >>> t tensor([[[-0.3362], [-0.8437]], [[-0.9627], [ 0.1727]], [[ 0.5173], [-0.1398]]]) >>> torch.movedim(t, 1, 0).shape torch.Size([2, 3, 1]) >>> torch.movedim(t, 1, 0) tensor([[[-0.3362], [-0.9627], [ 0.5173]], [[-0.8437], [ 0.1727], [-0.1398]]]) >>> torch.movedim(t, (1, 2), (0, 1)).shape torch.Size([2, 1, 3]) >>> torch.movedim(t, (1, 2), (0, 1)) tensor([[[-0.3362, -0.9627, 0.5173]], [[-0.8437, 0.1727, -0.1398]]]) """ ... def msort(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" msort(input, *, out=None) -> Tensor Sorts the elements of the :attr:`input` tensor along its first dimension in ascending order by value. .. note:: `torch.msort(t)` is equivalent to `torch.sort(t, dim=0)[0]`. See also :func:`torch.sort`. Args: input (Tensor): the input tensor. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> t = torch.randn(3, 4) >>> t tensor([[-0.1321, 0.4370, -1.2631, -1.1289], [-2.0527, -1.1250, 0.2275, 0.3077], [-0.0881, -0.1259, -0.5495, 1.0284]]) >>> torch.msort(t) tensor([[-2.0527, -1.1250, -1.2631, -1.1289], [-0.1321, -0.1259, -0.5495, 0.3077], [-0.0881, 0.4370, 0.2275, 1.0284]]) """ ... def mul(input: Union[Tensor, Number, _complex], other: Union[Tensor, Number, _complex], *, out: Optional[Tensor] = None) -> Tensor: r""" mul(input, other, *, out=None) -> Tensor Multiplies :attr:`input` by :attr:`other`. .. math:: \text{out}_i = \text{input}_i \times \text{other}_i Supports :ref:`broadcasting to a common shape `, :ref:`type promotion `, and integer, float, and complex inputs. Args: input (Tensor): the input tensor. other (Tensor or Number) - the tensor or number to multiply input by. Keyword args: out (Tensor, optional): the output tensor. Examples:: >>> a = torch.randn(3) >>> a tensor([ 0.2015, -0.4255, 2.6087]) >>> torch.mul(a, 100) tensor([ 20.1494, -42.5491, 260.8663]) >>> b = torch.randn(4, 1) >>> b tensor([[ 1.1207], [-0.3137], [ 0.0700], [ 0.8378]]) >>> c = torch.randn(1, 4) >>> c tensor([[ 0.5146, 0.1216, -0.5244, 2.2382]]) >>> torch.mul(b, c) tensor([[ 0.5767, 0.1363, -0.5877, 2.5083], [-0.1614, -0.0382, 0.1645, -0.7021], [ 0.0360, 0.0085, -0.0367, 0.1567], [ 0.4312, 0.1019, -0.4394, 1.8753]]) """ ... def multinomial(input: Tensor, num_samples: _int, replacement: _bool = False, *, generator: Optional[Generator] = None, out: Optional[Tensor] = None) -> Tensor: r""" multinomial(input, num_samples, replacement=False, *, generator=None, out=None) -> LongTensor Returns a tensor where each row contains :attr:`num_samples` indices sampled from the multinomial (a stricter definition would be multivariate, refer to torch.distributions.multinomial.Multinomial for more details) probability distribution located in the corresponding row of tensor :attr:`input`. .. note:: The rows of :attr:`input` do not need to sum to one (in which case we use the values as weights), but must be non-negative, finite and have a non-zero sum. Indices are ordered from left to right according to when each was sampled (first samples are placed in first column). If :attr:`input` is a vector, :attr:`out` is a vector of size :attr:`num_samples`. If :attr:`input` is a matrix with `m` rows, :attr:`out` is an matrix of shape :math:`(m \times \text{num\_samples})`. If replacement is ``True``, samples are drawn with replacement. If not, they are drawn without replacement, which means that when a sample index is drawn for a row, it cannot be drawn again for that row. .. note:: When drawn without replacement, :attr:`num_samples` must be lower than number of non-zero elements in :attr:`input` (or the min number of non-zero elements in each row of :attr:`input` if it is a matrix). Args: input (Tensor): the input tensor containing probabilities num_samples (int): number of samples to draw replacement (bool, optional): whether to draw with replacement or not Keyword args: generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling out (Tensor, optional): the output tensor. Example:: >>> weights = torch.tensor([0, 10, 3, 0], dtype=torch.float) # create a tensor of weights >>> torch.multinomial(weights, 2) tensor([1, 2]) >>> torch.multinomial(weights, 4) # ERROR! RuntimeError: invalid argument 2: invalid multinomial distribution (with replacement=False, not enough non-negative category to sample) at ../aten/src/TH/generic/THTensorRandom.cpp:320 >>> torch.multinomial(weights, 4, replacement=True) tensor([ 2, 1, 1, 1]) """ ... @overload def multiply(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" multiply(input, other, *, out=None) Alias for :func:`torch.mul`. """ ... @overload def multiply(input: Tensor, other: Union[Number, _complex]) -> Tensor: r""" multiply(input, other, *, out=None) Alias for :func:`torch.mul`. """ ... def mv(input: Tensor, vec: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" mv(input, vec, *, out=None) -> Tensor Performs a matrix-vector product of the matrix :attr:`input` and the vector :attr:`vec`. If :attr:`input` is a :math:`(n \times m)` tensor, :attr:`vec` is a 1-D tensor of size :math:`m`, :attr:`out` will be 1-D of size :math:`n`. .. note:: This function does not :ref:`broadcast `. Args: input (Tensor): matrix to be multiplied vec (Tensor): vector to be multiplied Keyword args: out (Tensor, optional): the output tensor. Example:: >>> mat = torch.randn(2, 3) >>> vec = torch.randn(3) >>> torch.mv(mat, vec) tensor([ 1.0404, -0.6361]) """ ... def mvlgamma(input: Tensor, p: _int, *, out: Optional[Tensor] = None) -> Tensor: r""" mvlgamma(input, p, *, out=None) -> Tensor Alias for :func:`torch.special.multigammaln`. """ ... def nan_to_num(input: Tensor, nan: Optional[_float] = None, posinf: Optional[_float] = None, neginf: Optional[_float] = None, *, out: Optional[Tensor] = None) -> Tensor: r""" nan_to_num(input, nan=0.0, posinf=None, neginf=None, *, out=None) -> Tensor Replaces :literal:`NaN`, positive infinity, and negative infinity values in :attr:`input` with the values specified by :attr:`nan`, :attr:`posinf`, and :attr:`neginf`, respectively. By default, :literal:`NaN`\ s are replaced with zero, positive infinity is replaced with the greatest finite value representable by :attr:`input`'s dtype, and negative infinity is replaced with the least finite value representable by :attr:`input`'s dtype. Args: input (Tensor): the input tensor. nan (Number, optional): the value to replace :literal:`NaN`\s with. Default is zero. posinf (Number, optional): if a Number, the value to replace positive infinity values with. If None, positive infinity values are replaced with the greatest finite value representable by :attr:`input`'s dtype. Default is None. neginf (Number, optional): if a Number, the value to replace negative infinity values with. If None, negative infinity values are replaced with the lowest finite value representable by :attr:`input`'s dtype. Default is None. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> x = torch.tensor([float('nan'), float('inf'), -float('inf'), 3.14]) >>> torch.nan_to_num(x) tensor([ 0.0000e+00, 3.4028e+38, -3.4028e+38, 3.1400e+00]) >>> torch.nan_to_num(x, nan=2.0) tensor([ 2.0000e+00, 3.4028e+38, -3.4028e+38, 3.1400e+00]) >>> torch.nan_to_num(x, nan=2.0, posinf=1.0) tensor([ 2.0000e+00, 1.0000e+00, -3.4028e+38, 3.1400e+00]) """ ... def nan_to_num_(input: Tensor, nan: Optional[_float] = None, posinf: Optional[_float] = None, neginf: Optional[_float] = None) -> Tensor: ... def nanmean(input: Tensor, dim: Optional[Union[_int, _size]] = None, keepdim: _bool = False, *, dtype: Optional[_dtype] = None, out: Optional[Tensor] = None) -> Tensor: r""" nanmean(input, dim=None, keepdim=False, *, dtype=None, out=None) -> Tensor Computes the mean of all `non-NaN` elements along the specified dimensions. This function is identical to :func:`torch.mean` when there are no `NaN` values in the :attr:`input` tensor. In the presence of `NaN`, :func:`torch.mean` will propagate the `NaN` to the output whereas :func:`torch.nanmean` will ignore the `NaN` values (`torch.nanmean(a)` is equivalent to `torch.mean(a[~a.isnan()])`). If :attr:`keepdim` is ``True``, the output tensor is of the same size as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the output tensor having 1 (or ``len(dim)``) fewer dimension(s). Args: input (Tensor): the input tensor. dim (int or tuple of ints, optional): the dimension or dimensions to reduce. If ``None``, all dimensions are reduced. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. Keyword args: dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. If specified, the input tensor is casted to :attr:`dtype` before the operation is performed. This is useful for preventing data type overflows. Default: None. out (Tensor, optional): the output tensor. .. seealso:: :func:`torch.mean` computes the mean value, propagating `NaN`. Example:: >>> x = torch.tensor([[torch.nan, 1, 2], [1, 2, 3]]) >>> x.mean() tensor(nan) >>> x.nanmean() tensor(1.8000) >>> x.mean(dim=0) tensor([ nan, 1.5000, 2.5000]) >>> x.nanmean(dim=0) tensor([1.0000, 1.5000, 2.5000]) # If all elements in the reduced dimensions are NaN then the result is NaN >>> torch.tensor([torch.nan]).nanmean() tensor(nan) """ ... @overload def nanmedian(input: Tensor) -> Tensor: r""" nanmedian(input) -> Tensor Returns the median of the values in :attr:`input`, ignoring ``NaN`` values. This function is identical to :func:`torch.median` when there are no ``NaN`` values in :attr:`input`. When :attr:`input` has one or more ``NaN`` values, :func:`torch.median` will always return ``NaN``, while this function will return the median of the non-``NaN`` elements in :attr:`input`. If all the elements in :attr:`input` are ``NaN`` it will also return ``NaN``. Args: input (Tensor): the input tensor. Example:: >>> a = torch.tensor([1, float('nan'), 3, 2]) >>> a.median() tensor(nan) >>> a.nanmedian() tensor(2.) .. function:: nanmedian(input, dim=-1, keepdim=False, *, out=None) -> (Tensor, LongTensor) :noindex: Returns a namedtuple ``(values, indices)`` where ``values`` contains the median of each row of :attr:`input` in the dimension :attr:`dim`, ignoring ``NaN`` values, and ``indices`` contains the index of the median values found in the dimension :attr:`dim`. This function is identical to :func:`torch.median` when there are no ``NaN`` values in a reduced row. When a reduced row has one or more ``NaN`` values, :func:`torch.median` will always reduce it to ``NaN``, while this function will reduce it to the median of the non-``NaN`` elements. If all the elements in a reduced row are ``NaN`` then it will be reduced to ``NaN``, too. Args: input (Tensor): the input tensor. dim (int): the dimension to reduce. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. Keyword args: out ((Tensor, Tensor), optional): The first tensor will be populated with the median values and the second tensor, which must have dtype long, with their indices in the dimension :attr:`dim` of :attr:`input`. Example:: >>> a = torch.tensor([[2, 3, 1], [float('nan'), 1, float('nan')]]) >>> a tensor([[2., 3., 1.], [nan, 1., nan]]) >>> a.median(0) torch.return_types.median(values=tensor([nan, 1., nan]), indices=tensor([1, 1, 1])) >>> a.nanmedian(0) torch.return_types.nanmedian(values=tensor([2., 1., 1.]), indices=tensor([0, 1, 0])) """ ... @overload def nanmedian(input: Tensor, dim: _int, keepdim: _bool = False, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.nanmedian: r""" nanmedian(input) -> Tensor Returns the median of the values in :attr:`input`, ignoring ``NaN`` values. This function is identical to :func:`torch.median` when there are no ``NaN`` values in :attr:`input`. When :attr:`input` has one or more ``NaN`` values, :func:`torch.median` will always return ``NaN``, while this function will return the median of the non-``NaN`` elements in :attr:`input`. If all the elements in :attr:`input` are ``NaN`` it will also return ``NaN``. Args: input (Tensor): the input tensor. Example:: >>> a = torch.tensor([1, float('nan'), 3, 2]) >>> a.median() tensor(nan) >>> a.nanmedian() tensor(2.) .. function:: nanmedian(input, dim=-1, keepdim=False, *, out=None) -> (Tensor, LongTensor) :noindex: Returns a namedtuple ``(values, indices)`` where ``values`` contains the median of each row of :attr:`input` in the dimension :attr:`dim`, ignoring ``NaN`` values, and ``indices`` contains the index of the median values found in the dimension :attr:`dim`. This function is identical to :func:`torch.median` when there are no ``NaN`` values in a reduced row. When a reduced row has one or more ``NaN`` values, :func:`torch.median` will always reduce it to ``NaN``, while this function will reduce it to the median of the non-``NaN`` elements. If all the elements in a reduced row are ``NaN`` then it will be reduced to ``NaN``, too. Args: input (Tensor): the input tensor. dim (int): the dimension to reduce. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. Keyword args: out ((Tensor, Tensor), optional): The first tensor will be populated with the median values and the second tensor, which must have dtype long, with their indices in the dimension :attr:`dim` of :attr:`input`. Example:: >>> a = torch.tensor([[2, 3, 1], [float('nan'), 1, float('nan')]]) >>> a tensor([[2., 3., 1.], [nan, 1., nan]]) >>> a.median(0) torch.return_types.median(values=tensor([nan, 1., nan]), indices=tensor([1, 1, 1])) >>> a.nanmedian(0) torch.return_types.nanmedian(values=tensor([2., 1., 1.]), indices=tensor([0, 1, 0])) """ ... @overload def nanmedian(input: Tensor, dim: Union[str, ellipsis, None], keepdim: _bool = False, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.nanmedian: r""" nanmedian(input) -> Tensor Returns the median of the values in :attr:`input`, ignoring ``NaN`` values. This function is identical to :func:`torch.median` when there are no ``NaN`` values in :attr:`input`. When :attr:`input` has one or more ``NaN`` values, :func:`torch.median` will always return ``NaN``, while this function will return the median of the non-``NaN`` elements in :attr:`input`. If all the elements in :attr:`input` are ``NaN`` it will also return ``NaN``. Args: input (Tensor): the input tensor. Example:: >>> a = torch.tensor([1, float('nan'), 3, 2]) >>> a.median() tensor(nan) >>> a.nanmedian() tensor(2.) .. function:: nanmedian(input, dim=-1, keepdim=False, *, out=None) -> (Tensor, LongTensor) :noindex: Returns a namedtuple ``(values, indices)`` where ``values`` contains the median of each row of :attr:`input` in the dimension :attr:`dim`, ignoring ``NaN`` values, and ``indices`` contains the index of the median values found in the dimension :attr:`dim`. This function is identical to :func:`torch.median` when there are no ``NaN`` values in a reduced row. When a reduced row has one or more ``NaN`` values, :func:`torch.median` will always reduce it to ``NaN``, while this function will reduce it to the median of the non-``NaN`` elements. If all the elements in a reduced row are ``NaN`` then it will be reduced to ``NaN``, too. Args: input (Tensor): the input tensor. dim (int): the dimension to reduce. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. Keyword args: out ((Tensor, Tensor), optional): The first tensor will be populated with the median values and the second tensor, which must have dtype long, with their indices in the dimension :attr:`dim` of :attr:`input`. Example:: >>> a = torch.tensor([[2, 3, 1], [float('nan'), 1, float('nan')]]) >>> a tensor([[2., 3., 1.], [nan, 1., nan]]) >>> a.median(0) torch.return_types.median(values=tensor([nan, 1., nan]), indices=tensor([1, 1, 1])) >>> a.nanmedian(0) torch.return_types.nanmedian(values=tensor([2., 1., 1.]), indices=tensor([0, 1, 0])) """ ... @overload def nanquantile(input: Tensor, q: Tensor, dim: Optional[_int] = None, keepdim: _bool = False, *, interpolation: str = "linear", out: Optional[Tensor] = None) -> Tensor: r""" nanquantile(input, q, dim=None, keepdim=False, *, interpolation='linear', out=None) -> Tensor This is a variant of :func:`torch.quantile` that "ignores" ``NaN`` values, computing the quantiles :attr:`q` as if ``NaN`` values in :attr:`input` did not exist. If all values in a reduced row are ``NaN`` then the quantiles for that reduction will be ``NaN``. See the documentation for :func:`torch.quantile`. Args: input (Tensor): the input tensor. q (float or Tensor): a scalar or 1D tensor of quantile values in the range [0, 1] dim (int): the dimension to reduce. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. Keyword arguments: interpolation (str): interpolation method to use when the desired quantile lies between two data points. Can be ``linear``, ``lower``, ``higher``, ``midpoint`` and ``nearest``. Default is ``linear``. out (Tensor, optional): the output tensor. Example:: >>> t = torch.tensor([float('nan'), 1, 2]) >>> t.quantile(0.5) tensor(nan) >>> t.nanquantile(0.5) tensor(1.5000) >>> t = torch.tensor([[float('nan'), float('nan')], [1, 2]]) >>> t tensor([[nan, nan], [1., 2.]]) >>> t.nanquantile(0.5, dim=0) tensor([1., 2.]) >>> t.nanquantile(0.5, dim=1) tensor([ nan, 1.5000]) """ ... @overload def nanquantile(input: Tensor, q: _float, dim: Optional[_int] = None, keepdim: _bool = False, *, interpolation: str = "linear", out: Optional[Tensor] = None) -> Tensor: r""" nanquantile(input, q, dim=None, keepdim=False, *, interpolation='linear', out=None) -> Tensor This is a variant of :func:`torch.quantile` that "ignores" ``NaN`` values, computing the quantiles :attr:`q` as if ``NaN`` values in :attr:`input` did not exist. If all values in a reduced row are ``NaN`` then the quantiles for that reduction will be ``NaN``. See the documentation for :func:`torch.quantile`. Args: input (Tensor): the input tensor. q (float or Tensor): a scalar or 1D tensor of quantile values in the range [0, 1] dim (int): the dimension to reduce. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. Keyword arguments: interpolation (str): interpolation method to use when the desired quantile lies between two data points. Can be ``linear``, ``lower``, ``higher``, ``midpoint`` and ``nearest``. Default is ``linear``. out (Tensor, optional): the output tensor. Example:: >>> t = torch.tensor([float('nan'), 1, 2]) >>> t.quantile(0.5) tensor(nan) >>> t.nanquantile(0.5) tensor(1.5000) >>> t = torch.tensor([[float('nan'), float('nan')], [1, 2]]) >>> t tensor([[nan, nan], [1., 2.]]) >>> t.nanquantile(0.5, dim=0) tensor([1., 2.]) >>> t.nanquantile(0.5, dim=1) tensor([ nan, 1.5000]) """ ... def nansum(input: Tensor, dim: Optional[Union[_int, _size]] = None, keepdim: _bool = False, *, dtype: Optional[_dtype] = None, out: Optional[Tensor] = None) -> Tensor: r""" nansum(input, *, dtype=None) -> Tensor Returns the sum of all elements, treating Not a Numbers (NaNs) as zero. Args: input (Tensor): the input tensor. Keyword args: dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. If specified, the input tensor is casted to :attr:`dtype` before the operation is performed. This is useful for preventing data type overflows. Default: None. Example:: >>> a = torch.tensor([1., 2., float('nan'), 4.]) >>> torch.nansum(a) tensor(7.) .. function:: nansum(input, dim, keepdim=False, *, dtype=None) -> Tensor :noindex: Returns the sum of each row of the :attr:`input` tensor in the given dimension :attr:`dim`, treating Not a Numbers (NaNs) as zero. If :attr:`dim` is a list of dimensions, reduce over all of them. If :attr:`keepdim` is ``True``, the output tensor is of the same size as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the output tensor having 1 (or ``len(dim)``) fewer dimension(s). Args: input (Tensor): the input tensor. dim (int or tuple of ints, optional): the dimension or dimensions to reduce. If ``None``, all dimensions are reduced. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. Keyword args: dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. If specified, the input tensor is casted to :attr:`dtype` before the operation is performed. This is useful for preventing data type overflows. Default: None. Example:: >>> torch.nansum(torch.tensor([1., float("nan")])) 1.0 >>> a = torch.tensor([[1, 2], [3., float("nan")]]) >>> torch.nansum(a) tensor(6.) >>> torch.nansum(a, dim=0) tensor([4., 2.]) >>> torch.nansum(a, dim=1) tensor([3., 3.]) """ ... @overload def narrow(input: Tensor, dim: _int, start: Tensor, length: Union[_int, SymInt]) -> Tensor: r""" narrow(input, dim, start, length) -> Tensor Returns a new tensor that is a narrowed version of :attr:`input` tensor. The dimension :attr:`dim` is input from :attr:`start` to ``start + length``. The returned tensor and :attr:`input` tensor share the same underlying storage. Args: input (Tensor): the tensor to narrow dim (int): the dimension along which to narrow start (int or Tensor): index of the element to start the narrowed dimension from. Can be negative, which means indexing from the end of `dim`. If `Tensor`, it must be an 0-dim integral `Tensor` (bools not allowed) length (int): length of the narrowed dimension, must be weakly positive Example:: >>> x = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> torch.narrow(x, 0, 0, 2) tensor([[ 1, 2, 3], [ 4, 5, 6]]) >>> torch.narrow(x, 1, 1, 2) tensor([[ 2, 3], [ 5, 6], [ 8, 9]]) >>> torch.narrow(x, -1, torch.tensor(-1), 1) tensor([[3], [6], [9]]) """ ... @overload def narrow(input: Tensor, dim: _int, start: Union[_int, SymInt], length: Union[_int, SymInt]) -> Tensor: r""" narrow(input, dim, start, length) -> Tensor Returns a new tensor that is a narrowed version of :attr:`input` tensor. The dimension :attr:`dim` is input from :attr:`start` to ``start + length``. The returned tensor and :attr:`input` tensor share the same underlying storage. Args: input (Tensor): the tensor to narrow dim (int): the dimension along which to narrow start (int or Tensor): index of the element to start the narrowed dimension from. Can be negative, which means indexing from the end of `dim`. If `Tensor`, it must be an 0-dim integral `Tensor` (bools not allowed) length (int): length of the narrowed dimension, must be weakly positive Example:: >>> x = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> torch.narrow(x, 0, 0, 2) tensor([[ 1, 2, 3], [ 4, 5, 6]]) >>> torch.narrow(x, 1, 1, 2) tensor([[ 2, 3], [ 5, 6], [ 8, 9]]) >>> torch.narrow(x, -1, torch.tensor(-1), 1) tensor([[3], [6], [9]]) """ ... def narrow_copy(input: Tensor, dim: _int, start: Union[_int, SymInt], length: Union[_int, SymInt], *, out: Optional[Tensor] = None) -> Tensor: r""" narrow_copy(input, dim, start, length, *, out=None) -> Tensor Same as :meth:`Tensor.narrow` except this returns a copy rather than shared storage. This is primarily for sparse tensors, which do not have a shared-storage narrow method. Args: input (Tensor): the tensor to narrow dim (int): the dimension along which to narrow start (int): index of the element to start the narrowed dimension from. Can be negative, which means indexing from the end of `dim` length (int): length of the narrowed dimension, must be weakly positive Keyword args: out (Tensor, optional): the output tensor. Example:: >>> x = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> torch.narrow_copy(x, 0, 0, 2) tensor([[ 1, 2, 3], [ 4, 5, 6]]) >>> torch.narrow_copy(x, 1, 1, 2) tensor([[ 2, 3], [ 5, 6], [ 8, 9]]) >>> s = torch.arange(16).reshape(2, 2, 2, 2).to_sparse(2) >>> torch.narrow_copy(s, 0, 0, 1) tensor(indices=tensor([[0, 0], [0, 1]]), values=tensor([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]), size=(1, 2, 2, 2), nnz=2, layout=torch.sparse_coo) .. seealso:: :func:`torch.narrow` for a non copy variant """ ... def native_batch_norm(input: Tensor, weight: Optional[Tensor], bias: Optional[Tensor], running_mean: Optional[Tensor], running_var: Optional[Tensor], training: _bool, momentum: _float, eps: _float, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> Tuple[Tensor, Tensor, Tensor]: ... def native_channel_shuffle(input: Tensor, groups: Union[_int, SymInt]) -> Tensor: ... def native_dropout(input: Tensor, p: _float, train: Optional[_bool]) -> Tuple[Tensor, Tensor]: ... def native_group_norm(input: Tensor, weight: Optional[Tensor], bias: Optional[Tensor], N: Union[_int, SymInt], C: Union[_int, SymInt], HxW: Union[_int, SymInt], group: _int, eps: _float) -> Tuple[Tensor, Tensor, Tensor]: ... def native_layer_norm(input: Tensor, normalized_shape: Sequence[Union[_int, SymInt]], weight: Optional[Tensor], bias: Optional[Tensor], eps: _float) -> Tuple[Tensor, Tensor, Tensor]: ... @overload def native_norm(input: Tensor, p: Optional[Union[Number, _complex]], dim: Union[_int, _size], keepdim: _bool, dtype: Optional[_dtype]) -> Tensor: ... @overload def native_norm(input: Tensor, p: Union[Number, _complex] = 2) -> Tensor: ... @overload def ne(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" ne(input, other, *, out=None) -> Tensor Computes :math:`\text{input} \neq \text{other}` element-wise. The second argument can be a number or a tensor whose shape is :ref:`broadcastable ` with the first argument. Args: input (Tensor): the tensor to compare other (Tensor or float): the tensor or value to compare Keyword args: out (Tensor, optional): the output tensor. Returns: A boolean tensor that is True where :attr:`input` is not equal to :attr:`other` and False elsewhere Example:: >>> torch.ne(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]])) tensor([[False, True], [True, False]]) """ ... @overload def ne(input: Tensor, other: Union[Number, _complex], *, out: Optional[Tensor] = None) -> Tensor: r""" ne(input, other, *, out=None) -> Tensor Computes :math:`\text{input} \neq \text{other}` element-wise. The second argument can be a number or a tensor whose shape is :ref:`broadcastable ` with the first argument. Args: input (Tensor): the tensor to compare other (Tensor or float): the tensor or value to compare Keyword args: out (Tensor, optional): the output tensor. Returns: A boolean tensor that is True where :attr:`input` is not equal to :attr:`other` and False elsewhere Example:: >>> torch.ne(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]])) tensor([[False, True], [True, False]]) """ ... def neg(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" neg(input, *, out=None) -> Tensor Returns a new tensor with the negative of the elements of :attr:`input`. .. math:: \text{out} = -1 \times \text{input} Args: input (Tensor): the input tensor. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.randn(5) >>> a tensor([ 0.0090, -0.2262, -0.0682, -0.2866, 0.3940]) >>> torch.neg(a) tensor([-0.0090, 0.2262, 0.0682, 0.2866, -0.3940]) """ ... def neg_(input: Tensor) -> Tensor: ... def negative(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" negative(input, *, out=None) -> Tensor Alias for :func:`torch.neg` """ ... def negative_(input: Tensor) -> Tensor: ... def nextafter(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" nextafter(input, other, *, out=None) -> Tensor Return the next floating-point value after :attr:`input` towards :attr:`other`, elementwise. The shapes of ``input`` and ``other`` must be :ref:`broadcastable `. Args: input (Tensor): the first input tensor other (Tensor): the second input tensor Keyword args: out (Tensor, optional): the output tensor. Example:: >>> eps = torch.finfo(torch.float32).eps >>> torch.nextafter(torch.tensor([1.0, 2.0]), torch.tensor([2.0, 1.0])) == torch.tensor([eps + 1, 2 - eps]) tensor([True, True]) """ ... @overload def nonzero(input: Tensor, *, as_tuple: Literal[False] = False, out: Optional[Tensor] = None) -> Tensor: r""" nonzero(input, *, out=None, as_tuple=False) -> LongTensor or tuple of LongTensors .. note:: :func:`torch.nonzero(..., as_tuple=False) ` (default) returns a 2-D tensor where each row is the index for a nonzero value. :func:`torch.nonzero(..., as_tuple=True) ` returns a tuple of 1-D index tensors, allowing for advanced indexing, so ``x[x.nonzero(as_tuple=True)]`` gives all nonzero values of tensor ``x``. Of the returned tuple, each index tensor contains nonzero indices for a certain dimension. See below for more details on the two behaviors. When :attr:`input` is on CUDA, :func:`torch.nonzero() ` causes host-device synchronization. **When** :attr:`as_tuple` **is** ``False`` **(default)**: Returns a tensor containing the indices of all non-zero elements of :attr:`input`. Each row in the result contains the indices of a non-zero element in :attr:`input`. The result is sorted lexicographically, with the last index changing the fastest (C-style). If :attr:`input` has :math:`n` dimensions, then the resulting indices tensor :attr:`out` is of size :math:`(z \times n)`, where :math:`z` is the total number of non-zero elements in the :attr:`input` tensor. **When** :attr:`as_tuple` **is** ``True``: Returns a tuple of 1-D tensors, one for each dimension in :attr:`input`, each containing the indices (in that dimension) of all non-zero elements of :attr:`input` . If :attr:`input` has :math:`n` dimensions, then the resulting tuple contains :math:`n` tensors of size :math:`z`, where :math:`z` is the total number of non-zero elements in the :attr:`input` tensor. As a special case, when :attr:`input` has zero dimensions and a nonzero scalar value, it is treated as a one-dimensional tensor with one element. Args: input (Tensor): the input tensor. Keyword args: out (LongTensor, optional): the output tensor containing indices Returns: LongTensor or tuple of LongTensor: If :attr:`as_tuple` is ``False``, the output tensor containing indices. If :attr:`as_tuple` is ``True``, one 1-D tensor for each dimension, containing the indices of each nonzero element along that dimension. Example:: >>> torch.nonzero(torch.tensor([1, 1, 1, 0, 1])) tensor([[ 0], [ 1], [ 2], [ 4]]) >>> torch.nonzero(torch.tensor([[0.6, 0.0, 0.0, 0.0], ... [0.0, 0.4, 0.0, 0.0], ... [0.0, 0.0, 1.2, 0.0], ... [0.0, 0.0, 0.0,-0.4]])) tensor([[ 0, 0], [ 1, 1], [ 2, 2], [ 3, 3]]) >>> torch.nonzero(torch.tensor([1, 1, 1, 0, 1]), as_tuple=True) (tensor([0, 1, 2, 4]),) >>> torch.nonzero(torch.tensor([[0.6, 0.0, 0.0, 0.0], ... [0.0, 0.4, 0.0, 0.0], ... [0.0, 0.0, 1.2, 0.0], ... [0.0, 0.0, 0.0,-0.4]]), as_tuple=True) (tensor([0, 1, 2, 3]), tensor([0, 1, 2, 3])) >>> torch.nonzero(torch.tensor(5), as_tuple=True) (tensor([0]),) """ ... @overload def nonzero(input: Tensor, *, as_tuple: Literal[True]) -> Tuple[Tensor, ...]: r""" nonzero(input, *, out=None, as_tuple=False) -> LongTensor or tuple of LongTensors .. note:: :func:`torch.nonzero(..., as_tuple=False) ` (default) returns a 2-D tensor where each row is the index for a nonzero value. :func:`torch.nonzero(..., as_tuple=True) ` returns a tuple of 1-D index tensors, allowing for advanced indexing, so ``x[x.nonzero(as_tuple=True)]`` gives all nonzero values of tensor ``x``. Of the returned tuple, each index tensor contains nonzero indices for a certain dimension. See below for more details on the two behaviors. When :attr:`input` is on CUDA, :func:`torch.nonzero() ` causes host-device synchronization. **When** :attr:`as_tuple` **is** ``False`` **(default)**: Returns a tensor containing the indices of all non-zero elements of :attr:`input`. Each row in the result contains the indices of a non-zero element in :attr:`input`. The result is sorted lexicographically, with the last index changing the fastest (C-style). If :attr:`input` has :math:`n` dimensions, then the resulting indices tensor :attr:`out` is of size :math:`(z \times n)`, where :math:`z` is the total number of non-zero elements in the :attr:`input` tensor. **When** :attr:`as_tuple` **is** ``True``: Returns a tuple of 1-D tensors, one for each dimension in :attr:`input`, each containing the indices (in that dimension) of all non-zero elements of :attr:`input` . If :attr:`input` has :math:`n` dimensions, then the resulting tuple contains :math:`n` tensors of size :math:`z`, where :math:`z` is the total number of non-zero elements in the :attr:`input` tensor. As a special case, when :attr:`input` has zero dimensions and a nonzero scalar value, it is treated as a one-dimensional tensor with one element. Args: input (Tensor): the input tensor. Keyword args: out (LongTensor, optional): the output tensor containing indices Returns: LongTensor or tuple of LongTensor: If :attr:`as_tuple` is ``False``, the output tensor containing indices. If :attr:`as_tuple` is ``True``, one 1-D tensor for each dimension, containing the indices of each nonzero element along that dimension. Example:: >>> torch.nonzero(torch.tensor([1, 1, 1, 0, 1])) tensor([[ 0], [ 1], [ 2], [ 4]]) >>> torch.nonzero(torch.tensor([[0.6, 0.0, 0.0, 0.0], ... [0.0, 0.4, 0.0, 0.0], ... [0.0, 0.0, 1.2, 0.0], ... [0.0, 0.0, 0.0,-0.4]])) tensor([[ 0, 0], [ 1, 1], [ 2, 2], [ 3, 3]]) >>> torch.nonzero(torch.tensor([1, 1, 1, 0, 1]), as_tuple=True) (tensor([0, 1, 2, 4]),) >>> torch.nonzero(torch.tensor([[0.6, 0.0, 0.0, 0.0], ... [0.0, 0.4, 0.0, 0.0], ... [0.0, 0.0, 1.2, 0.0], ... [0.0, 0.0, 0.0,-0.4]]), as_tuple=True) (tensor([0, 1, 2, 3]), tensor([0, 1, 2, 3])) >>> torch.nonzero(torch.tensor(5), as_tuple=True) (tensor([0]),) """ ... def nonzero_static(input: Tensor, *, size: _int, fill_value: _int = -1, out: Optional[Tensor] = None) -> Tensor: ... def norm_except_dim(v: Tensor, pow: _int = 2, dim: _int = 0) -> Tensor: ... @overload def normal(mean: Tensor, std: Tensor, *, generator: Optional[Generator] = None, out: Optional[Tensor] = None) -> Tensor: r""" normal(mean, std, *, generator=None, out=None) -> Tensor Returns a tensor of random numbers drawn from separate normal distributions whose mean and standard deviation are given. The :attr:`mean` is a tensor with the mean of each output element's normal distribution The :attr:`std` is a tensor with the standard deviation of each output element's normal distribution The shapes of :attr:`mean` and :attr:`std` don't need to match, but the total number of elements in each tensor need to be the same. .. note:: When the shapes do not match, the shape of :attr:`mean` is used as the shape for the returned output tensor .. note:: When :attr:`std` is a CUDA tensor, this function synchronizes its device with the CPU. Args: mean (Tensor): the tensor of per-element means std (Tensor): the tensor of per-element standard deviations Keyword args: generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling out (Tensor, optional): the output tensor. Example:: >>> torch.normal(mean=torch.arange(1., 11.), std=torch.arange(1, 0, -0.1)) tensor([ 1.0425, 3.5672, 2.7969, 4.2925, 4.7229, 6.2134, 8.0505, 8.1408, 9.0563, 10.0566]) .. function:: normal(mean=0.0, std, *, out=None) -> Tensor :noindex: Similar to the function above, but the means are shared among all drawn elements. Args: mean (float, optional): the mean for all distributions std (Tensor): the tensor of per-element standard deviations Keyword args: out (Tensor, optional): the output tensor. Example:: >>> torch.normal(mean=0.5, std=torch.arange(1., 6.)) tensor([-1.2793, -1.0732, -2.0687, 5.1177, -1.2303]) .. function:: normal(mean, std=1.0, *, out=None) -> Tensor :noindex: Similar to the function above, but the standard deviations are shared among all drawn elements. Args: mean (Tensor): the tensor of per-element means std (float, optional): the standard deviation for all distributions Keyword args: out (Tensor, optional): the output tensor Example:: >>> torch.normal(mean=torch.arange(1., 6.)) tensor([ 1.1552, 2.6148, 2.6535, 5.8318, 4.2361]) .. function:: normal(mean, std, size, *, out=None) -> Tensor :noindex: Similar to the function above, but the means and standard deviations are shared among all drawn elements. The resulting tensor has size given by :attr:`size`. Args: mean (float): the mean for all distributions std (float): the standard deviation for all distributions size (int...): a sequence of integers defining the shape of the output tensor. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> torch.normal(2, 3, size=(1, 4)) tensor([[-1.3987, -1.9544, 3.6048, 0.7909]]) """ ... @overload def normal(mean: Tensor, std: _float = 1, *, generator: Optional[Generator] = None, out: Optional[Tensor] = None) -> Tensor: r""" normal(mean, std, *, generator=None, out=None) -> Tensor Returns a tensor of random numbers drawn from separate normal distributions whose mean and standard deviation are given. The :attr:`mean` is a tensor with the mean of each output element's normal distribution The :attr:`std` is a tensor with the standard deviation of each output element's normal distribution The shapes of :attr:`mean` and :attr:`std` don't need to match, but the total number of elements in each tensor need to be the same. .. note:: When the shapes do not match, the shape of :attr:`mean` is used as the shape for the returned output tensor .. note:: When :attr:`std` is a CUDA tensor, this function synchronizes its device with the CPU. Args: mean (Tensor): the tensor of per-element means std (Tensor): the tensor of per-element standard deviations Keyword args: generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling out (Tensor, optional): the output tensor. Example:: >>> torch.normal(mean=torch.arange(1., 11.), std=torch.arange(1, 0, -0.1)) tensor([ 1.0425, 3.5672, 2.7969, 4.2925, 4.7229, 6.2134, 8.0505, 8.1408, 9.0563, 10.0566]) .. function:: normal(mean=0.0, std, *, out=None) -> Tensor :noindex: Similar to the function above, but the means are shared among all drawn elements. Args: mean (float, optional): the mean for all distributions std (Tensor): the tensor of per-element standard deviations Keyword args: out (Tensor, optional): the output tensor. Example:: >>> torch.normal(mean=0.5, std=torch.arange(1., 6.)) tensor([-1.2793, -1.0732, -2.0687, 5.1177, -1.2303]) .. function:: normal(mean, std=1.0, *, out=None) -> Tensor :noindex: Similar to the function above, but the standard deviations are shared among all drawn elements. Args: mean (Tensor): the tensor of per-element means std (float, optional): the standard deviation for all distributions Keyword args: out (Tensor, optional): the output tensor Example:: >>> torch.normal(mean=torch.arange(1., 6.)) tensor([ 1.1552, 2.6148, 2.6535, 5.8318, 4.2361]) .. function:: normal(mean, std, size, *, out=None) -> Tensor :noindex: Similar to the function above, but the means and standard deviations are shared among all drawn elements. The resulting tensor has size given by :attr:`size`. Args: mean (float): the mean for all distributions std (float): the standard deviation for all distributions size (int...): a sequence of integers defining the shape of the output tensor. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> torch.normal(2, 3, size=(1, 4)) tensor([[-1.3987, -1.9544, 3.6048, 0.7909]]) """ ... @overload def normal(mean: _float, std: Tensor, *, generator: Optional[Generator] = None, out: Optional[Tensor] = None) -> Tensor: r""" normal(mean, std, *, generator=None, out=None) -> Tensor Returns a tensor of random numbers drawn from separate normal distributions whose mean and standard deviation are given. The :attr:`mean` is a tensor with the mean of each output element's normal distribution The :attr:`std` is a tensor with the standard deviation of each output element's normal distribution The shapes of :attr:`mean` and :attr:`std` don't need to match, but the total number of elements in each tensor need to be the same. .. note:: When the shapes do not match, the shape of :attr:`mean` is used as the shape for the returned output tensor .. note:: When :attr:`std` is a CUDA tensor, this function synchronizes its device with the CPU. Args: mean (Tensor): the tensor of per-element means std (Tensor): the tensor of per-element standard deviations Keyword args: generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling out (Tensor, optional): the output tensor. Example:: >>> torch.normal(mean=torch.arange(1., 11.), std=torch.arange(1, 0, -0.1)) tensor([ 1.0425, 3.5672, 2.7969, 4.2925, 4.7229, 6.2134, 8.0505, 8.1408, 9.0563, 10.0566]) .. function:: normal(mean=0.0, std, *, out=None) -> Tensor :noindex: Similar to the function above, but the means are shared among all drawn elements. Args: mean (float, optional): the mean for all distributions std (Tensor): the tensor of per-element standard deviations Keyword args: out (Tensor, optional): the output tensor. Example:: >>> torch.normal(mean=0.5, std=torch.arange(1., 6.)) tensor([-1.2793, -1.0732, -2.0687, 5.1177, -1.2303]) .. function:: normal(mean, std=1.0, *, out=None) -> Tensor :noindex: Similar to the function above, but the standard deviations are shared among all drawn elements. Args: mean (Tensor): the tensor of per-element means std (float, optional): the standard deviation for all distributions Keyword args: out (Tensor, optional): the output tensor Example:: >>> torch.normal(mean=torch.arange(1., 6.)) tensor([ 1.1552, 2.6148, 2.6535, 5.8318, 4.2361]) .. function:: normal(mean, std, size, *, out=None) -> Tensor :noindex: Similar to the function above, but the means and standard deviations are shared among all drawn elements. The resulting tensor has size given by :attr:`size`. Args: mean (float): the mean for all distributions std (float): the standard deviation for all distributions size (int...): a sequence of integers defining the shape of the output tensor. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> torch.normal(2, 3, size=(1, 4)) tensor([[-1.3987, -1.9544, 3.6048, 0.7909]]) """ ... @overload def normal(mean: _float, std: _float, size: Sequence[Union[_int, SymInt]], *, generator: Optional[Generator] = None, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" normal(mean, std, *, generator=None, out=None) -> Tensor Returns a tensor of random numbers drawn from separate normal distributions whose mean and standard deviation are given. The :attr:`mean` is a tensor with the mean of each output element's normal distribution The :attr:`std` is a tensor with the standard deviation of each output element's normal distribution The shapes of :attr:`mean` and :attr:`std` don't need to match, but the total number of elements in each tensor need to be the same. .. note:: When the shapes do not match, the shape of :attr:`mean` is used as the shape for the returned output tensor .. note:: When :attr:`std` is a CUDA tensor, this function synchronizes its device with the CPU. Args: mean (Tensor): the tensor of per-element means std (Tensor): the tensor of per-element standard deviations Keyword args: generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling out (Tensor, optional): the output tensor. Example:: >>> torch.normal(mean=torch.arange(1., 11.), std=torch.arange(1, 0, -0.1)) tensor([ 1.0425, 3.5672, 2.7969, 4.2925, 4.7229, 6.2134, 8.0505, 8.1408, 9.0563, 10.0566]) .. function:: normal(mean=0.0, std, *, out=None) -> Tensor :noindex: Similar to the function above, but the means are shared among all drawn elements. Args: mean (float, optional): the mean for all distributions std (Tensor): the tensor of per-element standard deviations Keyword args: out (Tensor, optional): the output tensor. Example:: >>> torch.normal(mean=0.5, std=torch.arange(1., 6.)) tensor([-1.2793, -1.0732, -2.0687, 5.1177, -1.2303]) .. function:: normal(mean, std=1.0, *, out=None) -> Tensor :noindex: Similar to the function above, but the standard deviations are shared among all drawn elements. Args: mean (Tensor): the tensor of per-element means std (float, optional): the standard deviation for all distributions Keyword args: out (Tensor, optional): the output tensor Example:: >>> torch.normal(mean=torch.arange(1., 6.)) tensor([ 1.1552, 2.6148, 2.6535, 5.8318, 4.2361]) .. function:: normal(mean, std, size, *, out=None) -> Tensor :noindex: Similar to the function above, but the means and standard deviations are shared among all drawn elements. The resulting tensor has size given by :attr:`size`. Args: mean (float): the mean for all distributions std (float): the standard deviation for all distributions size (int...): a sequence of integers defining the shape of the output tensor. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> torch.normal(2, 3, size=(1, 4)) tensor([[-1.3987, -1.9544, 3.6048, 0.7909]]) """ ... @overload def not_equal(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" not_equal(input, other, *, out=None) -> Tensor Alias for :func:`torch.ne`. """ ... @overload def not_equal(input: Tensor, other: Union[Number, _complex], *, out: Optional[Tensor] = None) -> Tensor: r""" not_equal(input, other, *, out=None) -> Tensor Alias for :func:`torch.ne`. """ ... @overload def nuclear_norm(input: Tensor, dim: Union[_int, _size], keepdim: _bool = False, *, out: Optional[Tensor] = None) -> Tensor: ... @overload def nuclear_norm(input: Tensor, keepdim: _bool = False, *, out: Optional[Tensor] = None) -> Tensor: ... def numel(self: Tensor) -> _int: r""" numel(input) -> int Returns the total number of elements in the :attr:`input` tensor. Args: input (Tensor): the input tensor. Example:: >>> a = torch.randn(1, 2, 3, 4, 5) >>> torch.numel(a) 120 >>> a = torch.zeros(4,4) >>> torch.numel(a) 16 """ ... @overload def ones(size: Sequence[Union[_int, SymInt]], *, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" ones(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor Returns a tensor filled with the scalar value `1`, with the shape defined by the variable argument :attr:`size`. Args: size (int...): a sequence of integers defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple. Keyword arguments: out (Tensor, optional): the output tensor. dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. Example:: >>> torch.ones(2, 3) tensor([[ 1., 1., 1.], [ 1., 1., 1.]]) >>> torch.ones(5) tensor([ 1., 1., 1., 1., 1.]) """ ... @overload def ones(*size: _int, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" ones(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor Returns a tensor filled with the scalar value `1`, with the shape defined by the variable argument :attr:`size`. Args: size (int...): a sequence of integers defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple. Keyword arguments: out (Tensor, optional): the output tensor. dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. Example:: >>> torch.ones(2, 3) tensor([[ 1., 1., 1.], [ 1., 1., 1.]]) >>> torch.ones(5) tensor([ 1., 1., 1., 1., 1.]) """ ... @overload def ones(size: _size, *, names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" ones(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor Returns a tensor filled with the scalar value `1`, with the shape defined by the variable argument :attr:`size`. Args: size (int...): a sequence of integers defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple. Keyword arguments: out (Tensor, optional): the output tensor. dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. Example:: >>> torch.ones(2, 3) tensor([[ 1., 1., 1.], [ 1., 1., 1.]]) >>> torch.ones(5) tensor([ 1., 1., 1., 1., 1.]) """ ... @overload def ones(*size: _int, names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" ones(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor Returns a tensor filled with the scalar value `1`, with the shape defined by the variable argument :attr:`size`. Args: size (int...): a sequence of integers defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple. Keyword arguments: out (Tensor, optional): the output tensor. dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. Example:: >>> torch.ones(2, 3) tensor([[ 1., 1., 1.], [ 1., 1., 1.]]) >>> torch.ones(5) tensor([ 1., 1., 1., 1., 1.]) """ ... def ones_like(input: Tensor, *, memory_format: Optional[memory_format] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" ones_like(input, *, dtype=None, layout=None, device=None, requires_grad=False, memory_format=torch.preserve_format) -> Tensor Returns a tensor filled with the scalar value `1`, with the same size as :attr:`input`. ``torch.ones_like(input)`` is equivalent to ``torch.ones(input.size(), dtype=input.dtype, layout=input.layout, device=input.device)``. .. warning:: As of 0.4, this function does not support an :attr:`out` keyword. As an alternative, the old ``torch.ones_like(input, out=output)`` is equivalent to ``torch.ones(input.size(), out=output)``. Args: input (Tensor): the size of :attr:`input` will determine size of the output tensor. Keyword arguments: dtype (:class:`torch.dtype`, optional): the desired data type of returned Tensor. Default: if ``None``, defaults to the dtype of :attr:`input`. layout (:class:`torch.layout`, optional): the desired layout of returned tensor. Default: if ``None``, defaults to the layout of :attr:`input`. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, defaults to the device of :attr:`input`. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. memory_format (:class:`torch.memory_format`, optional): the desired memory format of returned Tensor. Default: ``torch.preserve_format``. Example:: >>> input = torch.empty(2, 3) >>> torch.ones_like(input) tensor([[ 1., 1., 1.], [ 1., 1., 1.]]) """ ... def orgqr(input: Tensor, input2: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" orgqr(input, tau) -> Tensor Alias for :func:`torch.linalg.householder_product`. """ ... def ormqr(input: Tensor, input2: Tensor, input3: Tensor, left: _bool = True, transpose: _bool = False, *, out: Optional[Tensor] = None) -> Tensor: r""" ormqr(input, tau, other, left=True, transpose=False, *, out=None) -> Tensor Computes the matrix-matrix multiplication of a product of Householder matrices with a general matrix. Multiplies a :math:`m \times n` matrix `C` (given by :attr:`other`) with a matrix `Q`, where `Q` is represented using Householder reflectors `(input, tau)`. See `Representation of Orthogonal or Unitary Matrices`_ for further details. If :attr:`left` is `True` then `op(Q)` times `C` is computed, otherwise the result is `C` times `op(Q)`. When :attr:`left` is `True`, the implicit matrix `Q` has size :math:`m \times m`. It has size :math:`n \times n` otherwise. If :attr:`transpose` is `True` then `op` is the conjugate transpose operation, otherwise it's a no-op. Supports inputs of float, double, cfloat and cdouble dtypes. Also supports batched inputs, and, if the input is batched, the output is batched with the same dimensions. .. seealso:: :func:`torch.geqrf` can be used to form the Householder representation `(input, tau)` of matrix `Q` from the QR decomposition. .. note:: This function supports backward but it is only fast when ``(input, tau)`` do not require gradients and/or ``tau.size(-1)`` is very small. `` Args: input (Tensor): tensor of shape `(*, mn, k)` where `*` is zero or more batch dimensions and `mn` equals to `m` or `n` depending on the :attr:`left`. tau (Tensor): tensor of shape `(*, min(mn, k))` where `*` is zero or more batch dimensions. other (Tensor): tensor of shape `(*, m, n)` where `*` is zero or more batch dimensions. left (bool): controls the order of multiplication. transpose (bool): controls whether the matrix `Q` is conjugate transposed or not. Keyword args: out (Tensor, optional): the output Tensor. Ignored if `None`. Default: `None`. .. _Representation of Orthogonal or Unitary Matrices: https://www.netlib.org/lapack/lug/node128.html """ ... def outer(input: Tensor, vec2: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" outer(input, vec2, *, out=None) -> Tensor Outer product of :attr:`input` and :attr:`vec2`. If :attr:`input` is a vector of size :math:`n` and :attr:`vec2` is a vector of size :math:`m`, then :attr:`out` must be a matrix of size :math:`(n \times m)`. .. note:: This function does not :ref:`broadcast `. Args: input (Tensor): 1-D input vector vec2 (Tensor): 1-D input vector Keyword args: out (Tensor, optional): optional output matrix Example:: >>> v1 = torch.arange(1., 5.) >>> v2 = torch.arange(1., 4.) >>> torch.outer(v1, v2) tensor([[ 1., 2., 3.], [ 2., 4., 6.], [ 3., 6., 9.], [ 4., 8., 12.]]) """ ... def pairwise_distance(x1: Tensor, x2: Tensor, p: _float = 2, eps: _float = 1e-06, keepdim: _bool = False) -> Tensor: ... def pdist(input: Tensor, p: _float = 2) -> Tensor: ... def permute(input: Tensor, dims: _size) -> Tensor: r""" permute(input, dims) -> Tensor Returns a view of the original tensor :attr:`input` with its dimensions permuted. Args: input (Tensor): the input tensor. dims (tuple of int): The desired ordering of dimensions Example: >>> x = torch.randn(2, 3, 5) >>> x.size() torch.Size([2, 3, 5]) >>> torch.permute(x, (2, 0, 1)).size() torch.Size([5, 2, 3]) """ ... def permute_copy(input: Tensor, dims: _size, *, out: Optional[Tensor] = None) -> Tensor: r""" Performs the same operation as :func:`torch.permute`, but all output tensors are freshly created instead of aliasing the input. """ ... def pinverse(input: Tensor, rcond: _float = 1e-15) -> Tensor: r""" pinverse(input, rcond=1e-15) -> Tensor Alias for :func:`torch.linalg.pinv` """ ... def pixel_shuffle(input: Tensor, upscale_factor: _int) -> Tensor: ... def pixel_unshuffle(input: Tensor, downscale_factor: _int) -> Tensor: ... def poisson(input: Tensor, generator: Optional[Generator] = None) -> Tensor: r""" poisson(input, generator=None) -> Tensor Returns a tensor of the same size as :attr:`input` with each element sampled from a Poisson distribution with rate parameter given by the corresponding element in :attr:`input` i.e., .. math:: \text{out}_i \sim \text{Poisson}(\text{input}_i) :attr:`input` must be non-negative. Args: input (Tensor): the input tensor containing the rates of the Poisson distribution Keyword args: generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling Example:: >>> rates = torch.rand(4, 4) * 5 # rate parameter between 0 and 5 >>> torch.poisson(rates) tensor([[9., 1., 3., 5.], [8., 6., 6., 0.], [0., 4., 5., 3.], [2., 1., 4., 2.]]) """ ... def poisson_nll_loss(input: Tensor, target: Tensor, log_input: _bool, full: _bool, eps: _float, reduction: _int) -> Tensor: ... def polar(abs: Tensor, angle: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" polar(abs, angle, *, out=None) -> Tensor Constructs a complex tensor whose elements are Cartesian coordinates corresponding to the polar coordinates with absolute value :attr:`abs` and angle :attr:`angle`. .. math:: \text{out} = \text{abs} \cdot \cos(\text{angle}) + \text{abs} \cdot \sin(\text{angle}) \cdot j .. note:: `torch.polar` is similar to `std::polar `_ and does not compute the polar decomposition of a complex tensor like Python's `cmath.polar` and SciPy's `linalg.polar` do. The behavior of this function is undefined if `abs` is negative or NaN, or if `angle` is infinite. Args: abs (Tensor): The absolute value the complex tensor. Must be float or double. angle (Tensor): The angle of the complex tensor. Must be same dtype as :attr:`abs`. Keyword args: out (Tensor): If the inputs are ``torch.float32``, must be ``torch.complex64``. If the inputs are ``torch.float64``, must be ``torch.complex128``. Example:: >>> import numpy as np >>> abs = torch.tensor([1, 2], dtype=torch.float64) >>> angle = torch.tensor([np.pi / 2, 5 * np.pi / 4], dtype=torch.float64) >>> z = torch.polar(abs, angle) >>> z tensor([(0.0000+1.0000j), (-1.4142-1.4142j)], dtype=torch.complex128) """ ... def polygamma(n: _int, input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" polygamma(n, input, *, out=None) -> Tensor Alias for :func:`torch.special.polygamma`. """ ... def positive(input: Tensor) -> Tensor: r""" positive(input) -> Tensor Returns :attr:`input`. Throws a runtime error if :attr:`input` is a bool tensor. Args: input (Tensor): the input tensor. Example:: >>> t = torch.randn(5) >>> t tensor([ 0.0090, -0.2262, -0.0682, -0.2866, 0.3940]) >>> torch.positive(t) tensor([ 0.0090, -0.2262, -0.0682, -0.2866, 0.3940]) """ ... @overload def pow(input: Tensor, exponent: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" pow(input, exponent, *, out=None) -> Tensor Takes the power of each element in :attr:`input` with :attr:`exponent` and returns a tensor with the result. :attr:`exponent` can be either a single ``float`` number or a `Tensor` with the same number of elements as :attr:`input`. When :attr:`exponent` is a scalar value, the operation applied is: .. math:: \text{out}_i = x_i ^ \text{exponent} When :attr:`exponent` is a tensor, the operation applied is: .. math:: \text{out}_i = x_i ^ {\text{exponent}_i} When :attr:`exponent` is a tensor, the shapes of :attr:`input` and :attr:`exponent` must be :ref:`broadcastable `. Args: input (Tensor): the input tensor. exponent (float or tensor): the exponent value Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.randn(4) >>> a tensor([ 0.4331, 1.2475, 0.6834, -0.2791]) >>> torch.pow(a, 2) tensor([ 0.1875, 1.5561, 0.4670, 0.0779]) >>> exp = torch.arange(1., 5.) >>> a = torch.arange(1., 5.) >>> a tensor([ 1., 2., 3., 4.]) >>> exp tensor([ 1., 2., 3., 4.]) >>> torch.pow(a, exp) tensor([ 1., 4., 27., 256.]) .. function:: pow(self, exponent, *, out=None) -> Tensor :noindex: :attr:`self` is a scalar ``float`` value, and :attr:`exponent` is a tensor. The returned tensor :attr:`out` is of the same shape as :attr:`exponent` The operation applied is: .. math:: \text{out}_i = \text{self} ^ {\text{exponent}_i} Args: self (float): the scalar base value for the power operation exponent (Tensor): the exponent tensor Keyword args: out (Tensor, optional): the output tensor. Example:: >>> exp = torch.arange(1., 5.) >>> base = 2 >>> torch.pow(base, exp) tensor([ 2., 4., 8., 16.]) """ ... @overload def pow(self: Union[Number, _complex], exponent: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" pow(input, exponent, *, out=None) -> Tensor Takes the power of each element in :attr:`input` with :attr:`exponent` and returns a tensor with the result. :attr:`exponent` can be either a single ``float`` number or a `Tensor` with the same number of elements as :attr:`input`. When :attr:`exponent` is a scalar value, the operation applied is: .. math:: \text{out}_i = x_i ^ \text{exponent} When :attr:`exponent` is a tensor, the operation applied is: .. math:: \text{out}_i = x_i ^ {\text{exponent}_i} When :attr:`exponent` is a tensor, the shapes of :attr:`input` and :attr:`exponent` must be :ref:`broadcastable `. Args: input (Tensor): the input tensor. exponent (float or tensor): the exponent value Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.randn(4) >>> a tensor([ 0.4331, 1.2475, 0.6834, -0.2791]) >>> torch.pow(a, 2) tensor([ 0.1875, 1.5561, 0.4670, 0.0779]) >>> exp = torch.arange(1., 5.) >>> a = torch.arange(1., 5.) >>> a tensor([ 1., 2., 3., 4.]) >>> exp tensor([ 1., 2., 3., 4.]) >>> torch.pow(a, exp) tensor([ 1., 4., 27., 256.]) .. function:: pow(self, exponent, *, out=None) -> Tensor :noindex: :attr:`self` is a scalar ``float`` value, and :attr:`exponent` is a tensor. The returned tensor :attr:`out` is of the same shape as :attr:`exponent` The operation applied is: .. math:: \text{out}_i = \text{self} ^ {\text{exponent}_i} Args: self (float): the scalar base value for the power operation exponent (Tensor): the exponent tensor Keyword args: out (Tensor, optional): the output tensor. Example:: >>> exp = torch.arange(1., 5.) >>> base = 2 >>> torch.pow(base, exp) tensor([ 2., 4., 8., 16.]) """ ... @overload def pow(input: Tensor, exponent: Union[Number, _complex], *, out: Optional[Tensor] = None) -> Tensor: r""" pow(input, exponent, *, out=None) -> Tensor Takes the power of each element in :attr:`input` with :attr:`exponent` and returns a tensor with the result. :attr:`exponent` can be either a single ``float`` number or a `Tensor` with the same number of elements as :attr:`input`. When :attr:`exponent` is a scalar value, the operation applied is: .. math:: \text{out}_i = x_i ^ \text{exponent} When :attr:`exponent` is a tensor, the operation applied is: .. math:: \text{out}_i = x_i ^ {\text{exponent}_i} When :attr:`exponent` is a tensor, the shapes of :attr:`input` and :attr:`exponent` must be :ref:`broadcastable `. Args: input (Tensor): the input tensor. exponent (float or tensor): the exponent value Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.randn(4) >>> a tensor([ 0.4331, 1.2475, 0.6834, -0.2791]) >>> torch.pow(a, 2) tensor([ 0.1875, 1.5561, 0.4670, 0.0779]) >>> exp = torch.arange(1., 5.) >>> a = torch.arange(1., 5.) >>> a tensor([ 1., 2., 3., 4.]) >>> exp tensor([ 1., 2., 3., 4.]) >>> torch.pow(a, exp) tensor([ 1., 4., 27., 256.]) .. function:: pow(self, exponent, *, out=None) -> Tensor :noindex: :attr:`self` is a scalar ``float`` value, and :attr:`exponent` is a tensor. The returned tensor :attr:`out` is of the same shape as :attr:`exponent` The operation applied is: .. math:: \text{out}_i = \text{self} ^ {\text{exponent}_i} Args: self (float): the scalar base value for the power operation exponent (Tensor): the exponent tensor Keyword args: out (Tensor, optional): the output tensor. Example:: >>> exp = torch.arange(1., 5.) >>> base = 2 >>> torch.pow(base, exp) tensor([ 2., 4., 8., 16.]) """ ... def prelu(input: Tensor, weight: Tensor) -> Tensor: ... @overload def prod(input: Tensor, *, dtype: Optional[_dtype] = None) -> Tensor: r""" prod(input, *, dtype=None) -> Tensor Returns the product of all elements in the :attr:`input` tensor. Args: input (Tensor): the input tensor. Keyword args: dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. If specified, the input tensor is casted to :attr:`dtype` before the operation is performed. This is useful for preventing data type overflows. Default: None. Example:: >>> a = torch.randn(1, 3) >>> a tensor([[-0.8020, 0.5428, -1.5854]]) >>> torch.prod(a) tensor(0.6902) .. function:: prod(input, dim, keepdim=False, *, dtype=None) -> Tensor :noindex: Returns the product of each row of the :attr:`input` tensor in the given dimension :attr:`dim`. If :attr:`keepdim` is ``True``, the output tensor is of the same size as :attr:`input` except in the dimension :attr:`dim` where it is of size 1. Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the output tensor having 1 fewer dimension than :attr:`input`. Args: input (Tensor): the input tensor. dim (int): the dimension to reduce. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. Keyword args: dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. If specified, the input tensor is casted to :attr:`dtype` before the operation is performed. This is useful for preventing data type overflows. Default: None. Example:: >>> a = torch.randn(4, 2) >>> a tensor([[ 0.5261, -0.3837], [ 1.1857, -0.2498], [-1.1646, 0.0705], [ 1.1131, -1.0629]]) >>> torch.prod(a, 1) tensor([-0.2018, -0.2962, -0.0821, -1.1831]) """ ... @overload def prod(input: Tensor, dim: _int, keepdim: _bool = False, *, dtype: Optional[_dtype] = None, out: Optional[Tensor] = None) -> Tensor: r""" prod(input, *, dtype=None) -> Tensor Returns the product of all elements in the :attr:`input` tensor. Args: input (Tensor): the input tensor. Keyword args: dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. If specified, the input tensor is casted to :attr:`dtype` before the operation is performed. This is useful for preventing data type overflows. Default: None. Example:: >>> a = torch.randn(1, 3) >>> a tensor([[-0.8020, 0.5428, -1.5854]]) >>> torch.prod(a) tensor(0.6902) .. function:: prod(input, dim, keepdim=False, *, dtype=None) -> Tensor :noindex: Returns the product of each row of the :attr:`input` tensor in the given dimension :attr:`dim`. If :attr:`keepdim` is ``True``, the output tensor is of the same size as :attr:`input` except in the dimension :attr:`dim` where it is of size 1. Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the output tensor having 1 fewer dimension than :attr:`input`. Args: input (Tensor): the input tensor. dim (int): the dimension to reduce. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. Keyword args: dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. If specified, the input tensor is casted to :attr:`dtype` before the operation is performed. This is useful for preventing data type overflows. Default: None. Example:: >>> a = torch.randn(4, 2) >>> a tensor([[ 0.5261, -0.3837], [ 1.1857, -0.2498], [-1.1646, 0.0705], [ 1.1131, -1.0629]]) >>> torch.prod(a, 1) tensor([-0.2018, -0.2962, -0.0821, -1.1831]) """ ... @overload def prod(input: Tensor, dim: Union[str, ellipsis, None], keepdim: _bool = False, *, dtype: Optional[_dtype] = None, out: Optional[Tensor] = None) -> Tensor: r""" prod(input, *, dtype=None) -> Tensor Returns the product of all elements in the :attr:`input` tensor. Args: input (Tensor): the input tensor. Keyword args: dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. If specified, the input tensor is casted to :attr:`dtype` before the operation is performed. This is useful for preventing data type overflows. Default: None. Example:: >>> a = torch.randn(1, 3) >>> a tensor([[-0.8020, 0.5428, -1.5854]]) >>> torch.prod(a) tensor(0.6902) .. function:: prod(input, dim, keepdim=False, *, dtype=None) -> Tensor :noindex: Returns the product of each row of the :attr:`input` tensor in the given dimension :attr:`dim`. If :attr:`keepdim` is ``True``, the output tensor is of the same size as :attr:`input` except in the dimension :attr:`dim` where it is of size 1. Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the output tensor having 1 fewer dimension than :attr:`input`. Args: input (Tensor): the input tensor. dim (int): the dimension to reduce. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. Keyword args: dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. If specified, the input tensor is casted to :attr:`dtype` before the operation is performed. This is useful for preventing data type overflows. Default: None. Example:: >>> a = torch.randn(4, 2) >>> a tensor([[ 0.5261, -0.3837], [ 1.1857, -0.2498], [-1.1646, 0.0705], [ 1.1131, -1.0629]]) >>> torch.prod(a, 1) tensor([-0.2018, -0.2962, -0.0821, -1.1831]) """ ... def promote_types(type1: _dtype, type2: _dtype) -> _dtype: r""" promote_types(type1, type2) -> dtype Returns the :class:`torch.dtype` with the smallest size and scalar kind that is not smaller nor of lower kind than either `type1` or `type2`. See type promotion :ref:`documentation ` for more information on the type promotion logic. Args: type1 (:class:`torch.dtype`) type2 (:class:`torch.dtype`) Example:: >>> torch.promote_types(torch.int32, torch.float32) torch.float32 >>> torch.promote_types(torch.uint8, torch.long) torch.long """ ... def put(input: Tensor, index: Tensor, source: Tensor, accumulate: _bool = False) -> Tensor: ... def q_per_channel_axis(input: Tensor) -> _int: ... def q_per_channel_scales(input: Tensor) -> Tensor: ... def q_per_channel_zero_points(input: Tensor) -> Tensor: ... def q_scale(input: Tensor) -> _float: ... def q_zero_point(input: Tensor) -> _int: ... def qr(input: Tensor, some: _bool = True, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.qr: r""" qr(input, some=True, *, out=None) -> (Tensor, Tensor) Computes the QR decomposition of a matrix or a batch of matrices :attr:`input`, and returns a namedtuple (Q, R) of tensors such that :math:`\text{input} = Q R` with :math:`Q` being an orthogonal matrix or batch of orthogonal matrices and :math:`R` being an upper triangular matrix or batch of upper triangular matrices. If :attr:`some` is ``True``, then this function returns the thin (reduced) QR factorization. Otherwise, if :attr:`some` is ``False``, this function returns the complete QR factorization. .. warning:: :func:`torch.qr` is deprecated in favor of :func:`torch.linalg.qr` and will be removed in a future PyTorch release. The boolean parameter :attr:`some` has been replaced with a string parameter :attr:`mode`. ``Q, R = torch.qr(A)`` should be replaced with .. code:: python Q, R = torch.linalg.qr(A) ``Q, R = torch.qr(A, some=False)`` should be replaced with .. code:: python Q, R = torch.linalg.qr(A, mode="complete") .. warning:: If you plan to backpropagate through QR, note that the current backward implementation is only well-defined when the first :math:`\min(input.size(-1), input.size(-2))` columns of :attr:`input` are linearly independent. This behavior will probably change once QR supports pivoting. .. note:: This function uses LAPACK for CPU inputs and MAGMA for CUDA inputs, and may produce different (valid) decompositions on different device types or different platforms. Args: input (Tensor): the input tensor of size :math:`(*, m, n)` where `*` is zero or more batch dimensions consisting of matrices of dimension :math:`m \times n`. some (bool, optional): Set to ``True`` for reduced QR decomposition and ``False`` for complete QR decomposition. If `k = min(m, n)` then: * ``some=True`` : returns `(Q, R)` with dimensions (m, k), (k, n) (default) * ``'some=False'``: returns `(Q, R)` with dimensions (m, m), (m, n) Keyword args: out (tuple, optional): tuple of `Q` and `R` tensors. The dimensions of `Q` and `R` are detailed in the description of :attr:`some` above. Example:: >>> a = torch.tensor([[12., -51, 4], [6, 167, -68], [-4, 24, -41]]) >>> q, r = torch.qr(a) >>> q tensor([[-0.8571, 0.3943, 0.3314], [-0.4286, -0.9029, -0.0343], [ 0.2857, -0.1714, 0.9429]]) >>> r tensor([[ -14.0000, -21.0000, 14.0000], [ 0.0000, -175.0000, 70.0000], [ 0.0000, 0.0000, -35.0000]]) >>> torch.mm(q, r).round() tensor([[ 12., -51., 4.], [ 6., 167., -68.], [ -4., 24., -41.]]) >>> torch.mm(q.t(), q).round() tensor([[ 1., 0., 0.], [ 0., 1., -0.], [ 0., -0., 1.]]) >>> a = torch.randn(3, 4, 5) >>> q, r = torch.qr(a, some=False) >>> torch.allclose(torch.matmul(q, r), a) True >>> torch.allclose(torch.matmul(q.mT, q), torch.eye(5)) True """ ... @overload def quantile(input: Tensor, q: Tensor, dim: Optional[_int] = None, keepdim: _bool = False, *, interpolation: str = "linear", out: Optional[Tensor] = None) -> Tensor: r""" quantile(input, q, dim=None, keepdim=False, *, interpolation='linear', out=None) -> Tensor Computes the q-th quantiles of each row of the :attr:`input` tensor along the dimension :attr:`dim`. To compute the quantile, we map q in [0, 1] to the range of indices [0, n] to find the location of the quantile in the sorted input. If the quantile lies between two data points ``a < b`` with indices ``i`` and ``j`` in the sorted order, result is computed according to the given :attr:`interpolation` method as follows: - ``linear``: ``a + (b - a) * fraction``, where ``fraction`` is the fractional part of the computed quantile index. - ``lower``: ``a``. - ``higher``: ``b``. - ``nearest``: ``a`` or ``b``, whichever's index is closer to the computed quantile index (rounding down for .5 fractions). - ``midpoint``: ``(a + b) / 2``. If :attr:`q` is a 1D tensor, the first dimension of the output represents the quantiles and has size equal to the size of :attr:`q`, the remaining dimensions are what remains from the reduction. .. note:: By default :attr:`dim` is ``None`` resulting in the :attr:`input` tensor being flattened before computation. Args: input (Tensor): the input tensor. q (float or Tensor): a scalar or 1D tensor of values in the range [0, 1]. dim (int): the dimension to reduce. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. Keyword arguments: interpolation (str): interpolation method to use when the desired quantile lies between two data points. Can be ``linear``, ``lower``, ``higher``, ``midpoint`` and ``nearest``. Default is ``linear``. out (Tensor, optional): the output tensor. Example:: >>> a = torch.randn(2, 3) >>> a tensor([[ 0.0795, -1.2117, 0.9765], [ 1.1707, 0.6706, 0.4884]]) >>> q = torch.tensor([0.25, 0.5, 0.75]) >>> torch.quantile(a, q, dim=1, keepdim=True) tensor([[[-0.5661], [ 0.5795]], [[ 0.0795], [ 0.6706]], [[ 0.5280], [ 0.9206]]]) >>> torch.quantile(a, q, dim=1, keepdim=True).shape torch.Size([3, 2, 1]) >>> a = torch.arange(4.) >>> a tensor([0., 1., 2., 3.]) >>> torch.quantile(a, 0.6, interpolation='linear') tensor(1.8000) >>> torch.quantile(a, 0.6, interpolation='lower') tensor(1.) >>> torch.quantile(a, 0.6, interpolation='higher') tensor(2.) >>> torch.quantile(a, 0.6, interpolation='midpoint') tensor(1.5000) >>> torch.quantile(a, 0.6, interpolation='nearest') tensor(2.) >>> torch.quantile(a, 0.4, interpolation='nearest') tensor(1.) """ ... @overload def quantile(input: Tensor, q: _float, dim: Optional[_int] = None, keepdim: _bool = False, *, interpolation: str = "linear", out: Optional[Tensor] = None) -> Tensor: r""" quantile(input, q, dim=None, keepdim=False, *, interpolation='linear', out=None) -> Tensor Computes the q-th quantiles of each row of the :attr:`input` tensor along the dimension :attr:`dim`. To compute the quantile, we map q in [0, 1] to the range of indices [0, n] to find the location of the quantile in the sorted input. If the quantile lies between two data points ``a < b`` with indices ``i`` and ``j`` in the sorted order, result is computed according to the given :attr:`interpolation` method as follows: - ``linear``: ``a + (b - a) * fraction``, where ``fraction`` is the fractional part of the computed quantile index. - ``lower``: ``a``. - ``higher``: ``b``. - ``nearest``: ``a`` or ``b``, whichever's index is closer to the computed quantile index (rounding down for .5 fractions). - ``midpoint``: ``(a + b) / 2``. If :attr:`q` is a 1D tensor, the first dimension of the output represents the quantiles and has size equal to the size of :attr:`q`, the remaining dimensions are what remains from the reduction. .. note:: By default :attr:`dim` is ``None`` resulting in the :attr:`input` tensor being flattened before computation. Args: input (Tensor): the input tensor. q (float or Tensor): a scalar or 1D tensor of values in the range [0, 1]. dim (int): the dimension to reduce. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. Keyword arguments: interpolation (str): interpolation method to use when the desired quantile lies between two data points. Can be ``linear``, ``lower``, ``higher``, ``midpoint`` and ``nearest``. Default is ``linear``. out (Tensor, optional): the output tensor. Example:: >>> a = torch.randn(2, 3) >>> a tensor([[ 0.0795, -1.2117, 0.9765], [ 1.1707, 0.6706, 0.4884]]) >>> q = torch.tensor([0.25, 0.5, 0.75]) >>> torch.quantile(a, q, dim=1, keepdim=True) tensor([[[-0.5661], [ 0.5795]], [[ 0.0795], [ 0.6706]], [[ 0.5280], [ 0.9206]]]) >>> torch.quantile(a, q, dim=1, keepdim=True).shape torch.Size([3, 2, 1]) >>> a = torch.arange(4.) >>> a tensor([0., 1., 2., 3.]) >>> torch.quantile(a, 0.6, interpolation='linear') tensor(1.8000) >>> torch.quantile(a, 0.6, interpolation='lower') tensor(1.) >>> torch.quantile(a, 0.6, interpolation='higher') tensor(2.) >>> torch.quantile(a, 0.6, interpolation='midpoint') tensor(1.5000) >>> torch.quantile(a, 0.6, interpolation='nearest') tensor(2.) >>> torch.quantile(a, 0.4, interpolation='nearest') tensor(1.) """ ... def quantize_per_channel(input: Tensor, scales: Tensor, zero_points: Tensor, axis: _int, dtype: _dtype) -> Tensor: r""" quantize_per_channel(input, scales, zero_points, axis, dtype) -> Tensor Converts a float tensor to a per-channel quantized tensor with given scales and zero points. Arguments: input (Tensor): float tensor to quantize scales (Tensor): float 1D tensor of scales to use, size should match ``input.size(axis)`` zero_points (int): integer 1D tensor of offset to use, size should match ``input.size(axis)`` axis (int): dimension on which apply per-channel quantization dtype (:class:`torch.dtype`): the desired data type of returned tensor. Has to be one of the quantized dtypes: ``torch.quint8``, ``torch.qint8``, ``torch.qint32`` Returns: Tensor: A newly quantized tensor Example:: >>> x = torch.tensor([[-1.0, 0.0], [1.0, 2.0]]) >>> torch.quantize_per_channel(x, torch.tensor([0.1, 0.01]), torch.tensor([10, 0]), 0, torch.quint8) tensor([[-1., 0.], [ 1., 2.]], size=(2, 2), dtype=torch.quint8, quantization_scheme=torch.per_channel_affine, scale=tensor([0.1000, 0.0100], dtype=torch.float64), zero_point=tensor([10, 0]), axis=0) >>> torch.quantize_per_channel(x, torch.tensor([0.1, 0.01]), torch.tensor([10, 0]), 0, torch.quint8).int_repr() tensor([[ 0, 10], [100, 200]], dtype=torch.uint8) """ ... @overload def quantize_per_tensor(input: Tensor, scale: Tensor, zero_point: Tensor, dtype: _dtype) -> Tensor: r""" quantize_per_tensor(input, scale, zero_point, dtype) -> Tensor Converts a float tensor to a quantized tensor with given scale and zero point. Arguments: input (Tensor): float tensor or list of tensors to quantize scale (float or Tensor): scale to apply in quantization formula zero_point (int or Tensor): offset in integer value that maps to float zero dtype (:class:`torch.dtype`): the desired data type of returned tensor. Has to be one of the quantized dtypes: ``torch.quint8``, ``torch.qint8``, ``torch.qint32`` Returns: Tensor: A newly quantized tensor or list of quantized tensors. Example:: >>> torch.quantize_per_tensor(torch.tensor([-1.0, 0.0, 1.0, 2.0]), 0.1, 10, torch.quint8) tensor([-1., 0., 1., 2.], size=(4,), dtype=torch.quint8, quantization_scheme=torch.per_tensor_affine, scale=0.1, zero_point=10) >>> torch.quantize_per_tensor(torch.tensor([-1.0, 0.0, 1.0, 2.0]), 0.1, 10, torch.quint8).int_repr() tensor([ 0, 10, 20, 30], dtype=torch.uint8) >>> torch.quantize_per_tensor([torch.tensor([-1.0, 0.0]), torch.tensor([-2.0, 2.0])], >>> torch.tensor([0.1, 0.2]), torch.tensor([10, 20]), torch.quint8) (tensor([-1., 0.], size=(2,), dtype=torch.quint8, quantization_scheme=torch.per_tensor_affine, scale=0.1, zero_point=10), tensor([-2., 2.], size=(2,), dtype=torch.quint8, quantization_scheme=torch.per_tensor_affine, scale=0.2, zero_point=20)) >>> torch.quantize_per_tensor(torch.tensor([-1.0, 0.0, 1.0, 2.0]), torch.tensor(0.1), torch.tensor(10), torch.quint8) tensor([-1., 0., 1., 2.], size=(4,), dtype=torch.quint8, quantization_scheme=torch.per_tensor_affine, scale=0.10, zero_point=10) """ ... @overload def quantize_per_tensor(input: Tensor, scale: _float, zero_point: _int, dtype: _dtype) -> Tensor: r""" quantize_per_tensor(input, scale, zero_point, dtype) -> Tensor Converts a float tensor to a quantized tensor with given scale and zero point. Arguments: input (Tensor): float tensor or list of tensors to quantize scale (float or Tensor): scale to apply in quantization formula zero_point (int or Tensor): offset in integer value that maps to float zero dtype (:class:`torch.dtype`): the desired data type of returned tensor. Has to be one of the quantized dtypes: ``torch.quint8``, ``torch.qint8``, ``torch.qint32`` Returns: Tensor: A newly quantized tensor or list of quantized tensors. Example:: >>> torch.quantize_per_tensor(torch.tensor([-1.0, 0.0, 1.0, 2.0]), 0.1, 10, torch.quint8) tensor([-1., 0., 1., 2.], size=(4,), dtype=torch.quint8, quantization_scheme=torch.per_tensor_affine, scale=0.1, zero_point=10) >>> torch.quantize_per_tensor(torch.tensor([-1.0, 0.0, 1.0, 2.0]), 0.1, 10, torch.quint8).int_repr() tensor([ 0, 10, 20, 30], dtype=torch.uint8) >>> torch.quantize_per_tensor([torch.tensor([-1.0, 0.0]), torch.tensor([-2.0, 2.0])], >>> torch.tensor([0.1, 0.2]), torch.tensor([10, 20]), torch.quint8) (tensor([-1., 0.], size=(2,), dtype=torch.quint8, quantization_scheme=torch.per_tensor_affine, scale=0.1, zero_point=10), tensor([-2., 2.], size=(2,), dtype=torch.quint8, quantization_scheme=torch.per_tensor_affine, scale=0.2, zero_point=20)) >>> torch.quantize_per_tensor(torch.tensor([-1.0, 0.0, 1.0, 2.0]), torch.tensor(0.1), torch.tensor(10), torch.quint8) tensor([-1., 0., 1., 2.], size=(4,), dtype=torch.quint8, quantization_scheme=torch.per_tensor_affine, scale=0.10, zero_point=10) """ ... @overload def quantize_per_tensor(tensors: Union[Tuple[Tensor, ...], List[Tensor]], scales: Tensor, zero_points: Tensor, dtype: _dtype) -> Tuple[Tensor, ...]: r""" quantize_per_tensor(input, scale, zero_point, dtype) -> Tensor Converts a float tensor to a quantized tensor with given scale and zero point. Arguments: input (Tensor): float tensor or list of tensors to quantize scale (float or Tensor): scale to apply in quantization formula zero_point (int or Tensor): offset in integer value that maps to float zero dtype (:class:`torch.dtype`): the desired data type of returned tensor. Has to be one of the quantized dtypes: ``torch.quint8``, ``torch.qint8``, ``torch.qint32`` Returns: Tensor: A newly quantized tensor or list of quantized tensors. Example:: >>> torch.quantize_per_tensor(torch.tensor([-1.0, 0.0, 1.0, 2.0]), 0.1, 10, torch.quint8) tensor([-1., 0., 1., 2.], size=(4,), dtype=torch.quint8, quantization_scheme=torch.per_tensor_affine, scale=0.1, zero_point=10) >>> torch.quantize_per_tensor(torch.tensor([-1.0, 0.0, 1.0, 2.0]), 0.1, 10, torch.quint8).int_repr() tensor([ 0, 10, 20, 30], dtype=torch.uint8) >>> torch.quantize_per_tensor([torch.tensor([-1.0, 0.0]), torch.tensor([-2.0, 2.0])], >>> torch.tensor([0.1, 0.2]), torch.tensor([10, 20]), torch.quint8) (tensor([-1., 0.], size=(2,), dtype=torch.quint8, quantization_scheme=torch.per_tensor_affine, scale=0.1, zero_point=10), tensor([-2., 2.], size=(2,), dtype=torch.quint8, quantization_scheme=torch.per_tensor_affine, scale=0.2, zero_point=20)) >>> torch.quantize_per_tensor(torch.tensor([-1.0, 0.0, 1.0, 2.0]), torch.tensor(0.1), torch.tensor(10), torch.quint8) tensor([-1., 0., 1., 2.], size=(4,), dtype=torch.quint8, quantization_scheme=torch.per_tensor_affine, scale=0.10, zero_point=10) """ ... def quantize_per_tensor_dynamic(input: Tensor, dtype: _dtype, reduce_range: _bool) -> Tensor: r""" quantize_per_tensor_dynamic(input, dtype, reduce_range) -> Tensor Converts a float tensor to a quantized tensor with scale and zero_point calculated dynamically based on the input. Arguments: input (Tensor): float tensor or list of tensors to quantize dtype (:class:`torch.dtype`): the desired data type of returned tensor. Has to be one of the quantized dtypes: ``torch.quint8``, ``torch.qint8`` reduce_range (bool): a flag to indicate whether to reduce the range of quantized data by 1 bit, it's required to avoid instruction overflow for some hardwares Returns: Tensor: A newly (dynamically) quantized tensor Example:: >>> t = torch.quantize_per_tensor_dynamic(torch.tensor([-1.0, 0.0, 1.0, 2.0]), torch.quint8, False) >>> print(t) tensor([-1., 0., 1., 2.], size=(4,), dtype=torch.quint8, quantization_scheme=torch.per_tensor_affine, scale=0.011764705882352941, zero_point=85) >>> t.int_repr() tensor([ 0, 85, 170, 255], dtype=torch.uint8) """ ... def quantized_batch_norm(input: Tensor, weight: Optional[Tensor], bias: Optional[Tensor], mean: Tensor, var: Tensor, eps: _float, output_scale: _float, output_zero_point: _int) -> Tensor: r""" quantized_batch_norm(input, weight=None, bias=None, mean, var, eps, output_scale, output_zero_point) -> Tensor Applies batch normalization on a 4D (NCHW) quantized tensor. .. math:: y = \frac{x - \mathrm{E}[x]}{\sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta Arguments: input (Tensor): quantized tensor weight (Tensor): float tensor that corresponds to the gamma, size C bias (Tensor): float tensor that corresponds to the beta, size C mean (Tensor): float mean value in batch normalization, size C var (Tensor): float tensor for variance, size C eps (float): a value added to the denominator for numerical stability. output_scale (float): output quantized tensor scale output_zero_point (int): output quantized tensor zero_point Returns: Tensor: A quantized tensor with batch normalization applied. Example:: >>> qx = torch.quantize_per_tensor(torch.rand(2, 2, 2, 2), 1.5, 3, torch.quint8) >>> torch.quantized_batch_norm(qx, torch.ones(2), torch.zeros(2), torch.rand(2), torch.rand(2), 0.00001, 0.2, 2) tensor([[[[-0.2000, -0.2000], [ 1.6000, -0.2000]], [[-0.4000, -0.4000], [-0.4000, 0.6000]]], [[[-0.2000, -0.2000], [-0.2000, -0.2000]], [[ 0.6000, -0.4000], [ 0.6000, -0.4000]]]], size=(2, 2, 2, 2), dtype=torch.quint8, quantization_scheme=torch.per_tensor_affine, scale=0.2, zero_point=2) """ ... def quantized_gru_cell(input: Tensor, hx: Tensor, w_ih: Tensor, w_hh: Tensor, b_ih: Tensor, b_hh: Tensor, packed_ih: Tensor, packed_hh: Tensor, col_offsets_ih: Tensor, col_offsets_hh: Tensor, scale_ih: Union[Number, _complex], scale_hh: Union[Number, _complex], zero_point_ih: Union[Number, _complex], zero_point_hh: Union[Number, _complex]) -> Tensor: ... def quantized_lstm_cell(input: Tensor, hx: Union[Tuple[Tensor, ...], List[Tensor]], w_ih: Tensor, w_hh: Tensor, b_ih: Tensor, b_hh: Tensor, packed_ih: Tensor, packed_hh: Tensor, col_offsets_ih: Tensor, col_offsets_hh: Tensor, scale_ih: Union[Number, _complex], scale_hh: Union[Number, _complex], zero_point_ih: Union[Number, _complex], zero_point_hh: Union[Number, _complex]) -> Tuple[Tensor, Tensor]: ... def quantized_max_pool1d(input: Tensor, kernel_size: Union[_int, _size], stride: Union[_int, _size] = (), padding: Union[_int, _size] = 0, dilation: Union[_int, _size] = 1, ceil_mode: _bool = False) -> Tensor: r""" quantized_max_pool1d(input, kernel_size, stride=[], padding=0, dilation=1, ceil_mode=False) -> Tensor Applies a 1D max pooling over an input quantized tensor composed of several input planes. Arguments: input (Tensor): quantized tensor kernel_size (list of int): the size of the sliding window stride (``list of int``, optional): the stride of the sliding window padding (``list of int``, optional): padding to be added on both sides, must be >= 0 and <= kernel_size / 2 dilation (``list of int``, optional): The stride between elements within a sliding window, must be > 0. Default 1 ceil_mode (bool, optional): If True, will use ceil instead of floor to compute the output shape. Defaults to False. Returns: Tensor: A quantized tensor with max_pool1d applied. Example:: >>> qx = torch.quantize_per_tensor(torch.rand(2, 2), 1.5, 3, torch.quint8) >>> torch.quantized_max_pool1d(qx, [2]) tensor([[0.0000], [1.5000]], size=(2, 1), dtype=torch.quint8, quantization_scheme=torch.per_tensor_affine, scale=1.5, zero_point=3) """ ... def quantized_max_pool2d(input: Tensor, kernel_size: Union[_int, _size], stride: Union[_int, _size] = (), padding: Union[_int, _size] = 0, dilation: Union[_int, _size] = 1, ceil_mode: _bool = False) -> Tensor: r""" quantized_max_pool2d(input, kernel_size, stride=[], padding=0, dilation=1, ceil_mode=False) -> Tensor Applies a 2D max pooling over an input quantized tensor composed of several input planes. Arguments: input (Tensor): quantized tensor kernel_size (``list of int``): the size of the sliding window stride (``list of int``, optional): the stride of the sliding window padding (``list of int``, optional): padding to be added on both sides, must be >= 0 and <= kernel_size / 2 dilation (``list of int``, optional): The stride between elements within a sliding window, must be > 0. Default 1 ceil_mode (bool, optional): If True, will use ceil instead of floor to compute the output shape. Defaults to False. Returns: Tensor: A quantized tensor with max_pool2d applied. Example:: >>> qx = torch.quantize_per_tensor(torch.rand(2, 2, 2, 2), 1.5, 3, torch.quint8) >>> torch.quantized_max_pool2d(qx, [2,2]) tensor([[[[1.5000]], [[1.5000]]], [[[0.0000]], [[0.0000]]]], size=(2, 2, 1, 1), dtype=torch.quint8, quantization_scheme=torch.per_tensor_affine, scale=1.5, zero_point=3) """ ... def quantized_max_pool3d(input: Tensor, kernel_size: Union[_int, _size], stride: Union[_int, _size] = (), padding: Union[_int, _size] = 0, dilation: Union[_int, _size] = 1, ceil_mode: _bool = False) -> Tensor: ... def quantized_rnn_relu_cell(input: Tensor, hx: Tensor, w_ih: Tensor, w_hh: Tensor, b_ih: Tensor, b_hh: Tensor, packed_ih: Tensor, packed_hh: Tensor, col_offsets_ih: Tensor, col_offsets_hh: Tensor, scale_ih: Union[Number, _complex], scale_hh: Union[Number, _complex], zero_point_ih: Union[Number, _complex], zero_point_hh: Union[Number, _complex]) -> Tensor: ... def quantized_rnn_tanh_cell(input: Tensor, hx: Tensor, w_ih: Tensor, w_hh: Tensor, b_ih: Tensor, b_hh: Tensor, packed_ih: Tensor, packed_hh: Tensor, col_offsets_ih: Tensor, col_offsets_hh: Tensor, scale_ih: Union[Number, _complex], scale_hh: Union[Number, _complex], zero_point_ih: Union[Number, _complex], zero_point_hh: Union[Number, _complex]) -> Tensor: ... def rad2deg(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" rad2deg(input, *, out=None) -> Tensor Returns a new tensor with each of the elements of :attr:`input` converted from angles in radians to degrees. Args: input (Tensor): the input tensor. Keyword arguments: out (Tensor, optional): the output tensor. Example:: >>> a = torch.tensor([[3.142, -3.142], [6.283, -6.283], [1.570, -1.570]]) >>> torch.rad2deg(a) tensor([[ 180.0233, -180.0233], [ 359.9894, -359.9894], [ 89.9544, -89.9544]]) """ ... def rad2deg_(input: Tensor) -> Tensor: ... @overload def rand(size: Sequence[Union[_int, SymInt]], *, generator: Optional[Generator], names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" rand(*size, *, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False) -> Tensor Returns a tensor filled with random numbers from a uniform distribution on the interval :math:`[0, 1)` The shape of the tensor is defined by the variable argument :attr:`size`. Args: size (int...): a sequence of integers defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple. Keyword args: generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling out (Tensor, optional): the output tensor. dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. pin_memory (bool, optional): If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default: ``False``. Example:: >>> torch.rand(4) tensor([ 0.5204, 0.2503, 0.3525, 0.5673]) >>> torch.rand(2, 3) tensor([[ 0.8237, 0.5781, 0.6879], [ 0.3816, 0.7249, 0.0998]]) """ ... @overload def rand(*size: _int, generator: Optional[Generator], names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" rand(*size, *, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False) -> Tensor Returns a tensor filled with random numbers from a uniform distribution on the interval :math:`[0, 1)` The shape of the tensor is defined by the variable argument :attr:`size`. Args: size (int...): a sequence of integers defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple. Keyword args: generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling out (Tensor, optional): the output tensor. dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. pin_memory (bool, optional): If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default: ``False``. Example:: >>> torch.rand(4) tensor([ 0.5204, 0.2503, 0.3525, 0.5673]) >>> torch.rand(2, 3) tensor([[ 0.8237, 0.5781, 0.6879], [ 0.3816, 0.7249, 0.0998]]) """ ... @overload def rand(size: Sequence[Union[_int, SymInt]], *, generator: Optional[Generator], out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" rand(*size, *, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False) -> Tensor Returns a tensor filled with random numbers from a uniform distribution on the interval :math:`[0, 1)` The shape of the tensor is defined by the variable argument :attr:`size`. Args: size (int...): a sequence of integers defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple. Keyword args: generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling out (Tensor, optional): the output tensor. dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. pin_memory (bool, optional): If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default: ``False``. Example:: >>> torch.rand(4) tensor([ 0.5204, 0.2503, 0.3525, 0.5673]) >>> torch.rand(2, 3) tensor([[ 0.8237, 0.5781, 0.6879], [ 0.3816, 0.7249, 0.0998]]) """ ... @overload def rand(*size: _int, generator: Optional[Generator], out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" rand(*size, *, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False) -> Tensor Returns a tensor filled with random numbers from a uniform distribution on the interval :math:`[0, 1)` The shape of the tensor is defined by the variable argument :attr:`size`. Args: size (int...): a sequence of integers defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple. Keyword args: generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling out (Tensor, optional): the output tensor. dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. pin_memory (bool, optional): If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default: ``False``. Example:: >>> torch.rand(4) tensor([ 0.5204, 0.2503, 0.3525, 0.5673]) >>> torch.rand(2, 3) tensor([[ 0.8237, 0.5781, 0.6879], [ 0.3816, 0.7249, 0.0998]]) """ ... @overload def rand(size: Sequence[Union[_int, SymInt]], *, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" rand(*size, *, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False) -> Tensor Returns a tensor filled with random numbers from a uniform distribution on the interval :math:`[0, 1)` The shape of the tensor is defined by the variable argument :attr:`size`. Args: size (int...): a sequence of integers defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple. Keyword args: generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling out (Tensor, optional): the output tensor. dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. pin_memory (bool, optional): If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default: ``False``. Example:: >>> torch.rand(4) tensor([ 0.5204, 0.2503, 0.3525, 0.5673]) >>> torch.rand(2, 3) tensor([[ 0.8237, 0.5781, 0.6879], [ 0.3816, 0.7249, 0.0998]]) """ ... @overload def rand(*size: _int, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" rand(*size, *, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False) -> Tensor Returns a tensor filled with random numbers from a uniform distribution on the interval :math:`[0, 1)` The shape of the tensor is defined by the variable argument :attr:`size`. Args: size (int...): a sequence of integers defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple. Keyword args: generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling out (Tensor, optional): the output tensor. dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. pin_memory (bool, optional): If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default: ``False``. Example:: >>> torch.rand(4) tensor([ 0.5204, 0.2503, 0.3525, 0.5673]) >>> torch.rand(2, 3) tensor([[ 0.8237, 0.5781, 0.6879], [ 0.3816, 0.7249, 0.0998]]) """ ... @overload def rand(size: Sequence[Union[_int, SymInt]], *, names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" rand(*size, *, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False) -> Tensor Returns a tensor filled with random numbers from a uniform distribution on the interval :math:`[0, 1)` The shape of the tensor is defined by the variable argument :attr:`size`. Args: size (int...): a sequence of integers defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple. Keyword args: generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling out (Tensor, optional): the output tensor. dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. pin_memory (bool, optional): If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default: ``False``. Example:: >>> torch.rand(4) tensor([ 0.5204, 0.2503, 0.3525, 0.5673]) >>> torch.rand(2, 3) tensor([[ 0.8237, 0.5781, 0.6879], [ 0.3816, 0.7249, 0.0998]]) """ ... @overload def rand(*size: _int, names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" rand(*size, *, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False) -> Tensor Returns a tensor filled with random numbers from a uniform distribution on the interval :math:`[0, 1)` The shape of the tensor is defined by the variable argument :attr:`size`. Args: size (int...): a sequence of integers defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple. Keyword args: generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling out (Tensor, optional): the output tensor. dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. pin_memory (bool, optional): If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default: ``False``. Example:: >>> torch.rand(4) tensor([ 0.5204, 0.2503, 0.3525, 0.5673]) >>> torch.rand(2, 3) tensor([[ 0.8237, 0.5781, 0.6879], [ 0.3816, 0.7249, 0.0998]]) """ ... def rand_like(input: Tensor, *, memory_format: Optional[memory_format] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" rand_like(input, *, dtype=None, layout=None, device=None, requires_grad=False, memory_format=torch.preserve_format) -> Tensor Returns a tensor with the same size as :attr:`input` that is filled with random numbers from a uniform distribution on the interval :math:`[0, 1)`. ``torch.rand_like(input)`` is equivalent to ``torch.rand(input.size(), dtype=input.dtype, layout=input.layout, device=input.device)``. Args: input (Tensor): the size of :attr:`input` will determine size of the output tensor. Keyword args: dtype (:class:`torch.dtype`, optional): the desired data type of returned Tensor. Default: if ``None``, defaults to the dtype of :attr:`input`. layout (:class:`torch.layout`, optional): the desired layout of returned tensor. Default: if ``None``, defaults to the layout of :attr:`input`. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, defaults to the device of :attr:`input`. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. memory_format (:class:`torch.memory_format`, optional): the desired memory format of returned Tensor. Default: ``torch.preserve_format``. """ ... @overload def randint(low: _int, high: _int, size: _size, *, generator: Optional[Generator] = None, dtype: Optional[_dtype] = None, device: Optional[DeviceLikeType] = None, requires_grad: _bool = False, pin_memory: _bool = False) -> Tensor: r""" randint(low=0, high, size, \*, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor Returns a tensor filled with random integers generated uniformly between :attr:`low` (inclusive) and :attr:`high` (exclusive). The shape of the tensor is defined by the variable argument :attr:`size`. .. note:: With the global dtype default (``torch.float32``), this function returns a tensor with dtype ``torch.int64``. Args: low (int, optional): Lowest integer to be drawn from the distribution. Default: 0. high (int): One above the highest integer to be drawn from the distribution. size (tuple): a tuple defining the shape of the output tensor. Keyword args: generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling out (Tensor, optional): the output tensor. dtype (`torch.dtype`, optional) - the desired data type of returned tensor. Default: if ``None``, this function returns a tensor with dtype ``torch.int64``. layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. Example:: >>> torch.randint(3, 5, (3,)) tensor([4, 3, 4]) >>> torch.randint(10, (2, 2)) tensor([[0, 2], [5, 5]]) >>> torch.randint(3, 10, (2, 2)) tensor([[4, 5], [6, 7]]) """ ... @overload def randint(high: _int, size: _size, *, generator: Optional[Generator] = None, dtype: Optional[_dtype] = None, device: Optional[DeviceLikeType] = None, requires_grad: _bool = False, pin_memory: _bool = False) -> Tensor: r""" randint(low=0, high, size, \*, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor Returns a tensor filled with random integers generated uniformly between :attr:`low` (inclusive) and :attr:`high` (exclusive). The shape of the tensor is defined by the variable argument :attr:`size`. .. note:: With the global dtype default (``torch.float32``), this function returns a tensor with dtype ``torch.int64``. Args: low (int, optional): Lowest integer to be drawn from the distribution. Default: 0. high (int): One above the highest integer to be drawn from the distribution. size (tuple): a tuple defining the shape of the output tensor. Keyword args: generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling out (Tensor, optional): the output tensor. dtype (`torch.dtype`, optional) - the desired data type of returned tensor. Default: if ``None``, this function returns a tensor with dtype ``torch.int64``. layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. Example:: >>> torch.randint(3, 5, (3,)) tensor([4, 3, 4]) >>> torch.randint(10, (2, 2)) tensor([[0, 2], [5, 5]]) >>> torch.randint(3, 10, (2, 2)) tensor([[4, 5], [6, 7]]) """ ... @overload def randint(high: Union[_int, SymInt], size: Sequence[Union[_int, SymInt]], *, generator: Optional[Generator], out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" randint(low=0, high, size, \*, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor Returns a tensor filled with random integers generated uniformly between :attr:`low` (inclusive) and :attr:`high` (exclusive). The shape of the tensor is defined by the variable argument :attr:`size`. .. note:: With the global dtype default (``torch.float32``), this function returns a tensor with dtype ``torch.int64``. Args: low (int, optional): Lowest integer to be drawn from the distribution. Default: 0. high (int): One above the highest integer to be drawn from the distribution. size (tuple): a tuple defining the shape of the output tensor. Keyword args: generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling out (Tensor, optional): the output tensor. dtype (`torch.dtype`, optional) - the desired data type of returned tensor. Default: if ``None``, this function returns a tensor with dtype ``torch.int64``. layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. Example:: >>> torch.randint(3, 5, (3,)) tensor([4, 3, 4]) >>> torch.randint(10, (2, 2)) tensor([[0, 2], [5, 5]]) >>> torch.randint(3, 10, (2, 2)) tensor([[4, 5], [6, 7]]) """ ... @overload def randint(high: Union[_int, SymInt], size: Sequence[Union[_int, SymInt]], *, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" randint(low=0, high, size, \*, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor Returns a tensor filled with random integers generated uniformly between :attr:`low` (inclusive) and :attr:`high` (exclusive). The shape of the tensor is defined by the variable argument :attr:`size`. .. note:: With the global dtype default (``torch.float32``), this function returns a tensor with dtype ``torch.int64``. Args: low (int, optional): Lowest integer to be drawn from the distribution. Default: 0. high (int): One above the highest integer to be drawn from the distribution. size (tuple): a tuple defining the shape of the output tensor. Keyword args: generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling out (Tensor, optional): the output tensor. dtype (`torch.dtype`, optional) - the desired data type of returned tensor. Default: if ``None``, this function returns a tensor with dtype ``torch.int64``. layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. Example:: >>> torch.randint(3, 5, (3,)) tensor([4, 3, 4]) >>> torch.randint(10, (2, 2)) tensor([[0, 2], [5, 5]]) >>> torch.randint(3, 10, (2, 2)) tensor([[4, 5], [6, 7]]) """ ... @overload def randint(low: Union[_int, SymInt], high: Union[_int, SymInt], size: Sequence[Union[_int, SymInt]], *, generator: Optional[Generator], out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" randint(low=0, high, size, \*, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor Returns a tensor filled with random integers generated uniformly between :attr:`low` (inclusive) and :attr:`high` (exclusive). The shape of the tensor is defined by the variable argument :attr:`size`. .. note:: With the global dtype default (``torch.float32``), this function returns a tensor with dtype ``torch.int64``. Args: low (int, optional): Lowest integer to be drawn from the distribution. Default: 0. high (int): One above the highest integer to be drawn from the distribution. size (tuple): a tuple defining the shape of the output tensor. Keyword args: generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling out (Tensor, optional): the output tensor. dtype (`torch.dtype`, optional) - the desired data type of returned tensor. Default: if ``None``, this function returns a tensor with dtype ``torch.int64``. layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. Example:: >>> torch.randint(3, 5, (3,)) tensor([4, 3, 4]) >>> torch.randint(10, (2, 2)) tensor([[0, 2], [5, 5]]) >>> torch.randint(3, 10, (2, 2)) tensor([[4, 5], [6, 7]]) """ ... @overload def randint(low: Union[_int, SymInt], high: Union[_int, SymInt], size: Sequence[Union[_int, SymInt]], *, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" randint(low=0, high, size, \*, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor Returns a tensor filled with random integers generated uniformly between :attr:`low` (inclusive) and :attr:`high` (exclusive). The shape of the tensor is defined by the variable argument :attr:`size`. .. note:: With the global dtype default (``torch.float32``), this function returns a tensor with dtype ``torch.int64``. Args: low (int, optional): Lowest integer to be drawn from the distribution. Default: 0. high (int): One above the highest integer to be drawn from the distribution. size (tuple): a tuple defining the shape of the output tensor. Keyword args: generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling out (Tensor, optional): the output tensor. dtype (`torch.dtype`, optional) - the desired data type of returned tensor. Default: if ``None``, this function returns a tensor with dtype ``torch.int64``. layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. Example:: >>> torch.randint(3, 5, (3,)) tensor([4, 3, 4]) >>> torch.randint(10, (2, 2)) tensor([[0, 2], [5, 5]]) >>> torch.randint(3, 10, (2, 2)) tensor([[4, 5], [6, 7]]) """ ... @overload def randint_like(input: Tensor, high: Union[_int, SymInt], *, memory_format: Optional[memory_format] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" randint_like(input, low=0, high, \*, dtype=None, layout=torch.strided, device=None, requires_grad=False, memory_format=torch.preserve_format) -> Tensor Returns a tensor with the same shape as Tensor :attr:`input` filled with random integers generated uniformly between :attr:`low` (inclusive) and :attr:`high` (exclusive). .. note: With the global dtype default (``torch.float32``), this function returns a tensor with dtype ``torch.int64``. Args: input (Tensor): the size of :attr:`input` will determine size of the output tensor. low (int, optional): Lowest integer to be drawn from the distribution. Default: 0. high (int): One above the highest integer to be drawn from the distribution. Keyword args: dtype (:class:`torch.dtype`, optional): the desired data type of returned Tensor. Default: if ``None``, defaults to the dtype of :attr:`input`. layout (:class:`torch.layout`, optional): the desired layout of returned tensor. Default: if ``None``, defaults to the layout of :attr:`input`. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, defaults to the device of :attr:`input`. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. memory_format (:class:`torch.memory_format`, optional): the desired memory format of returned Tensor. Default: ``torch.preserve_format``. """ ... @overload def randint_like(input: Tensor, low: Union[_int, SymInt], high: Union[_int, SymInt], *, memory_format: Optional[memory_format] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" randint_like(input, low=0, high, \*, dtype=None, layout=torch.strided, device=None, requires_grad=False, memory_format=torch.preserve_format) -> Tensor Returns a tensor with the same shape as Tensor :attr:`input` filled with random integers generated uniformly between :attr:`low` (inclusive) and :attr:`high` (exclusive). .. note: With the global dtype default (``torch.float32``), this function returns a tensor with dtype ``torch.int64``. Args: input (Tensor): the size of :attr:`input` will determine size of the output tensor. low (int, optional): Lowest integer to be drawn from the distribution. Default: 0. high (int): One above the highest integer to be drawn from the distribution. Keyword args: dtype (:class:`torch.dtype`, optional): the desired data type of returned Tensor. Default: if ``None``, defaults to the dtype of :attr:`input`. layout (:class:`torch.layout`, optional): the desired layout of returned tensor. Default: if ``None``, defaults to the layout of :attr:`input`. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, defaults to the device of :attr:`input`. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. memory_format (:class:`torch.memory_format`, optional): the desired memory format of returned Tensor. Default: ``torch.preserve_format``. """ ... @overload def randn(size: Sequence[Union[_int, SymInt]], *, generator: Optional[Generator], names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" randn(*size, *, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False) -> Tensor Returns a tensor filled with random numbers from a normal distribution with mean `0` and variance `1` (also called the standard normal distribution). .. math:: \text{out}_{i} \sim \mathcal{N}(0, 1) For complex dtypes, the tensor is i.i.d. sampled from a `complex normal distribution`_ with zero mean and unit variance as .. math:: \text{out}_{i} \sim \mathcal{CN}(0, 1) This is equivalent to separately sampling the real :math:`(\operatorname{Re})` and imaginary :math:`(\operatorname{Im})` part of :math:`\text{out}_i` as .. math:: \operatorname{Re}(\text{out}_{i}) \sim \mathcal{N}(0, \frac{1}{2}),\quad \operatorname{Im}(\text{out}_{i}) \sim \mathcal{N}(0, \frac{1}{2}) The shape of the tensor is defined by the variable argument :attr:`size`. Args: size (int...): a sequence of integers defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple. Keyword args: generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling out (Tensor, optional): the output tensor. dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. pin_memory (bool, optional): If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default: ``False``. Example:: >>> torch.randn(4) tensor([-2.1436, 0.9966, 2.3426, -0.6366]) >>> torch.randn(2, 3) tensor([[ 1.5954, 2.8929, -1.0923], [ 1.1719, -0.4709, -0.1996]]) .. _complex normal distribution: https://en.wikipedia.org/wiki/Complex_normal_distribution """ ... @overload def randn(*size: _int, generator: Optional[Generator], names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" randn(*size, *, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False) -> Tensor Returns a tensor filled with random numbers from a normal distribution with mean `0` and variance `1` (also called the standard normal distribution). .. math:: \text{out}_{i} \sim \mathcal{N}(0, 1) For complex dtypes, the tensor is i.i.d. sampled from a `complex normal distribution`_ with zero mean and unit variance as .. math:: \text{out}_{i} \sim \mathcal{CN}(0, 1) This is equivalent to separately sampling the real :math:`(\operatorname{Re})` and imaginary :math:`(\operatorname{Im})` part of :math:`\text{out}_i` as .. math:: \operatorname{Re}(\text{out}_{i}) \sim \mathcal{N}(0, \frac{1}{2}),\quad \operatorname{Im}(\text{out}_{i}) \sim \mathcal{N}(0, \frac{1}{2}) The shape of the tensor is defined by the variable argument :attr:`size`. Args: size (int...): a sequence of integers defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple. Keyword args: generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling out (Tensor, optional): the output tensor. dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. pin_memory (bool, optional): If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default: ``False``. Example:: >>> torch.randn(4) tensor([-2.1436, 0.9966, 2.3426, -0.6366]) >>> torch.randn(2, 3) tensor([[ 1.5954, 2.8929, -1.0923], [ 1.1719, -0.4709, -0.1996]]) .. _complex normal distribution: https://en.wikipedia.org/wiki/Complex_normal_distribution """ ... @overload def randn(size: Sequence[Union[_int, SymInt]], *, generator: Optional[Generator], out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" randn(*size, *, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False) -> Tensor Returns a tensor filled with random numbers from a normal distribution with mean `0` and variance `1` (also called the standard normal distribution). .. math:: \text{out}_{i} \sim \mathcal{N}(0, 1) For complex dtypes, the tensor is i.i.d. sampled from a `complex normal distribution`_ with zero mean and unit variance as .. math:: \text{out}_{i} \sim \mathcal{CN}(0, 1) This is equivalent to separately sampling the real :math:`(\operatorname{Re})` and imaginary :math:`(\operatorname{Im})` part of :math:`\text{out}_i` as .. math:: \operatorname{Re}(\text{out}_{i}) \sim \mathcal{N}(0, \frac{1}{2}),\quad \operatorname{Im}(\text{out}_{i}) \sim \mathcal{N}(0, \frac{1}{2}) The shape of the tensor is defined by the variable argument :attr:`size`. Args: size (int...): a sequence of integers defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple. Keyword args: generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling out (Tensor, optional): the output tensor. dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. pin_memory (bool, optional): If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default: ``False``. Example:: >>> torch.randn(4) tensor([-2.1436, 0.9966, 2.3426, -0.6366]) >>> torch.randn(2, 3) tensor([[ 1.5954, 2.8929, -1.0923], [ 1.1719, -0.4709, -0.1996]]) .. _complex normal distribution: https://en.wikipedia.org/wiki/Complex_normal_distribution """ ... @overload def randn(*size: _int, generator: Optional[Generator], out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" randn(*size, *, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False) -> Tensor Returns a tensor filled with random numbers from a normal distribution with mean `0` and variance `1` (also called the standard normal distribution). .. math:: \text{out}_{i} \sim \mathcal{N}(0, 1) For complex dtypes, the tensor is i.i.d. sampled from a `complex normal distribution`_ with zero mean and unit variance as .. math:: \text{out}_{i} \sim \mathcal{CN}(0, 1) This is equivalent to separately sampling the real :math:`(\operatorname{Re})` and imaginary :math:`(\operatorname{Im})` part of :math:`\text{out}_i` as .. math:: \operatorname{Re}(\text{out}_{i}) \sim \mathcal{N}(0, \frac{1}{2}),\quad \operatorname{Im}(\text{out}_{i}) \sim \mathcal{N}(0, \frac{1}{2}) The shape of the tensor is defined by the variable argument :attr:`size`. Args: size (int...): a sequence of integers defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple. Keyword args: generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling out (Tensor, optional): the output tensor. dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. pin_memory (bool, optional): If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default: ``False``. Example:: >>> torch.randn(4) tensor([-2.1436, 0.9966, 2.3426, -0.6366]) >>> torch.randn(2, 3) tensor([[ 1.5954, 2.8929, -1.0923], [ 1.1719, -0.4709, -0.1996]]) .. _complex normal distribution: https://en.wikipedia.org/wiki/Complex_normal_distribution """ ... @overload def randn(size: Sequence[Union[_int, SymInt]], *, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" randn(*size, *, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False) -> Tensor Returns a tensor filled with random numbers from a normal distribution with mean `0` and variance `1` (also called the standard normal distribution). .. math:: \text{out}_{i} \sim \mathcal{N}(0, 1) For complex dtypes, the tensor is i.i.d. sampled from a `complex normal distribution`_ with zero mean and unit variance as .. math:: \text{out}_{i} \sim \mathcal{CN}(0, 1) This is equivalent to separately sampling the real :math:`(\operatorname{Re})` and imaginary :math:`(\operatorname{Im})` part of :math:`\text{out}_i` as .. math:: \operatorname{Re}(\text{out}_{i}) \sim \mathcal{N}(0, \frac{1}{2}),\quad \operatorname{Im}(\text{out}_{i}) \sim \mathcal{N}(0, \frac{1}{2}) The shape of the tensor is defined by the variable argument :attr:`size`. Args: size (int...): a sequence of integers defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple. Keyword args: generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling out (Tensor, optional): the output tensor. dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. pin_memory (bool, optional): If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default: ``False``. Example:: >>> torch.randn(4) tensor([-2.1436, 0.9966, 2.3426, -0.6366]) >>> torch.randn(2, 3) tensor([[ 1.5954, 2.8929, -1.0923], [ 1.1719, -0.4709, -0.1996]]) .. _complex normal distribution: https://en.wikipedia.org/wiki/Complex_normal_distribution """ ... @overload def randn(*size: _int, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" randn(*size, *, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False) -> Tensor Returns a tensor filled with random numbers from a normal distribution with mean `0` and variance `1` (also called the standard normal distribution). .. math:: \text{out}_{i} \sim \mathcal{N}(0, 1) For complex dtypes, the tensor is i.i.d. sampled from a `complex normal distribution`_ with zero mean and unit variance as .. math:: \text{out}_{i} \sim \mathcal{CN}(0, 1) This is equivalent to separately sampling the real :math:`(\operatorname{Re})` and imaginary :math:`(\operatorname{Im})` part of :math:`\text{out}_i` as .. math:: \operatorname{Re}(\text{out}_{i}) \sim \mathcal{N}(0, \frac{1}{2}),\quad \operatorname{Im}(\text{out}_{i}) \sim \mathcal{N}(0, \frac{1}{2}) The shape of the tensor is defined by the variable argument :attr:`size`. Args: size (int...): a sequence of integers defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple. Keyword args: generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling out (Tensor, optional): the output tensor. dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. pin_memory (bool, optional): If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default: ``False``. Example:: >>> torch.randn(4) tensor([-2.1436, 0.9966, 2.3426, -0.6366]) >>> torch.randn(2, 3) tensor([[ 1.5954, 2.8929, -1.0923], [ 1.1719, -0.4709, -0.1996]]) .. _complex normal distribution: https://en.wikipedia.org/wiki/Complex_normal_distribution """ ... @overload def randn(size: Sequence[Union[_int, SymInt]], *, names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" randn(*size, *, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False) -> Tensor Returns a tensor filled with random numbers from a normal distribution with mean `0` and variance `1` (also called the standard normal distribution). .. math:: \text{out}_{i} \sim \mathcal{N}(0, 1) For complex dtypes, the tensor is i.i.d. sampled from a `complex normal distribution`_ with zero mean and unit variance as .. math:: \text{out}_{i} \sim \mathcal{CN}(0, 1) This is equivalent to separately sampling the real :math:`(\operatorname{Re})` and imaginary :math:`(\operatorname{Im})` part of :math:`\text{out}_i` as .. math:: \operatorname{Re}(\text{out}_{i}) \sim \mathcal{N}(0, \frac{1}{2}),\quad \operatorname{Im}(\text{out}_{i}) \sim \mathcal{N}(0, \frac{1}{2}) The shape of the tensor is defined by the variable argument :attr:`size`. Args: size (int...): a sequence of integers defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple. Keyword args: generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling out (Tensor, optional): the output tensor. dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. pin_memory (bool, optional): If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default: ``False``. Example:: >>> torch.randn(4) tensor([-2.1436, 0.9966, 2.3426, -0.6366]) >>> torch.randn(2, 3) tensor([[ 1.5954, 2.8929, -1.0923], [ 1.1719, -0.4709, -0.1996]]) .. _complex normal distribution: https://en.wikipedia.org/wiki/Complex_normal_distribution """ ... @overload def randn(*size: _int, names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" randn(*size, *, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False) -> Tensor Returns a tensor filled with random numbers from a normal distribution with mean `0` and variance `1` (also called the standard normal distribution). .. math:: \text{out}_{i} \sim \mathcal{N}(0, 1) For complex dtypes, the tensor is i.i.d. sampled from a `complex normal distribution`_ with zero mean and unit variance as .. math:: \text{out}_{i} \sim \mathcal{CN}(0, 1) This is equivalent to separately sampling the real :math:`(\operatorname{Re})` and imaginary :math:`(\operatorname{Im})` part of :math:`\text{out}_i` as .. math:: \operatorname{Re}(\text{out}_{i}) \sim \mathcal{N}(0, \frac{1}{2}),\quad \operatorname{Im}(\text{out}_{i}) \sim \mathcal{N}(0, \frac{1}{2}) The shape of the tensor is defined by the variable argument :attr:`size`. Args: size (int...): a sequence of integers defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple. Keyword args: generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling out (Tensor, optional): the output tensor. dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. pin_memory (bool, optional): If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default: ``False``. Example:: >>> torch.randn(4) tensor([-2.1436, 0.9966, 2.3426, -0.6366]) >>> torch.randn(2, 3) tensor([[ 1.5954, 2.8929, -1.0923], [ 1.1719, -0.4709, -0.1996]]) .. _complex normal distribution: https://en.wikipedia.org/wiki/Complex_normal_distribution """ ... def randn_like(input: Tensor, *, memory_format: Optional[memory_format] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" randn_like(input, *, dtype=None, layout=None, device=None, requires_grad=False, memory_format=torch.preserve_format) -> Tensor Returns a tensor with the same size as :attr:`input` that is filled with random numbers from a normal distribution with mean 0 and variance 1. Please refer to :func:`torch.randn` for the sampling process of complex dtypes. ``torch.randn_like(input)`` is equivalent to ``torch.randn(input.size(), dtype=input.dtype, layout=input.layout, device=input.device)``. Args: input (Tensor): the size of :attr:`input` will determine size of the output tensor. Keyword args: dtype (:class:`torch.dtype`, optional): the desired data type of returned Tensor. Default: if ``None``, defaults to the dtype of :attr:`input`. layout (:class:`torch.layout`, optional): the desired layout of returned tensor. Default: if ``None``, defaults to the layout of :attr:`input`. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, defaults to the device of :attr:`input`. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. memory_format (:class:`torch.memory_format`, optional): the desired memory format of returned Tensor. Default: ``torch.preserve_format``. """ ... @overload def randperm(n: Union[_int, SymInt], *, generator: Optional[Generator], out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" randperm(n, *, generator=None, out=None, dtype=torch.int64,layout=torch.strided, device=None, requires_grad=False, pin_memory=False) -> Tensor Returns a random permutation of integers from ``0`` to ``n - 1``. Args: n (int): the upper bound (exclusive) Keyword args: generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling out (Tensor, optional): the output tensor. dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: ``torch.int64``. layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. pin_memory (bool, optional): If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default: ``False``. Example:: >>> torch.randperm(4) tensor([2, 1, 0, 3]) """ ... @overload def randperm(n: Union[_int, SymInt], *, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" randperm(n, *, generator=None, out=None, dtype=torch.int64,layout=torch.strided, device=None, requires_grad=False, pin_memory=False) -> Tensor Returns a random permutation of integers from ``0`` to ``n - 1``. Args: n (int): the upper bound (exclusive) Keyword args: generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling out (Tensor, optional): the output tensor. dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: ``torch.int64``. layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. pin_memory (bool, optional): If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default: ``False``. Example:: >>> torch.randperm(4) tensor([2, 1, 0, 3]) """ ... def range(start: Number, end: Number, step: Number = 1, *, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, device: Optional[DeviceLikeType] = None, requires_grad: _bool = False, pin_memory: _bool = False) -> Tensor: r""" range(start=0, end, step=1, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor Returns a 1-D tensor of size :math:`\left\lfloor \frac{\text{end} - \text{start}}{\text{step}} \right\rfloor + 1` with values from :attr:`start` to :attr:`end` with step :attr:`step`. Step is the gap between two values in the tensor. .. math:: \text{out}_{i+1} = \text{out}_i + \text{step}. .. warning:: This function is deprecated and will be removed in a future release because its behavior is inconsistent with Python's range builtin. Instead, use :func:`torch.arange`, which produces values in [start, end). Args: start (float): the starting value for the set of points. Default: ``0``. end (float): the ending value for the set of points step (float): the gap between each pair of adjacent points. Default: ``1``. Keyword args: out (Tensor, optional): the output tensor. dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). If `dtype` is not given, infer the data type from the other input arguments. If any of `start`, `end`, or `stop` are floating-point, the `dtype` is inferred to be the default dtype, see :meth:`~torch.get_default_dtype`. Otherwise, the `dtype` is inferred to be `torch.int64`. layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. Example:: >>> torch.range(1, 4) tensor([ 1., 2., 3., 4.]) >>> torch.range(1, 4, 0.5) tensor([ 1.0000, 1.5000, 2.0000, 2.5000, 3.0000, 3.5000, 4.0000]) """ ... def ravel(input: Tensor) -> Tensor: r""" ravel(input) -> Tensor Return a contiguous flattened tensor. A copy is made only if needed. Args: input (Tensor): the input tensor. Example:: >>> t = torch.tensor([[[1, 2], ... [3, 4]], ... [[5, 6], ... [7, 8]]]) >>> torch.ravel(t) tensor([1, 2, 3, 4, 5, 6, 7, 8]) """ ... def real(input: Tensor) -> Tensor: r""" real(input) -> Tensor Returns a new tensor containing real values of the :attr:`self` tensor. The returned tensor and :attr:`self` share the same underlying storage. Args: input (Tensor): the input tensor. Example:: >>> x=torch.randn(4, dtype=torch.cfloat) >>> x tensor([(0.3100+0.3553j), (-0.5445-0.7896j), (-1.6492-0.0633j), (-0.0638-0.8119j)]) >>> x.real tensor([ 0.3100, -0.5445, -1.6492, -0.0638]) """ ... def reciprocal(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" reciprocal(input, *, out=None) -> Tensor Returns a new tensor with the reciprocal of the elements of :attr:`input` .. math:: \text{out}_{i} = \frac{1}{\text{input}_{i}} .. note:: Unlike NumPy's reciprocal, torch.reciprocal supports integral inputs. Integral inputs to reciprocal are automatically :ref:`promoted ` to the default scalar type. Args: input (Tensor): the input tensor. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.randn(4) >>> a tensor([-0.4595, -2.1219, -1.4314, 0.7298]) >>> torch.reciprocal(a) tensor([-2.1763, -0.4713, -0.6986, 1.3702]) """ ... def reciprocal_(input: Tensor) -> Tensor: ... def relu(input: Tensor) -> Tensor: ... def relu_(input: Tensor) -> Tensor: ... @overload def remainder(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" remainder(input, other, *, out=None) -> Tensor Computes `Python's modulus operation `_ entrywise. The result has the same sign as the divisor :attr:`other` and its absolute value is less than that of :attr:`other`. It may also be defined in terms of :func:`torch.div` as .. code:: python torch.remainder(a, b) == a - a.div(b, rounding_mode="floor") * b Supports :ref:`broadcasting to a common shape `, :ref:`type promotion `, and integer and float inputs. .. note:: Complex inputs are not supported. In some cases, it is not mathematically possible to satisfy the definition of a modulo operation with complex numbers. See :func:`torch.fmod` for how division by zero is handled. .. seealso:: :func:`torch.fmod` which implements C++'s `std::fmod `_. This one is defined in terms of division rounding towards zero. Args: input (Tensor or Scalar): the dividend other (Tensor or Scalar): the divisor Keyword args: out (Tensor, optional): the output tensor. Example:: >>> torch.remainder(torch.tensor([-3., -2, -1, 1, 2, 3]), 2) tensor([ 1., 0., 1., 1., 0., 1.]) >>> torch.remainder(torch.tensor([1, 2, 3, 4, 5]), -1.5) tensor([ -0.5000, -1.0000, 0.0000, -0.5000, -1.0000 ]) """ ... @overload def remainder(self: Union[Number, _complex], other: Tensor) -> Tensor: r""" remainder(input, other, *, out=None) -> Tensor Computes `Python's modulus operation `_ entrywise. The result has the same sign as the divisor :attr:`other` and its absolute value is less than that of :attr:`other`. It may also be defined in terms of :func:`torch.div` as .. code:: python torch.remainder(a, b) == a - a.div(b, rounding_mode="floor") * b Supports :ref:`broadcasting to a common shape `, :ref:`type promotion `, and integer and float inputs. .. note:: Complex inputs are not supported. In some cases, it is not mathematically possible to satisfy the definition of a modulo operation with complex numbers. See :func:`torch.fmod` for how division by zero is handled. .. seealso:: :func:`torch.fmod` which implements C++'s `std::fmod `_. This one is defined in terms of division rounding towards zero. Args: input (Tensor or Scalar): the dividend other (Tensor or Scalar): the divisor Keyword args: out (Tensor, optional): the output tensor. Example:: >>> torch.remainder(torch.tensor([-3., -2, -1, 1, 2, 3]), 2) tensor([ 1., 0., 1., 1., 0., 1.]) >>> torch.remainder(torch.tensor([1, 2, 3, 4, 5]), -1.5) tensor([ -0.5000, -1.0000, 0.0000, -0.5000, -1.0000 ]) """ ... @overload def remainder(input: Tensor, other: Union[Number, _complex], *, out: Optional[Tensor] = None) -> Tensor: r""" remainder(input, other, *, out=None) -> Tensor Computes `Python's modulus operation `_ entrywise. The result has the same sign as the divisor :attr:`other` and its absolute value is less than that of :attr:`other`. It may also be defined in terms of :func:`torch.div` as .. code:: python torch.remainder(a, b) == a - a.div(b, rounding_mode="floor") * b Supports :ref:`broadcasting to a common shape `, :ref:`type promotion `, and integer and float inputs. .. note:: Complex inputs are not supported. In some cases, it is not mathematically possible to satisfy the definition of a modulo operation with complex numbers. See :func:`torch.fmod` for how division by zero is handled. .. seealso:: :func:`torch.fmod` which implements C++'s `std::fmod `_. This one is defined in terms of division rounding towards zero. Args: input (Tensor or Scalar): the dividend other (Tensor or Scalar): the divisor Keyword args: out (Tensor, optional): the output tensor. Example:: >>> torch.remainder(torch.tensor([-3., -2, -1, 1, 2, 3]), 2) tensor([ 1., 0., 1., 1., 0., 1.]) >>> torch.remainder(torch.tensor([1, 2, 3, 4, 5]), -1.5) tensor([ -0.5000, -1.0000, 0.0000, -0.5000, -1.0000 ]) """ ... def renorm(input: Tensor, p: Union[Number, _complex], dim: _int, maxnorm: Union[Number, _complex], *, out: Optional[Tensor] = None) -> Tensor: r""" renorm(input, p, dim, maxnorm, *, out=None) -> Tensor Returns a tensor where each sub-tensor of :attr:`input` along dimension :attr:`dim` is normalized such that the `p`-norm of the sub-tensor is lower than the value :attr:`maxnorm` .. note:: If the norm of a row is lower than `maxnorm`, the row is unchanged Args: input (Tensor): the input tensor. p (float): the power for the norm computation dim (int): the dimension to slice over to get the sub-tensors maxnorm (float): the maximum norm to keep each sub-tensor under Keyword args: out (Tensor, optional): the output tensor. Example:: >>> x = torch.ones(3, 3) >>> x[1].fill_(2) tensor([ 2., 2., 2.]) >>> x[2].fill_(3) tensor([ 3., 3., 3.]) >>> x tensor([[ 1., 1., 1.], [ 2., 2., 2.], [ 3., 3., 3.]]) >>> torch.renorm(x, 1, 0, 5) tensor([[ 1.0000, 1.0000, 1.0000], [ 1.6667, 1.6667, 1.6667], [ 1.6667, 1.6667, 1.6667]]) """ ... @overload def repeat_interleave(input: Tensor, repeats: Tensor, dim: Optional[_int] = None, *, output_size: Optional[Union[_int, SymInt]] = None) -> Tensor: r""" repeat_interleave(input, repeats, dim=None, *, output_size=None) -> Tensor Repeat elements of a tensor. .. warning:: This is different from :meth:`torch.Tensor.repeat` but similar to ``numpy.repeat``. Args: input (Tensor): the input tensor. repeats (Tensor or int): The number of repetitions for each element. repeats is broadcasted to fit the shape of the given axis. dim (int, optional): The dimension along which to repeat values. By default, use the flattened input array, and return a flat output array. Keyword args: output_size (int, optional): Total output size for the given axis ( e.g. sum of repeats). If given, it will avoid stream synchronization needed to calculate output shape of the tensor. Returns: Tensor: Repeated tensor which has the same shape as input, except along the given axis. Example:: >>> x = torch.tensor([1, 2, 3]) >>> x.repeat_interleave(2) tensor([1, 1, 2, 2, 3, 3]) >>> y = torch.tensor([[1, 2], [3, 4]]) >>> torch.repeat_interleave(y, 2) tensor([1, 1, 2, 2, 3, 3, 4, 4]) >>> torch.repeat_interleave(y, 3, dim=1) tensor([[1, 1, 1, 2, 2, 2], [3, 3, 3, 4, 4, 4]]) >>> torch.repeat_interleave(y, torch.tensor([1, 2]), dim=0) tensor([[1, 2], [3, 4], [3, 4]]) >>> torch.repeat_interleave(y, torch.tensor([1, 2]), dim=0, output_size=3) tensor([[1, 2], [3, 4], [3, 4]]) If the `repeats` is `tensor([n1, n2, n3, ...])`, then the output will be `tensor([0, 0, ..., 1, 1, ..., 2, 2, ..., ...])` where `0` appears `n1` times, `1` appears `n2` times, `2` appears `n3` times, etc. .. function:: repeat_interleave(repeats, *) -> Tensor :noindex: Repeats 0 repeats[0] times, 1 repeats[1] times, 2 repeats[2] times, etc. Args: repeats (Tensor): The number of repetitions for each element. Returns: Tensor: Repeated tensor of size `sum(repeats)`. Example:: >>> torch.repeat_interleave(torch.tensor([1, 2, 3])) tensor([0, 1, 1, 2, 2, 2]) """ ... @overload def repeat_interleave(repeats: Tensor, *, output_size: Optional[Union[_int, SymInt]] = None) -> Tensor: r""" repeat_interleave(input, repeats, dim=None, *, output_size=None) -> Tensor Repeat elements of a tensor. .. warning:: This is different from :meth:`torch.Tensor.repeat` but similar to ``numpy.repeat``. Args: input (Tensor): the input tensor. repeats (Tensor or int): The number of repetitions for each element. repeats is broadcasted to fit the shape of the given axis. dim (int, optional): The dimension along which to repeat values. By default, use the flattened input array, and return a flat output array. Keyword args: output_size (int, optional): Total output size for the given axis ( e.g. sum of repeats). If given, it will avoid stream synchronization needed to calculate output shape of the tensor. Returns: Tensor: Repeated tensor which has the same shape as input, except along the given axis. Example:: >>> x = torch.tensor([1, 2, 3]) >>> x.repeat_interleave(2) tensor([1, 1, 2, 2, 3, 3]) >>> y = torch.tensor([[1, 2], [3, 4]]) >>> torch.repeat_interleave(y, 2) tensor([1, 1, 2, 2, 3, 3, 4, 4]) >>> torch.repeat_interleave(y, 3, dim=1) tensor([[1, 1, 1, 2, 2, 2], [3, 3, 3, 4, 4, 4]]) >>> torch.repeat_interleave(y, torch.tensor([1, 2]), dim=0) tensor([[1, 2], [3, 4], [3, 4]]) >>> torch.repeat_interleave(y, torch.tensor([1, 2]), dim=0, output_size=3) tensor([[1, 2], [3, 4], [3, 4]]) If the `repeats` is `tensor([n1, n2, n3, ...])`, then the output will be `tensor([0, 0, ..., 1, 1, ..., 2, 2, ..., ...])` where `0` appears `n1` times, `1` appears `n2` times, `2` appears `n3` times, etc. .. function:: repeat_interleave(repeats, *) -> Tensor :noindex: Repeats 0 repeats[0] times, 1 repeats[1] times, 2 repeats[2] times, etc. Args: repeats (Tensor): The number of repetitions for each element. Returns: Tensor: Repeated tensor of size `sum(repeats)`. Example:: >>> torch.repeat_interleave(torch.tensor([1, 2, 3])) tensor([0, 1, 1, 2, 2, 2]) """ ... @overload def repeat_interleave(input: Tensor, repeats: Union[_int, SymInt], dim: Optional[_int] = None, *, output_size: Optional[Union[_int, SymInt]] = None) -> Tensor: r""" repeat_interleave(input, repeats, dim=None, *, output_size=None) -> Tensor Repeat elements of a tensor. .. warning:: This is different from :meth:`torch.Tensor.repeat` but similar to ``numpy.repeat``. Args: input (Tensor): the input tensor. repeats (Tensor or int): The number of repetitions for each element. repeats is broadcasted to fit the shape of the given axis. dim (int, optional): The dimension along which to repeat values. By default, use the flattened input array, and return a flat output array. Keyword args: output_size (int, optional): Total output size for the given axis ( e.g. sum of repeats). If given, it will avoid stream synchronization needed to calculate output shape of the tensor. Returns: Tensor: Repeated tensor which has the same shape as input, except along the given axis. Example:: >>> x = torch.tensor([1, 2, 3]) >>> x.repeat_interleave(2) tensor([1, 1, 2, 2, 3, 3]) >>> y = torch.tensor([[1, 2], [3, 4]]) >>> torch.repeat_interleave(y, 2) tensor([1, 1, 2, 2, 3, 3, 4, 4]) >>> torch.repeat_interleave(y, 3, dim=1) tensor([[1, 1, 1, 2, 2, 2], [3, 3, 3, 4, 4, 4]]) >>> torch.repeat_interleave(y, torch.tensor([1, 2]), dim=0) tensor([[1, 2], [3, 4], [3, 4]]) >>> torch.repeat_interleave(y, torch.tensor([1, 2]), dim=0, output_size=3) tensor([[1, 2], [3, 4], [3, 4]]) If the `repeats` is `tensor([n1, n2, n3, ...])`, then the output will be `tensor([0, 0, ..., 1, 1, ..., 2, 2, ..., ...])` where `0` appears `n1` times, `1` appears `n2` times, `2` appears `n3` times, etc. .. function:: repeat_interleave(repeats, *) -> Tensor :noindex: Repeats 0 repeats[0] times, 1 repeats[1] times, 2 repeats[2] times, etc. Args: repeats (Tensor): The number of repetitions for each element. Returns: Tensor: Repeated tensor of size `sum(repeats)`. Example:: >>> torch.repeat_interleave(torch.tensor([1, 2, 3])) tensor([0, 1, 1, 2, 2, 2]) """ ... def reshape(input: Tensor, shape: Sequence[Union[_int, SymInt]]) -> Tensor: r""" reshape(input, shape) -> Tensor Returns a tensor with the same data and number of elements as :attr:`input`, but with the specified shape. When possible, the returned tensor will be a view of :attr:`input`. Otherwise, it will be a copy. Contiguous inputs and inputs with compatible strides can be reshaped without copying, but you should not depend on the copying vs. viewing behavior. See :meth:`torch.Tensor.view` on when it is possible to return a view. A single dimension may be -1, in which case it's inferred from the remaining dimensions and the number of elements in :attr:`input`. Args: input (Tensor): the tensor to be reshaped shape (tuple of int): the new shape Example:: >>> a = torch.arange(4.) >>> torch.reshape(a, (2, 2)) tensor([[ 0., 1.], [ 2., 3.]]) >>> b = torch.tensor([[0, 1], [2, 3]]) >>> torch.reshape(b, (-1,)) tensor([ 0, 1, 2, 3]) """ ... def resize_as_(input: Tensor, the_template: Tensor, *, memory_format: Optional[memory_format] = None) -> Tensor: ... def resize_as_sparse_(input: Tensor, the_template: Tensor) -> Tensor: ... def resolve_conj(input: Tensor) -> Tensor: r""" resolve_conj(input) -> Tensor Returns a new tensor with materialized conjugation if :attr:`input`'s conjugate bit is set to `True`, else returns :attr:`input`. The output tensor will always have its conjugate bit set to `False`. Args: input (Tensor): the input tensor. Example:: >>> x = torch.tensor([-1 + 1j, -2 + 2j, 3 - 3j]) >>> y = x.conj() >>> y.is_conj() True >>> z = y.resolve_conj() >>> z tensor([-1 - 1j, -2 - 2j, 3 + 3j]) >>> z.is_conj() False """ ... def resolve_neg(input: Tensor) -> Tensor: r""" resolve_neg(input) -> Tensor Returns a new tensor with materialized negation if :attr:`input`'s negative bit is set to `True`, else returns :attr:`input`. The output tensor will always have its negative bit set to `False`. Args: input (Tensor): the input tensor. Example:: >>> x = torch.tensor([-1 + 1j, -2 + 2j, 3 - 3j]) >>> y = x.conj() >>> z = y.imag >>> z.is_neg() True >>> out = z.resolve_neg() >>> out tensor([-1., -2., 3.]) >>> out.is_neg() False """ ... @overload def result_type(tensor: Tensor, other: Tensor) -> _dtype: r""" result_type(tensor1, tensor2) -> dtype Returns the :class:`torch.dtype` that would result from performing an arithmetic operation on the provided input tensors. See type promotion :ref:`documentation ` for more information on the type promotion logic. Args: tensor1 (Tensor or Number): an input tensor or number tensor2 (Tensor or Number): an input tensor or number Example:: >>> torch.result_type(torch.tensor([1, 2], dtype=torch.int), 1.0) torch.float32 >>> torch.result_type(torch.tensor([1, 2], dtype=torch.uint8), torch.tensor(1)) torch.uint8 """ ... @overload def result_type(scalar: Union[Number, _complex], tensor: Tensor) -> _dtype: r""" result_type(tensor1, tensor2) -> dtype Returns the :class:`torch.dtype` that would result from performing an arithmetic operation on the provided input tensors. See type promotion :ref:`documentation ` for more information on the type promotion logic. Args: tensor1 (Tensor or Number): an input tensor or number tensor2 (Tensor or Number): an input tensor or number Example:: >>> torch.result_type(torch.tensor([1, 2], dtype=torch.int), 1.0) torch.float32 >>> torch.result_type(torch.tensor([1, 2], dtype=torch.uint8), torch.tensor(1)) torch.uint8 """ ... @overload def result_type(tensor: Tensor, other: Union[Number, _complex]) -> _dtype: r""" result_type(tensor1, tensor2) -> dtype Returns the :class:`torch.dtype` that would result from performing an arithmetic operation on the provided input tensors. See type promotion :ref:`documentation ` for more information on the type promotion logic. Args: tensor1 (Tensor or Number): an input tensor or number tensor2 (Tensor or Number): an input tensor or number Example:: >>> torch.result_type(torch.tensor([1, 2], dtype=torch.int), 1.0) torch.float32 >>> torch.result_type(torch.tensor([1, 2], dtype=torch.uint8), torch.tensor(1)) torch.uint8 """ ... @overload def result_type(scalar1: Union[Number, _complex], scalar2: Union[Number, _complex]) -> _dtype: r""" result_type(tensor1, tensor2) -> dtype Returns the :class:`torch.dtype` that would result from performing an arithmetic operation on the provided input tensors. See type promotion :ref:`documentation ` for more information on the type promotion logic. Args: tensor1 (Tensor or Number): an input tensor or number tensor2 (Tensor or Number): an input tensor or number Example:: >>> torch.result_type(torch.tensor([1, 2], dtype=torch.int), 1.0) torch.float32 >>> torch.result_type(torch.tensor([1, 2], dtype=torch.uint8), torch.tensor(1)) torch.uint8 """ ... @overload def rnn_relu(data: Tensor, batch_sizes: Tensor, hx: Tensor, params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: _bool, num_layers: _int, dropout: _float, train: _bool, bidirectional: _bool) -> Tuple[Tensor, Tensor]: ... @overload def rnn_relu(input: Tensor, hx: Tensor, params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: _bool, num_layers: _int, dropout: _float, train: _bool, bidirectional: _bool, batch_first: _bool) -> Tuple[Tensor, Tensor]: ... def rnn_relu_cell(input: Tensor, hx: Tensor, w_ih: Tensor, w_hh: Tensor, b_ih: Optional[Tensor] = None, b_hh: Optional[Tensor] = None) -> Tensor: ... @overload def rnn_tanh(data: Tensor, batch_sizes: Tensor, hx: Tensor, params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: _bool, num_layers: _int, dropout: _float, train: _bool, bidirectional: _bool) -> Tuple[Tensor, Tensor]: ... @overload def rnn_tanh(input: Tensor, hx: Tensor, params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: _bool, num_layers: _int, dropout: _float, train: _bool, bidirectional: _bool, batch_first: _bool) -> Tuple[Tensor, Tensor]: ... def rnn_tanh_cell(input: Tensor, hx: Tensor, w_ih: Tensor, w_hh: Tensor, b_ih: Optional[Tensor] = None, b_hh: Optional[Tensor] = None) -> Tensor: ... def roll(input: Tensor, shifts: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]], dims: Union[_int, _size] = ()) -> Tensor: r""" roll(input, shifts, dims=None) -> Tensor Roll the tensor :attr:`input` along the given dimension(s). Elements that are shifted beyond the last position are re-introduced at the first position. If :attr:`dims` is `None`, the tensor will be flattened before rolling and then restored to the original shape. Args: input (Tensor): the input tensor. shifts (int or tuple of ints): The number of places by which the elements of the tensor are shifted. If shifts is a tuple, dims must be a tuple of the same size, and each dimension will be rolled by the corresponding value dims (int or tuple of ints): Axis along which to roll Example:: >>> x = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8]).view(4, 2) >>> x tensor([[1, 2], [3, 4], [5, 6], [7, 8]]) >>> torch.roll(x, 1) tensor([[8, 1], [2, 3], [4, 5], [6, 7]]) >>> torch.roll(x, 1, 0) tensor([[7, 8], [1, 2], [3, 4], [5, 6]]) >>> torch.roll(x, -1, 0) tensor([[3, 4], [5, 6], [7, 8], [1, 2]]) >>> torch.roll(x, shifts=(2, 1), dims=(0, 1)) tensor([[6, 5], [8, 7], [2, 1], [4, 3]]) """ ... def rot90(input: Tensor, k: _int = 1, dims: _size = (0,1)) -> Tensor: r""" rot90(input, k=1, dims=[0,1]) -> Tensor Rotate an n-D tensor by 90 degrees in the plane specified by dims axis. Rotation direction is from the first towards the second axis if k > 0, and from the second towards the first for k < 0. Args: input (Tensor): the input tensor. k (int): number of times to rotate. Default value is 1 dims (a list or tuple): axis to rotate. Default value is [0, 1] Example:: >>> x = torch.arange(4).view(2, 2) >>> x tensor([[0, 1], [2, 3]]) >>> torch.rot90(x, 1, [0, 1]) tensor([[1, 3], [0, 2]]) >>> x = torch.arange(8).view(2, 2, 2) >>> x tensor([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]) >>> torch.rot90(x, 1, [1, 2]) tensor([[[1, 3], [0, 2]], [[5, 7], [4, 6]]]) """ ... @overload def round(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" round(input, *, decimals=0, out=None) -> Tensor Rounds elements of :attr:`input` to the nearest integer. For integer inputs, follows the array-api convention of returning a copy of the input tensor. The return type of output is same as that of input's dtype. .. note:: This function implements the "round half to even" to break ties when a number is equidistant from two integers (e.g. `round(2.5)` is 2). When the :attr:\`decimals\` argument is specified the algorithm used is similar to NumPy's `around`. This algorithm is fast but inexact and it can easily overflow for low precision dtypes. Eg. `round(tensor([10000], dtype=torch.float16), decimals=3)` is `inf`. .. seealso:: :func:`torch.ceil`, which rounds up. :func:`torch.floor`, which rounds down. :func:`torch.trunc`, which rounds towards zero. Args: input (Tensor): the input tensor. decimals (int): Number of decimal places to round to (default: 0). If decimals is negative, it specifies the number of positions to the left of the decimal point. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> torch.round(torch.tensor((4.7, -2.3, 9.1, -7.7))) tensor([ 5., -2., 9., -8.]) >>> # Values equidistant from two integers are rounded towards the >>> # the nearest even value (zero is treated as even) >>> torch.round(torch.tensor([-0.5, 0.5, 1.5, 2.5])) tensor([-0., 0., 2., 2.]) >>> # A positive decimals argument rounds to the to that decimal place >>> torch.round(torch.tensor([0.1234567]), decimals=3) tensor([0.1230]) >>> # A negative decimals argument rounds to the left of the decimal >>> torch.round(torch.tensor([1200.1234567]), decimals=-3) tensor([1000.]) """ ... @overload def round(input: Tensor, *, decimals: _int, out: Optional[Tensor] = None) -> Tensor: r""" round(input, *, decimals=0, out=None) -> Tensor Rounds elements of :attr:`input` to the nearest integer. For integer inputs, follows the array-api convention of returning a copy of the input tensor. The return type of output is same as that of input's dtype. .. note:: This function implements the "round half to even" to break ties when a number is equidistant from two integers (e.g. `round(2.5)` is 2). When the :attr:\`decimals\` argument is specified the algorithm used is similar to NumPy's `around`. This algorithm is fast but inexact and it can easily overflow for low precision dtypes. Eg. `round(tensor([10000], dtype=torch.float16), decimals=3)` is `inf`. .. seealso:: :func:`torch.ceil`, which rounds up. :func:`torch.floor`, which rounds down. :func:`torch.trunc`, which rounds towards zero. Args: input (Tensor): the input tensor. decimals (int): Number of decimal places to round to (default: 0). If decimals is negative, it specifies the number of positions to the left of the decimal point. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> torch.round(torch.tensor((4.7, -2.3, 9.1, -7.7))) tensor([ 5., -2., 9., -8.]) >>> # Values equidistant from two integers are rounded towards the >>> # the nearest even value (zero is treated as even) >>> torch.round(torch.tensor([-0.5, 0.5, 1.5, 2.5])) tensor([-0., 0., 2., 2.]) >>> # A positive decimals argument rounds to the to that decimal place >>> torch.round(torch.tensor([0.1234567]), decimals=3) tensor([0.1230]) >>> # A negative decimals argument rounds to the left of the decimal >>> torch.round(torch.tensor([1200.1234567]), decimals=-3) tensor([1000.]) """ ... @overload def round_(input: Tensor) -> Tensor: ... @overload def round_(input: Tensor, *, decimals: _int) -> Tensor: ... def row_indices_copy(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: ... def row_stack(tensors: Union[Tuple[Tensor, ...], List[Tensor]], *, out: Optional[Tensor] = None) -> Tensor: r""" row_stack(tensors, *, out=None) -> Tensor Alias of :func:`torch.vstack`. """ ... def rrelu(input: Tensor, lower: Union[Number, _complex] = 0.125, upper: Union[Number, _complex] = 0.3333333333333333, training: _bool = False, generator: Optional[Generator] = None) -> Tensor: ... def rrelu_(input: Tensor, lower: Union[Number, _complex] = 0.125, upper: Union[Number, _complex] = 0.3333333333333333, training: _bool = False, generator: Optional[Generator] = None) -> Tensor: ... def rsqrt(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" rsqrt(input, *, out=None) -> Tensor Returns a new tensor with the reciprocal of the square-root of each of the elements of :attr:`input`. .. math:: \text{out}_{i} = \frac{1}{\sqrt{\text{input}_{i}}} Args: input (Tensor): the input tensor. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.randn(4) >>> a tensor([-0.0370, 0.2970, 1.5420, -0.9105]) >>> torch.rsqrt(a) tensor([ nan, 1.8351, 0.8053, nan]) """ ... def rsqrt_(input: Tensor) -> Tensor: ... @overload def rsub(input: Tensor, other: Tensor, *, alpha: Union[Number, _complex] = 1) -> Tensor: ... @overload def rsub(input: Tensor, other: Union[Number, _complex], alpha: Union[Number, _complex] = 1) -> Tensor: ... def saddmm(input: Tensor, mat1: Tensor, mat2: Tensor, *, beta: Number = 1, alpha: Number = 1, out: Optional[Tensor] = None) -> Tensor: ... def scalar_tensor(s: Union[Number, _complex], *, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: ... @overload def scatter(input: Tensor, dim: _int, index: Tensor, src: Tensor, *, reduce: str, out: Optional[Tensor] = None) -> Tensor: r""" scatter(input, dim, index, src) -> Tensor Out-of-place version of :meth:`torch.Tensor.scatter_` """ ... @overload def scatter(input: Tensor, dim: _int, index: Tensor, src: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" scatter(input, dim, index, src) -> Tensor Out-of-place version of :meth:`torch.Tensor.scatter_` """ ... @overload def scatter(input: Tensor, dim: _int, index: Tensor, value: Union[Number, _complex], *, reduce: str, out: Optional[Tensor] = None) -> Tensor: r""" scatter(input, dim, index, src) -> Tensor Out-of-place version of :meth:`torch.Tensor.scatter_` """ ... @overload def scatter(input: Tensor, dim: Union[str, ellipsis, None], index: Tensor, src: Tensor) -> Tensor: r""" scatter(input, dim, index, src) -> Tensor Out-of-place version of :meth:`torch.Tensor.scatter_` """ ... @overload def scatter(input: Tensor, dim: _int, index: Tensor, value: Union[Number, _complex], *, out: Optional[Tensor] = None) -> Tensor: r""" scatter(input, dim, index, src) -> Tensor Out-of-place version of :meth:`torch.Tensor.scatter_` """ ... @overload def scatter(input: Tensor, dim: Union[str, ellipsis, None], index: Tensor, value: Union[Number, _complex]) -> Tensor: r""" scatter(input, dim, index, src) -> Tensor Out-of-place version of :meth:`torch.Tensor.scatter_` """ ... @overload def scatter_add(input: Tensor, dim: _int, index: Tensor, src: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" scatter_add(input, dim, index, src) -> Tensor Out-of-place version of :meth:`torch.Tensor.scatter_add_` """ ... @overload def scatter_add(input: Tensor, dim: Union[str, ellipsis, None], index: Tensor, src: Tensor) -> Tensor: r""" scatter_add(input, dim, index, src) -> Tensor Out-of-place version of :meth:`torch.Tensor.scatter_add_` """ ... def scatter_reduce(input: Tensor, dim: _int, index: Tensor, src: Tensor, reduce: str, *, include_self: _bool = True, out: Optional[Tensor] = None) -> Tensor: r""" scatter_reduce(input, dim, index, src, reduce, *, include_self=True) -> Tensor Out-of-place version of :meth:`torch.Tensor.scatter_reduce_` """ ... @overload def searchsorted(sorted_sequence: Tensor, input: Tensor, *, out_int32: _bool = False, right: _bool = False, side: Optional[str] = None, sorter: Optional[Tensor] = None, out: Optional[Tensor] = None) -> Tensor: r""" searchsorted(sorted_sequence, values, *, out_int32=False, right=False, side=None, out=None, sorter=None) -> Tensor Find the indices from the *innermost* dimension of :attr:`sorted_sequence` such that, if the corresponding values in :attr:`values` were inserted before the indices, when sorted, the order of the corresponding *innermost* dimension within :attr:`sorted_sequence` would be preserved. Return a new tensor with the same size as :attr:`values`. More formally, the returned index satisfies the following rules: .. list-table:: :widths: 12 10 78 :header-rows: 1 * - :attr:`sorted_sequence` - :attr:`right` - *returned index satisfies* * - 1-D - False - ``sorted_sequence[i-1] < values[m][n]...[l][x] <= sorted_sequence[i]`` * - 1-D - True - ``sorted_sequence[i-1] <= values[m][n]...[l][x] < sorted_sequence[i]`` * - N-D - False - ``sorted_sequence[m][n]...[l][i-1] < values[m][n]...[l][x] <= sorted_sequence[m][n]...[l][i]`` * - N-D - True - ``sorted_sequence[m][n]...[l][i-1] <= values[m][n]...[l][x] < sorted_sequence[m][n]...[l][i]`` Args: sorted_sequence (Tensor): N-D or 1-D tensor, containing monotonically increasing sequence on the *innermost* dimension unless :attr:`sorter` is provided, in which case the sequence does not need to be sorted values (Tensor or Scalar): N-D tensor or a Scalar containing the search value(s). Keyword args: out_int32 (bool, optional): indicate the output data type. torch.int32 if True, torch.int64 otherwise. Default value is False, i.e. default output data type is torch.int64. right (bool, optional): if False, return the first suitable location that is found. If True, return the last such index. If no suitable index found, return 0 for non-numerical value (eg. nan, inf) or the size of *innermost* dimension within :attr:`sorted_sequence` (one pass the last index of the *innermost* dimension). In other words, if False, gets the lower bound index for each value in :attr:`values` on the corresponding *innermost* dimension of the :attr:`sorted_sequence`. If True, gets the upper bound index instead. Default value is False. :attr:`side` does the same and is preferred. It will error if :attr:`side` is set to "left" while this is True. side (str, optional): the same as :attr:`right` but preferred. "left" corresponds to False for :attr:`right` and "right" corresponds to True for :attr:`right`. It will error if this is set to "left" while :attr:`right` is True. Default value is None. out (Tensor, optional): the output tensor, must be the same size as :attr:`values` if provided. sorter (LongTensor, optional): if provided, a tensor matching the shape of the unsorted :attr:`sorted_sequence` containing a sequence of indices that sort it in the ascending order on the innermost dimension Example:: >>> sorted_sequence = torch.tensor([[1, 3, 5, 7, 9], [2, 4, 6, 8, 10]]) >>> sorted_sequence tensor([[ 1, 3, 5, 7, 9], [ 2, 4, 6, 8, 10]]) >>> values = torch.tensor([[3, 6, 9], [3, 6, 9]]) >>> values tensor([[3, 6, 9], [3, 6, 9]]) >>> torch.searchsorted(sorted_sequence, values) tensor([[1, 3, 4], [1, 2, 4]]) >>> torch.searchsorted(sorted_sequence, values, side='right') tensor([[2, 3, 5], [1, 3, 4]]) >>> sorted_sequence_1d = torch.tensor([1, 3, 5, 7, 9]) >>> sorted_sequence_1d tensor([1, 3, 5, 7, 9]) >>> torch.searchsorted(sorted_sequence_1d, values) tensor([[1, 3, 4], [1, 3, 4]]) """ ... @overload def searchsorted(sorted_sequence: Tensor, self: Union[Number, _complex], *, out_int32: _bool = False, right: _bool = False, side: Optional[str] = None, sorter: Optional[Tensor] = None, out: Optional[Tensor] = None) -> Tensor: r""" searchsorted(sorted_sequence, values, *, out_int32=False, right=False, side=None, out=None, sorter=None) -> Tensor Find the indices from the *innermost* dimension of :attr:`sorted_sequence` such that, if the corresponding values in :attr:`values` were inserted before the indices, when sorted, the order of the corresponding *innermost* dimension within :attr:`sorted_sequence` would be preserved. Return a new tensor with the same size as :attr:`values`. More formally, the returned index satisfies the following rules: .. list-table:: :widths: 12 10 78 :header-rows: 1 * - :attr:`sorted_sequence` - :attr:`right` - *returned index satisfies* * - 1-D - False - ``sorted_sequence[i-1] < values[m][n]...[l][x] <= sorted_sequence[i]`` * - 1-D - True - ``sorted_sequence[i-1] <= values[m][n]...[l][x] < sorted_sequence[i]`` * - N-D - False - ``sorted_sequence[m][n]...[l][i-1] < values[m][n]...[l][x] <= sorted_sequence[m][n]...[l][i]`` * - N-D - True - ``sorted_sequence[m][n]...[l][i-1] <= values[m][n]...[l][x] < sorted_sequence[m][n]...[l][i]`` Args: sorted_sequence (Tensor): N-D or 1-D tensor, containing monotonically increasing sequence on the *innermost* dimension unless :attr:`sorter` is provided, in which case the sequence does not need to be sorted values (Tensor or Scalar): N-D tensor or a Scalar containing the search value(s). Keyword args: out_int32 (bool, optional): indicate the output data type. torch.int32 if True, torch.int64 otherwise. Default value is False, i.e. default output data type is torch.int64. right (bool, optional): if False, return the first suitable location that is found. If True, return the last such index. If no suitable index found, return 0 for non-numerical value (eg. nan, inf) or the size of *innermost* dimension within :attr:`sorted_sequence` (one pass the last index of the *innermost* dimension). In other words, if False, gets the lower bound index for each value in :attr:`values` on the corresponding *innermost* dimension of the :attr:`sorted_sequence`. If True, gets the upper bound index instead. Default value is False. :attr:`side` does the same and is preferred. It will error if :attr:`side` is set to "left" while this is True. side (str, optional): the same as :attr:`right` but preferred. "left" corresponds to False for :attr:`right` and "right" corresponds to True for :attr:`right`. It will error if this is set to "left" while :attr:`right` is True. Default value is None. out (Tensor, optional): the output tensor, must be the same size as :attr:`values` if provided. sorter (LongTensor, optional): if provided, a tensor matching the shape of the unsorted :attr:`sorted_sequence` containing a sequence of indices that sort it in the ascending order on the innermost dimension Example:: >>> sorted_sequence = torch.tensor([[1, 3, 5, 7, 9], [2, 4, 6, 8, 10]]) >>> sorted_sequence tensor([[ 1, 3, 5, 7, 9], [ 2, 4, 6, 8, 10]]) >>> values = torch.tensor([[3, 6, 9], [3, 6, 9]]) >>> values tensor([[3, 6, 9], [3, 6, 9]]) >>> torch.searchsorted(sorted_sequence, values) tensor([[1, 3, 4], [1, 2, 4]]) >>> torch.searchsorted(sorted_sequence, values, side='right') tensor([[2, 3, 5], [1, 3, 4]]) >>> sorted_sequence_1d = torch.tensor([1, 3, 5, 7, 9]) >>> sorted_sequence_1d tensor([1, 3, 5, 7, 9]) >>> torch.searchsorted(sorted_sequence_1d, values) tensor([[1, 3, 4], [1, 3, 4]]) """ ... def segment_reduce(data: Tensor, reduce: str, *, lengths: Optional[Tensor] = None, indices: Optional[Tensor] = None, offsets: Optional[Tensor] = None, axis: _int = 0, unsafe: _bool = False, initial: Optional[Union[Number, _complex]] = None) -> Tensor: ... @overload def select(input: Tensor, dim: _int, index: Union[_int, SymInt]) -> Tensor: r""" select(input, dim, index) -> Tensor Slices the :attr:`input` tensor along the selected dimension at the given index. This function returns a view of the original tensor with the given dimension removed. .. note:: If :attr:`input` is a sparse tensor and returning a view of the tensor is not possible, a RuntimeError exception is raised. In this is the case, consider using :func:`torch.select_copy` function. Args: input (Tensor): the input tensor. dim (int): the dimension to slice index (int): the index to select with .. note:: :meth:`select` is equivalent to slicing. For example, ``tensor.select(0, index)`` is equivalent to ``tensor[index]`` and ``tensor.select(2, index)`` is equivalent to ``tensor[:,:,index]``. """ ... @overload def select(input: Tensor, dim: Union[str, ellipsis, None], index: _int) -> Tensor: r""" select(input, dim, index) -> Tensor Slices the :attr:`input` tensor along the selected dimension at the given index. This function returns a view of the original tensor with the given dimension removed. .. note:: If :attr:`input` is a sparse tensor and returning a view of the tensor is not possible, a RuntimeError exception is raised. In this is the case, consider using :func:`torch.select_copy` function. Args: input (Tensor): the input tensor. dim (int): the dimension to slice index (int): the index to select with .. note:: :meth:`select` is equivalent to slicing. For example, ``tensor.select(0, index)`` is equivalent to ``tensor[index]`` and ``tensor.select(2, index)`` is equivalent to ``tensor[:,:,index]``. """ ... def select_copy(input: Tensor, dim: _int, index: Union[_int, SymInt], *, out: Optional[Tensor] = None) -> Tensor: r""" Performs the same operation as :func:`torch.select`, but all output tensors are freshly created instead of aliasing the input. """ ... def select_scatter(input: Tensor, src: Tensor, dim: _int, index: Union[_int, SymInt]) -> Tensor: r""" select_scatter(input, src, dim, index) -> Tensor Embeds the values of the :attr:`src` tensor into :attr:`input` at the given index. This function returns a tensor with fresh storage; it does not create a view. Args: input (Tensor): the input tensor. src (Tensor): The tensor to embed into :attr:`input` dim (int): the dimension to insert the slice into. index (int): the index to select with .. note:: :attr:`src` must be of the proper size in order to be embedded into :attr:`input`. Specifically, it should have the same shape as ``torch.select(input, dim, index)`` Example:: >>> a = torch.zeros(2, 2) >>> b = torch.ones(2) >>> a.select_scatter(b, 0, 0) tensor([[1., 1.], [0., 0.]]) """ ... def selu(input: Tensor) -> Tensor: ... def selu_(input: Tensor) -> Tensor: ... def set_flush_denormal(mode: _bool) -> _bool: r""" set_flush_denormal(mode) -> bool Disables denormal floating numbers on CPU. Returns ``True`` if your system supports flushing denormal numbers and it successfully configures flush denormal mode. :meth:`~torch.set_flush_denormal` is supported on x86 architectures supporting SSE3 and AArch64 architecture. Args: mode (bool): Controls whether to enable flush denormal mode or not Example:: >>> torch.set_flush_denormal(True) True >>> torch.tensor([1e-323], dtype=torch.float64) tensor([ 0.], dtype=torch.float64) >>> torch.set_flush_denormal(False) True >>> torch.tensor([1e-323], dtype=torch.float64) tensor(9.88131e-324 * [ 1.0000], dtype=torch.float64) """ ... def set_num_interop_threads(num: _int) -> None: r""" set_num_interop_threads(int) Sets the number of threads used for interop parallelism (e.g. in JIT interpreter) on CPU. .. warning:: Can only be called once and before any inter-op parallel work is started (e.g. JIT execution). """ ... def set_num_threads(num: _int) -> None: r""" set_num_threads(int) Sets the number of threads used for intraop parallelism on CPU. .. warning:: To ensure that the correct number of threads is used, set_num_threads must be called before running eager, JIT or autograd code. """ ... def sgn(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" sgn(input, *, out=None) -> Tensor This function is an extension of torch.sign() to complex tensors. It computes a new tensor whose elements have the same angles as the corresponding elements of :attr:`input` and absolute values (i.e. magnitudes) of one for complex tensors and is equivalent to torch.sign() for non-complex tensors. .. math:: \text{out}_{i} = \begin{cases} 0 & |\text{{input}}_i| == 0 \\ \frac{{\text{{input}}_i}}{|{\text{{input}}_i}|} & \text{otherwise} \end{cases} Args: input (Tensor): the input tensor. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> t = torch.tensor([3+4j, 7-24j, 0, 1+2j]) >>> t.sgn() tensor([0.6000+0.8000j, 0.2800-0.9600j, 0.0000+0.0000j, 0.4472+0.8944j]) """ ... def sigmoid(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" sigmoid(input, *, out=None) -> Tensor Alias for :func:`torch.special.expit`. """ ... def sigmoid_(input: Tensor) -> Tensor: ... def sign(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" sign(input, *, out=None) -> Tensor Returns a new tensor with the signs of the elements of :attr:`input`. .. math:: \text{out}_{i} = \operatorname{sgn}(\text{input}_{i}) Args: input (Tensor): the input tensor. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.tensor([0.7, -1.2, 0., 2.3]) >>> a tensor([ 0.7000, -1.2000, 0.0000, 2.3000]) >>> torch.sign(a) tensor([ 1., -1., 0., 1.]) """ ... def signbit(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" signbit(input, *, out=None) -> Tensor Tests if each element of :attr:`input` has its sign bit set or not. Args: input (Tensor): the input tensor. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.tensor([0.7, -1.2, 0., 2.3]) >>> torch.signbit(a) tensor([ False, True, False, False]) >>> a = torch.tensor([-0.0, 0.0]) >>> torch.signbit(a) tensor([ True, False]) .. note:: signbit handles signed zeros, so negative zero (-0) returns True. """ ... def sin(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" sin(input, *, out=None) -> Tensor Returns a new tensor with the sine of the elements of :attr:`input`. .. math:: \text{out}_{i} = \sin(\text{input}_{i}) Args: input (Tensor): the input tensor. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.randn(4) >>> a tensor([-0.5461, 0.1347, -2.7266, -0.2746]) >>> torch.sin(a) tensor([-0.5194, 0.1343, -0.4032, -0.2711]) """ ... def sin_(input: Tensor) -> Tensor: ... def sinc(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" sinc(input, *, out=None) -> Tensor Alias for :func:`torch.special.sinc`. """ ... def sinc_(input: Tensor) -> Tensor: ... def sinh(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" sinh(input, *, out=None) -> Tensor Returns a new tensor with the hyperbolic sine of the elements of :attr:`input`. .. math:: \text{out}_{i} = \sinh(\text{input}_{i}) Args: input (Tensor): the input tensor. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.randn(4) >>> a tensor([ 0.5380, -0.8632, -0.1265, 0.9399]) >>> torch.sinh(a) tensor([ 0.5644, -0.9744, -0.1268, 1.0845]) .. note:: When :attr:`input` is on the CPU, the implementation of torch.sinh may use the Sleef library, which rounds very large results to infinity or negative infinity. See `here `_ for details. """ ... def sinh_(input: Tensor) -> Tensor: ... def slice_copy(input: Tensor, dim: _int = 0, start: Optional[Union[_int, SymInt]] = None, end: Optional[Union[_int, SymInt]] = None, step: Union[_int, SymInt] = 1, *, out: Optional[Tensor] = None) -> Tensor: r""" Performs the same operation as :func:`torch.slice`, but all output tensors are freshly created instead of aliasing the input. """ ... def slice_inverse(input: Tensor, src: Tensor, dim: _int = 0, start: Optional[Union[_int, SymInt]] = None, end: Optional[Union[_int, SymInt]] = None, step: Union[_int, SymInt] = 1) -> Tensor: ... def slice_scatter(input: Tensor, src: Tensor, dim: _int = 0, start: Optional[Union[_int, SymInt]] = None, end: Optional[Union[_int, SymInt]] = None, step: Union[_int, SymInt] = 1, *, out: Optional[Tensor] = None) -> Tensor: r""" slice_scatter(input, src, dim=0, start=None, end=None, step=1) -> Tensor Embeds the values of the :attr:`src` tensor into :attr:`input` at the given dimension. This function returns a tensor with fresh storage; it does not create a view. Args: input (Tensor): the input tensor. src (Tensor): The tensor to embed into :attr:`input` dim (int): the dimension to insert the slice into start (Optional[int]): the start index of where to insert the slice end (Optional[int]): the end index of where to insert the slice step (int): the how many elements to skip in Example:: >>> a = torch.zeros(8, 8) >>> b = torch.ones(2, 8) >>> a.slice_scatter(b, start=6) tensor([[0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0.], [1., 1., 1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1., 1., 1.]]) >>> b = torch.ones(8, 2) >>> a.slice_scatter(b, dim=1, start=2, end=6, step=2) tensor([[0., 0., 1., 0., 1., 0., 0., 0.], [0., 0., 1., 0., 1., 0., 0., 0.], [0., 0., 1., 0., 1., 0., 0., 0.], [0., 0., 1., 0., 1., 0., 0., 0.], [0., 0., 1., 0., 1., 0., 0., 0.], [0., 0., 1., 0., 1., 0., 0., 0.], [0., 0., 1., 0., 1., 0., 0., 0.], [0., 0., 1., 0., 1., 0., 0., 0.]]) """ ... def slogdet(input: Tensor, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.slogdet: r""" slogdet(input) -> (Tensor, Tensor) Alias for :func:`torch.linalg.slogdet` """ ... def smm(input: Tensor, mat2: Tensor) -> Tensor: r""" smm(input, mat) -> Tensor Performs a matrix multiplication of the sparse matrix :attr:`input` with the dense matrix :attr:`mat`. Args: input (Tensor): a sparse matrix to be matrix multiplied mat (Tensor): a dense matrix to be matrix multiplied """ ... @overload def softmax(input: Tensor, dim: _int, dtype: Optional[_dtype] = None, *, out: Optional[Tensor] = None) -> Tensor: r""" softmax(input, dim, *, dtype=None) -> Tensor Alias for :func:`torch.nn.functional.softmax`. """ ... @overload def softmax(input: Tensor, dim: Union[str, ellipsis, None], *, dtype: Optional[_dtype] = None) -> Tensor: r""" softmax(input, dim, *, dtype=None) -> Tensor Alias for :func:`torch.nn.functional.softmax`. """ ... @overload def sort(input: Tensor, *, stable: Optional[_bool], dim: _int = -1, descending: _bool = False, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.sort: r""" sort(input, dim=-1, descending=False, stable=False, *, out=None) -> (Tensor, LongTensor) Sorts the elements of the :attr:`input` tensor along a given dimension in ascending order by value. If :attr:`dim` is not given, the last dimension of the `input` is chosen. If :attr:`descending` is ``True`` then the elements are sorted in descending order by value. If :attr:`stable` is ``True`` then the sorting routine becomes stable, preserving the order of equivalent elements. A namedtuple of (values, indices) is returned, where the `values` are the sorted values and `indices` are the indices of the elements in the original `input` tensor. Args: input (Tensor): the input tensor. dim (int, optional): the dimension to sort along descending (bool, optional): controls the sorting order (ascending or descending) stable (bool, optional): makes the sorting routine stable, which guarantees that the order of equivalent elements is preserved. Keyword args: out (tuple, optional): the output tuple of (`Tensor`, `LongTensor`) that can be optionally given to be used as output buffers Example:: >>> x = torch.randn(3, 4) >>> sorted, indices = torch.sort(x) >>> sorted tensor([[-0.2162, 0.0608, 0.6719, 2.3332], [-0.5793, 0.0061, 0.6058, 0.9497], [-0.5071, 0.3343, 0.9553, 1.0960]]) >>> indices tensor([[ 1, 0, 2, 3], [ 3, 1, 0, 2], [ 0, 3, 1, 2]]) >>> sorted, indices = torch.sort(x, 0) >>> sorted tensor([[-0.5071, -0.2162, 0.6719, -0.5793], [ 0.0608, 0.0061, 0.9497, 0.3343], [ 0.6058, 0.9553, 1.0960, 2.3332]]) >>> indices tensor([[ 2, 0, 0, 1], [ 0, 1, 1, 2], [ 1, 2, 2, 0]]) >>> x = torch.tensor([0, 1] * 9) >>> x.sort() torch.return_types.sort( values=tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1]), indices=tensor([ 2, 16, 4, 6, 14, 8, 0, 10, 12, 9, 17, 15, 13, 11, 7, 5, 3, 1])) >>> x.sort(stable=True) torch.return_types.sort( values=tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1]), indices=tensor([ 0, 2, 4, 6, 8, 10, 12, 14, 16, 1, 3, 5, 7, 9, 11, 13, 15, 17])) """ ... @overload def sort(input: Tensor, dim: _int = -1, descending: _bool = False, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.sort: r""" sort(input, dim=-1, descending=False, stable=False, *, out=None) -> (Tensor, LongTensor) Sorts the elements of the :attr:`input` tensor along a given dimension in ascending order by value. If :attr:`dim` is not given, the last dimension of the `input` is chosen. If :attr:`descending` is ``True`` then the elements are sorted in descending order by value. If :attr:`stable` is ``True`` then the sorting routine becomes stable, preserving the order of equivalent elements. A namedtuple of (values, indices) is returned, where the `values` are the sorted values and `indices` are the indices of the elements in the original `input` tensor. Args: input (Tensor): the input tensor. dim (int, optional): the dimension to sort along descending (bool, optional): controls the sorting order (ascending or descending) stable (bool, optional): makes the sorting routine stable, which guarantees that the order of equivalent elements is preserved. Keyword args: out (tuple, optional): the output tuple of (`Tensor`, `LongTensor`) that can be optionally given to be used as output buffers Example:: >>> x = torch.randn(3, 4) >>> sorted, indices = torch.sort(x) >>> sorted tensor([[-0.2162, 0.0608, 0.6719, 2.3332], [-0.5793, 0.0061, 0.6058, 0.9497], [-0.5071, 0.3343, 0.9553, 1.0960]]) >>> indices tensor([[ 1, 0, 2, 3], [ 3, 1, 0, 2], [ 0, 3, 1, 2]]) >>> sorted, indices = torch.sort(x, 0) >>> sorted tensor([[-0.5071, -0.2162, 0.6719, -0.5793], [ 0.0608, 0.0061, 0.9497, 0.3343], [ 0.6058, 0.9553, 1.0960, 2.3332]]) >>> indices tensor([[ 2, 0, 0, 1], [ 0, 1, 1, 2], [ 1, 2, 2, 0]]) >>> x = torch.tensor([0, 1] * 9) >>> x.sort() torch.return_types.sort( values=tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1]), indices=tensor([ 2, 16, 4, 6, 14, 8, 0, 10, 12, 9, 17, 15, 13, 11, 7, 5, 3, 1])) >>> x.sort(stable=True) torch.return_types.sort( values=tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1]), indices=tensor([ 0, 2, 4, 6, 8, 10, 12, 14, 16, 1, 3, 5, 7, 9, 11, 13, 15, 17])) """ ... @overload def sort(input: Tensor, *, stable: Optional[_bool], dim: Union[str, ellipsis, None], descending: _bool = False, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.sort: r""" sort(input, dim=-1, descending=False, stable=False, *, out=None) -> (Tensor, LongTensor) Sorts the elements of the :attr:`input` tensor along a given dimension in ascending order by value. If :attr:`dim` is not given, the last dimension of the `input` is chosen. If :attr:`descending` is ``True`` then the elements are sorted in descending order by value. If :attr:`stable` is ``True`` then the sorting routine becomes stable, preserving the order of equivalent elements. A namedtuple of (values, indices) is returned, where the `values` are the sorted values and `indices` are the indices of the elements in the original `input` tensor. Args: input (Tensor): the input tensor. dim (int, optional): the dimension to sort along descending (bool, optional): controls the sorting order (ascending or descending) stable (bool, optional): makes the sorting routine stable, which guarantees that the order of equivalent elements is preserved. Keyword args: out (tuple, optional): the output tuple of (`Tensor`, `LongTensor`) that can be optionally given to be used as output buffers Example:: >>> x = torch.randn(3, 4) >>> sorted, indices = torch.sort(x) >>> sorted tensor([[-0.2162, 0.0608, 0.6719, 2.3332], [-0.5793, 0.0061, 0.6058, 0.9497], [-0.5071, 0.3343, 0.9553, 1.0960]]) >>> indices tensor([[ 1, 0, 2, 3], [ 3, 1, 0, 2], [ 0, 3, 1, 2]]) >>> sorted, indices = torch.sort(x, 0) >>> sorted tensor([[-0.5071, -0.2162, 0.6719, -0.5793], [ 0.0608, 0.0061, 0.9497, 0.3343], [ 0.6058, 0.9553, 1.0960, 2.3332]]) >>> indices tensor([[ 2, 0, 0, 1], [ 0, 1, 1, 2], [ 1, 2, 2, 0]]) >>> x = torch.tensor([0, 1] * 9) >>> x.sort() torch.return_types.sort( values=tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1]), indices=tensor([ 2, 16, 4, 6, 14, 8, 0, 10, 12, 9, 17, 15, 13, 11, 7, 5, 3, 1])) >>> x.sort(stable=True) torch.return_types.sort( values=tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1]), indices=tensor([ 0, 2, 4, 6, 8, 10, 12, 14, 16, 1, 3, 5, 7, 9, 11, 13, 15, 17])) """ ... @overload def sort(input: Tensor, dim: Union[str, ellipsis, None], descending: _bool = False, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.sort: r""" sort(input, dim=-1, descending=False, stable=False, *, out=None) -> (Tensor, LongTensor) Sorts the elements of the :attr:`input` tensor along a given dimension in ascending order by value. If :attr:`dim` is not given, the last dimension of the `input` is chosen. If :attr:`descending` is ``True`` then the elements are sorted in descending order by value. If :attr:`stable` is ``True`` then the sorting routine becomes stable, preserving the order of equivalent elements. A namedtuple of (values, indices) is returned, where the `values` are the sorted values and `indices` are the indices of the elements in the original `input` tensor. Args: input (Tensor): the input tensor. dim (int, optional): the dimension to sort along descending (bool, optional): controls the sorting order (ascending or descending) stable (bool, optional): makes the sorting routine stable, which guarantees that the order of equivalent elements is preserved. Keyword args: out (tuple, optional): the output tuple of (`Tensor`, `LongTensor`) that can be optionally given to be used as output buffers Example:: >>> x = torch.randn(3, 4) >>> sorted, indices = torch.sort(x) >>> sorted tensor([[-0.2162, 0.0608, 0.6719, 2.3332], [-0.5793, 0.0061, 0.6058, 0.9497], [-0.5071, 0.3343, 0.9553, 1.0960]]) >>> indices tensor([[ 1, 0, 2, 3], [ 3, 1, 0, 2], [ 0, 3, 1, 2]]) >>> sorted, indices = torch.sort(x, 0) >>> sorted tensor([[-0.5071, -0.2162, 0.6719, -0.5793], [ 0.0608, 0.0061, 0.9497, 0.3343], [ 0.6058, 0.9553, 1.0960, 2.3332]]) >>> indices tensor([[ 2, 0, 0, 1], [ 0, 1, 1, 2], [ 1, 2, 2, 0]]) >>> x = torch.tensor([0, 1] * 9) >>> x.sort() torch.return_types.sort( values=tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1]), indices=tensor([ 2, 16, 4, 6, 14, 8, 0, 10, 12, 9, 17, 15, 13, 11, 7, 5, 3, 1])) >>> x.sort(stable=True) torch.return_types.sort( values=tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1]), indices=tensor([ 0, 2, 4, 6, 8, 10, 12, 14, 16, 1, 3, 5, 7, 9, 11, 13, 15, 17])) """ ... def sparse_bsc_tensor(ccol_indices: Union[Tensor, List], row_indices: Union[Tensor, List], values: Union[Tensor, List], size: Optional[_size] = None, *, dtype: Optional[_dtype] = None, device: Optional[DeviceLikeType] = None, requires_grad: _bool = False, check_invariants: Optional[_bool] = None) -> Tensor: r""" sparse_bsc_tensor(ccol_indices, row_indices, values, size=None, *, dtype=None, device=None, requires_grad=False, check_invariants=None) -> Tensor Constructs a :ref:`sparse tensor in BSC (Block Compressed Sparse Column)) ` with specified 2-dimensional blocks at the given :attr:`ccol_indices` and :attr:`row_indices`. Sparse matrix multiplication operations in BSC format are typically faster than that for sparse tensors in COO format. Make you have a look at :ref:`the note on the data type of the indices `. .. note:: If the ``device`` argument is not specified the device of the given :attr:`values` and indices tensor(s) must match. If, however, the argument is specified the input Tensors will be converted to the given device and in turn determine the device of the constructed sparse tensor. Args: ccol_indices (array_like): (B+1)-dimensional array of size ``(*batchsize, ncolblocks + 1)``. The last element of each batch is the number of non-zeros. This tensor encodes the index in values and row_indices depending on where the given column starts. Each successive number in the tensor subtracted by the number before it denotes the number of elements in a given column. row_indices (array_like): Row block co-ordinates of each block in values. (B+1)-dimensional tensor with the same length as values. values (array_list): Initial blocks for the tensor. Can be a list, tuple, NumPy ``ndarray``, and other types that represents a (1 + 2 + K)-dimensional tensor where ``K`` is the number of dense dimensions. size (list, tuple, :class:`torch.Size`, optional): Size of the sparse tensor: ``(*batchsize, nrows * blocksize[0], ncols * blocksize[1], *densesize)`` If not provided, the size will be inferred as the minimum size big enough to hold all non-zero blocks. Keyword args: dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if None, infers data type from :attr:`values`. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if None, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. check_invariants (bool, optional): If sparse tensor invariants are checked. Default: as returned by :func:`torch.sparse.check_sparse_tensor_invariants.is_enabled`, initially False. Example:: >>> ccol_indices = [0, 1, 2] >>> row_indices = [0, 1] >>> values = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]] >>> torch.sparse_bsc_tensor(torch.tensor(ccol_indices, dtype=torch.int64), ... torch.tensor(row_indices, dtype=torch.int64), ... torch.tensor(values), dtype=torch.double) tensor(ccol_indices=tensor([0, 1, 2]), row_indices=tensor([0, 1]), values=tensor([[[1., 2.], [3., 4.]], [[5., 6.], [7., 8.]]]), size=(2, 2), nnz=2, dtype=torch.float64, layout=torch.sparse_bsc) """ ... def sparse_bsr_tensor(crow_indices: Union[Tensor, List], col_indices: Union[Tensor, List], values: Union[Tensor, List], size: Optional[_size] = None, *, dtype: Optional[_dtype] = None, device: Optional[DeviceLikeType] = None, requires_grad: _bool = False, check_invariants: Optional[_bool] = None) -> Tensor: r""" sparse_bsr_tensor(crow_indices, col_indices, values, size=None, *, dtype=None, device=None, requires_grad=False, check_invariants=None) -> Tensor Constructs a :ref:`sparse tensor in BSR (Block Compressed Sparse Row)) ` with specified 2-dimensional blocks at the given :attr:`crow_indices` and :attr:`col_indices`. Sparse matrix multiplication operations in BSR format are typically faster than that for sparse tensors in COO format. Make you have a look at :ref:`the note on the data type of the indices `. .. note:: If the ``device`` argument is not specified the device of the given :attr:`values` and indices tensor(s) must match. If, however, the argument is specified the input Tensors will be converted to the given device and in turn determine the device of the constructed sparse tensor. Args: crow_indices (array_like): (B+1)-dimensional array of size ``(*batchsize, nrowblocks + 1)``. The last element of each batch is the number of non-zeros. This tensor encodes the block index in values and col_indices depending on where the given row block starts. Each successive number in the tensor subtracted by the number before it denotes the number of blocks in a given row. col_indices (array_like): Column block co-ordinates of each block in values. (B+1)-dimensional tensor with the same length as values. values (array_list): Initial values for the tensor. Can be a list, tuple, NumPy ``ndarray``, scalar, and other types that represents a (1 + 2 + K)-dimensional tensor where ``K`` is the number of dense dimensions. size (list, tuple, :class:`torch.Size`, optional): Size of the sparse tensor: ``(*batchsize, nrows * blocksize[0], ncols * blocksize[1], *densesize)`` where ``blocksize == values.shape[1:3]``. If not provided, the size will be inferred as the minimum size big enough to hold all non-zero blocks. Keyword args: dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if None, infers data type from :attr:`values`. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if None, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. check_invariants (bool, optional): If sparse tensor invariants are checked. Default: as returned by :func:`torch.sparse.check_sparse_tensor_invariants.is_enabled`, initially False. Example:: >>> crow_indices = [0, 1, 2] >>> col_indices = [0, 1] >>> values = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]] >>> torch.sparse_bsr_tensor(torch.tensor(crow_indices, dtype=torch.int64), ... torch.tensor(col_indices, dtype=torch.int64), ... torch.tensor(values), dtype=torch.double) tensor(crow_indices=tensor([0, 1, 2]), col_indices=tensor([0, 1]), values=tensor([[[1., 2.], [3., 4.]], [[5., 6.], [7., 8.]]]), size=(2, 2), nnz=2, dtype=torch.float64, layout=torch.sparse_bsr) """ ... def sparse_compressed_tensor(compressed_indices: Union[Tensor, List], plain_indices: Union[Tensor, List], values: Union[Tensor, List], size: Optional[_size] = None, *, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[DeviceLikeType] = None, requires_grad: _bool = False, check_invariants: Optional[_bool] = None) -> Tensor: r""" sparse_compressed_tensor(compressed_indices, plain_indices, values, size=None, *, dtype=None, layout=None, device=None, requires_grad=False, check_invariants=None) -> Tensor Constructs a :ref:`sparse tensor in Compressed Sparse format - CSR, CSC, BSR, or BSC - ` with specified values at the given :attr:`compressed_indices` and :attr:`plain_indices`. Sparse matrix multiplication operations in Compressed Sparse format are typically faster than that for sparse tensors in COO format. Make you have a look at :ref:`the note on the data type of the indices `. .. note:: If the ``device`` argument is not specified the device of the given :attr:`values` and indices tensor(s) must match. If, however, the argument is specified the input Tensors will be converted to the given device and in turn determine the device of the constructed sparse tensor. Args: compressed_indices (array_like): (B+1)-dimensional array of size ``(*batchsize, compressed_dim_size + 1)``. The last element of each batch is the number of non-zero elements or blocks. This tensor encodes the index in ``values`` and ``plain_indices`` depending on where the given compressed dimension (row or column) starts. Each successive number in the tensor subtracted by the number before it denotes the number of elements or blocks in a given compressed dimension. plain_indices (array_like): Plain dimension (column or row) co-ordinates of each element or block in values. (B+1)-dimensional tensor with the same length as values. values (array_list): Initial values for the tensor. Can be a list, tuple, NumPy ``ndarray``, scalar, and other types. that represents a (1+K)-dimensional (for CSR and CSC layouts) or (1+2+K)-dimensional tensor (for BSR and BSC layouts) where ``K`` is the number of dense dimensions. size (list, tuple, :class:`torch.Size`, optional): Size of the sparse tensor: ``(*batchsize, nrows * blocksize[0], ncols * blocksize[1], *densesize)`` where ``blocksize[0] == blocksize[1] == 1`` for CSR and CSC formats. If not provided, the size will be inferred as the minimum size big enough to hold all non-zero elements or blocks. Keyword args: dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if None, infers data type from :attr:`values`. layout (:class:`torch.layout`, required): the desired layout of returned tensor: :attr:`torch.sparse_csr`, :attr:`torch.sparse_csc`, :attr:`torch.sparse_bsr`, or :attr:`torch.sparse_bsc`. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if None, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. check_invariants (bool, optional): If sparse tensor invariants are checked. Default: as returned by :func:`torch.sparse.check_sparse_tensor_invariants.is_enabled`, initially False. Example:: >>> compressed_indices = [0, 2, 4] >>> plain_indices = [0, 1, 0, 1] >>> values = [1, 2, 3, 4] >>> torch.sparse_compressed_tensor(torch.tensor(compressed_indices, dtype=torch.int64), ... torch.tensor(plain_indices, dtype=torch.int64), ... torch.tensor(values), dtype=torch.double, layout=torch.sparse_csr) tensor(crow_indices=tensor([0, 2, 4]), col_indices=tensor([0, 1, 0, 1]), values=tensor([1., 2., 3., 4.]), size=(2, 2), nnz=4, dtype=torch.float64, layout=torch.sparse_csr) """ ... def sparse_coo_tensor(indices: Tensor, values: Union[Tensor, List], size: Optional[_size] = None, *, dtype: Optional[_dtype] = None, device: Optional[DeviceLikeType] = None, requires_grad: _bool = False, check_invariants: Optional[_bool] = None, is_coalesced: Optional[_bool] = None) -> Tensor: r""" sparse_coo_tensor(indices, values, size=None, *, dtype=None, device=None, requires_grad=False, check_invariants=None, is_coalesced=None) -> Tensor Constructs a :ref:`sparse tensor in COO(rdinate) format ` with specified values at the given :attr:`indices`. .. note:: This function returns an :ref:`uncoalesced tensor ` when :attr:`is_coalesced` is unspecified or ``None``. .. note:: If the ``device`` argument is not specified the device of the given :attr:`values` and indices tensor(s) must match. If, however, the argument is specified the input Tensors will be converted to the given device and in turn determine the device of the constructed sparse tensor. Args: indices (array_like): Initial data for the tensor. Can be a list, tuple, NumPy ``ndarray``, scalar, and other types. Will be cast to a :class:`torch.LongTensor` internally. The indices are the coordinates of the non-zero values in the matrix, and thus should be two-dimensional where the first dimension is the number of tensor dimensions and the second dimension is the number of non-zero values. values (array_like): Initial values for the tensor. Can be a list, tuple, NumPy ``ndarray``, scalar, and other types. size (list, tuple, or :class:`torch.Size`, optional): Size of the sparse tensor. If not provided the size will be inferred as the minimum size big enough to hold all non-zero elements. Keyword args: dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if None, infers data type from :attr:`values`. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if None, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. check_invariants (bool, optional): If sparse tensor invariants are checked. Default: as returned by :func:`torch.sparse.check_sparse_tensor_invariants.is_enabled`, initially False. is_coalesced (bool, optional): When``True``, the caller is responsible for providing tensor indices that correspond to a coalesced tensor. If the :attr:`check_invariants` flag is False, no error will be raised if the prerequisites are not met and this will lead to silently incorrect results. To force coalescion please use :meth:`coalesce` on the resulting Tensor. Default: None: except for trivial cases (e.g. nnz < 2) the resulting Tensor has is_coalesced set to ``False```. Example:: >>> i = torch.tensor([[0, 1, 1], ... [2, 0, 2]]) >>> v = torch.tensor([3, 4, 5], dtype=torch.float32) >>> torch.sparse_coo_tensor(i, v, [2, 4]) tensor(indices=tensor([[0, 1, 1], [2, 0, 2]]), values=tensor([3., 4., 5.]), size=(2, 4), nnz=3, layout=torch.sparse_coo) >>> torch.sparse_coo_tensor(i, v) # Shape inference tensor(indices=tensor([[0, 1, 1], [2, 0, 2]]), values=tensor([3., 4., 5.]), size=(2, 3), nnz=3, layout=torch.sparse_coo) >>> torch.sparse_coo_tensor(i, v, [2, 4], ... dtype=torch.float64, ... device=torch.device('cuda:0')) tensor(indices=tensor([[0, 1, 1], [2, 0, 2]]), values=tensor([3., 4., 5.]), device='cuda:0', size=(2, 4), nnz=3, dtype=torch.float64, layout=torch.sparse_coo) # Create an empty sparse tensor with the following invariants: # 1. sparse_dim + dense_dim = len(SparseTensor.shape) # 2. SparseTensor._indices().shape = (sparse_dim, nnz) # 3. SparseTensor._values().shape = (nnz, SparseTensor.shape[sparse_dim:]) # # For instance, to create an empty sparse tensor with nnz = 0, dense_dim = 0 and # sparse_dim = 1 (hence indices is a 2D tensor of shape = (1, 0)) >>> S = torch.sparse_coo_tensor(torch.empty([1, 0]), [], [1]) tensor(indices=tensor([], size=(1, 0)), values=tensor([], size=(0,)), size=(1,), nnz=0, layout=torch.sparse_coo) # and to create an empty sparse tensor with nnz = 0, dense_dim = 1 and # sparse_dim = 1 >>> S = torch.sparse_coo_tensor(torch.empty([1, 0]), torch.empty([0, 2]), [1, 2]) tensor(indices=tensor([], size=(1, 0)), values=tensor([], size=(0, 2)), size=(1, 2), nnz=0, layout=torch.sparse_coo) .. _torch.sparse: https://pytorch.org/docs/stable/sparse.html """ ... def sparse_csc_tensor(ccol_indices: Union[Tensor, List], row_indices: Union[Tensor, List], values: Union[Tensor, List], size: Optional[_size] = None, *, dtype: Optional[_dtype] = None, device: Optional[DeviceLikeType] = None, requires_grad: _bool = False, check_invariants: Optional[_bool] = None) -> Tensor: r""" sparse_csc_tensor(ccol_indices, row_indices, values, size=None, *, dtype=None, device=None, requires_grad=False, check_invariants=None) -> Tensor Constructs a :ref:`sparse tensor in CSC (Compressed Sparse Column) ` with specified values at the given :attr:`ccol_indices` and :attr:`row_indices`. Sparse matrix multiplication operations in CSC format are typically faster than that for sparse tensors in COO format. Make you have a look at :ref:`the note on the data type of the indices `. .. note:: If the ``device`` argument is not specified the device of the given :attr:`values` and indices tensor(s) must match. If, however, the argument is specified the input Tensors will be converted to the given device and in turn determine the device of the constructed sparse tensor. Args: ccol_indices (array_like): (B+1)-dimensional array of size ``(*batchsize, ncols + 1)``. The last element of each batch is the number of non-zeros. This tensor encodes the index in values and row_indices depending on where the given column starts. Each successive number in the tensor subtracted by the number before it denotes the number of elements in a given column. row_indices (array_like): Row co-ordinates of each element in values. (B+1)-dimensional tensor with the same length as values. values (array_list): Initial values for the tensor. Can be a list, tuple, NumPy ``ndarray``, scalar, and other types that represents a (1+K)-dimensional tensor where ``K`` is the number of dense dimensions. size (list, tuple, :class:`torch.Size`, optional): Size of the sparse tensor: ``(*batchsize, nrows, ncols, *densesize)``. If not provided, the size will be inferred as the minimum size big enough to hold all non-zero elements. Keyword args: dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if None, infers data type from :attr:`values`. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if None, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. check_invariants (bool, optional): If sparse tensor invariants are checked. Default: as returned by :func:`torch.sparse.check_sparse_tensor_invariants.is_enabled`, initially False. Example:: >>> ccol_indices = [0, 2, 4] >>> row_indices = [0, 1, 0, 1] >>> values = [1, 2, 3, 4] >>> torch.sparse_csc_tensor(torch.tensor(ccol_indices, dtype=torch.int64), ... torch.tensor(row_indices, dtype=torch.int64), ... torch.tensor(values), dtype=torch.double) tensor(ccol_indices=tensor([0, 2, 4]), row_indices=tensor([0, 1, 0, 1]), values=tensor([1., 2., 3., 4.]), size=(2, 2), nnz=4, dtype=torch.float64, layout=torch.sparse_csc) """ ... def sparse_csr_tensor(crow_indices: Union[Tensor, List], col_indices: Union[Tensor, List], values: Union[Tensor, List], size: Optional[_size] = None, *, dtype: Optional[_dtype] = None, device: Optional[DeviceLikeType] = None, requires_grad: _bool = False, check_invariants: Optional[_bool] = None) -> Tensor: r""" sparse_csr_tensor(crow_indices, col_indices, values, size=None, *, dtype=None, device=None, requires_grad=False, check_invariants=None) -> Tensor Constructs a :ref:`sparse tensor in CSR (Compressed Sparse Row) ` with specified values at the given :attr:`crow_indices` and :attr:`col_indices`. Sparse matrix multiplication operations in CSR format are typically faster than that for sparse tensors in COO format. Make you have a look at :ref:`the note on the data type of the indices `. .. note:: If the ``device`` argument is not specified the device of the given :attr:`values` and indices tensor(s) must match. If, however, the argument is specified the input Tensors will be converted to the given device and in turn determine the device of the constructed sparse tensor. Args: crow_indices (array_like): (B+1)-dimensional array of size ``(*batchsize, nrows + 1)``. The last element of each batch is the number of non-zeros. This tensor encodes the index in values and col_indices depending on where the given row starts. Each successive number in the tensor subtracted by the number before it denotes the number of elements in a given row. col_indices (array_like): Column co-ordinates of each element in values. (B+1)-dimensional tensor with the same length as values. values (array_list): Initial values for the tensor. Can be a list, tuple, NumPy ``ndarray``, scalar, and other types that represents a (1+K)-dimensional tensor where ``K`` is the number of dense dimensions. size (list, tuple, :class:`torch.Size`, optional): Size of the sparse tensor: ``(*batchsize, nrows, ncols, *densesize)``. If not provided, the size will be inferred as the minimum size big enough to hold all non-zero elements. Keyword args: dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if None, infers data type from :attr:`values`. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if None, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. check_invariants (bool, optional): If sparse tensor invariants are checked. Default: as returned by :func:`torch.sparse.check_sparse_tensor_invariants.is_enabled`, initially False. Example:: >>> crow_indices = [0, 2, 4] >>> col_indices = [0, 1, 0, 1] >>> values = [1, 2, 3, 4] >>> torch.sparse_csr_tensor(torch.tensor(crow_indices, dtype=torch.int64), ... torch.tensor(col_indices, dtype=torch.int64), ... torch.tensor(values), dtype=torch.double) tensor(crow_indices=tensor([0, 2, 4]), col_indices=tensor([0, 1, 0, 1]), values=tensor([1., 2., 3., 4.]), size=(2, 2), nnz=4, dtype=torch.float64, layout=torch.sparse_csr) """ ... def split_copy(input: Tensor, split_size: Union[_int, SymInt], dim: _int = 0, *, out: Union[Tuple[Tensor, ...], List[Tensor], None] = None) -> None: r""" Performs the same operation as :func:`torch.split`, but all output tensors are freshly created instead of aliasing the input. """ ... def split_with_sizes(input: Tensor, split_sizes: Sequence[Union[_int, SymInt]], dim: _int = 0) -> Tuple[Tensor, ...]: ... def split_with_sizes_copy(input: Tensor, split_sizes: Sequence[Union[_int, SymInt]], dim: _int = 0, *, out: Union[Tuple[Tensor, ...], List[Tensor], None] = None) -> None: r""" Performs the same operation as :func:`torch.split_with_sizes`, but all output tensors are freshly created instead of aliasing the input. """ ... def spmm(input: Tensor, mat2: Tensor) -> Tensor: ... def sqrt(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" sqrt(input, *, out=None) -> Tensor Returns a new tensor with the square-root of the elements of :attr:`input`. .. math:: \text{out}_{i} = \sqrt{\text{input}_{i}} Args: input (Tensor): the input tensor. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.randn(4) >>> a tensor([-2.0755, 1.0226, 0.0831, 0.4806]) >>> torch.sqrt(a) tensor([ nan, 1.0112, 0.2883, 0.6933]) """ ... def sqrt_(input: Tensor) -> Tensor: ... def square(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" square(input, *, out=None) -> Tensor Returns a new tensor with the square of the elements of :attr:`input`. Args: input (Tensor): the input tensor. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.randn(4) >>> a tensor([-2.0755, 1.0226, 0.0831, 0.4806]) >>> torch.square(a) tensor([ 4.3077, 1.0457, 0.0069, 0.2310]) """ ... def square_(input: Tensor) -> Tensor: ... @overload def squeeze(input: Tensor) -> Tensor: r""" squeeze(input, dim=None) -> Tensor Returns a tensor with all specified dimensions of :attr:`input` of size `1` removed. For example, if `input` is of shape: :math:`(A \times 1 \times B \times C \times 1 \times D)` then the `input.squeeze()` will be of shape: :math:`(A \times B \times C \times D)`. When :attr:`dim` is given, a squeeze operation is done only in the given dimension(s). If `input` is of shape: :math:`(A \times 1 \times B)`, ``squeeze(input, 0)`` leaves the tensor unchanged, but ``squeeze(input, 1)`` will squeeze the tensor to the shape :math:`(A \times B)`. .. note:: The returned tensor shares the storage with the input tensor, so changing the contents of one will change the contents of the other. .. warning:: If the tensor has a batch dimension of size 1, then `squeeze(input)` will also remove the batch dimension, which can lead to unexpected errors. Consider specifying only the dims you wish to be squeezed. Args: input (Tensor): the input tensor. dim (int or tuple of ints, optional): if given, the input will be squeezed only in the specified dimensions. .. versionchanged:: 2.0 :attr:`dim` now accepts tuples of dimensions. Example:: >>> x = torch.zeros(2, 1, 2, 1, 2) >>> x.size() torch.Size([2, 1, 2, 1, 2]) >>> y = torch.squeeze(x) >>> y.size() torch.Size([2, 2, 2]) >>> y = torch.squeeze(x, 0) >>> y.size() torch.Size([2, 1, 2, 1, 2]) >>> y = torch.squeeze(x, 1) >>> y.size() torch.Size([2, 2, 1, 2]) >>> y = torch.squeeze(x, (1, 2, 3)) torch.Size([2, 2, 2]) """ ... @overload def squeeze(input: Tensor, dim: _int) -> Tensor: r""" squeeze(input, dim=None) -> Tensor Returns a tensor with all specified dimensions of :attr:`input` of size `1` removed. For example, if `input` is of shape: :math:`(A \times 1 \times B \times C \times 1 \times D)` then the `input.squeeze()` will be of shape: :math:`(A \times B \times C \times D)`. When :attr:`dim` is given, a squeeze operation is done only in the given dimension(s). If `input` is of shape: :math:`(A \times 1 \times B)`, ``squeeze(input, 0)`` leaves the tensor unchanged, but ``squeeze(input, 1)`` will squeeze the tensor to the shape :math:`(A \times B)`. .. note:: The returned tensor shares the storage with the input tensor, so changing the contents of one will change the contents of the other. .. warning:: If the tensor has a batch dimension of size 1, then `squeeze(input)` will also remove the batch dimension, which can lead to unexpected errors. Consider specifying only the dims you wish to be squeezed. Args: input (Tensor): the input tensor. dim (int or tuple of ints, optional): if given, the input will be squeezed only in the specified dimensions. .. versionchanged:: 2.0 :attr:`dim` now accepts tuples of dimensions. Example:: >>> x = torch.zeros(2, 1, 2, 1, 2) >>> x.size() torch.Size([2, 1, 2, 1, 2]) >>> y = torch.squeeze(x) >>> y.size() torch.Size([2, 2, 2]) >>> y = torch.squeeze(x, 0) >>> y.size() torch.Size([2, 1, 2, 1, 2]) >>> y = torch.squeeze(x, 1) >>> y.size() torch.Size([2, 2, 1, 2]) >>> y = torch.squeeze(x, (1, 2, 3)) torch.Size([2, 2, 2]) """ ... @overload def squeeze(input: Tensor, dim: _size) -> Tensor: r""" squeeze(input, dim=None) -> Tensor Returns a tensor with all specified dimensions of :attr:`input` of size `1` removed. For example, if `input` is of shape: :math:`(A \times 1 \times B \times C \times 1 \times D)` then the `input.squeeze()` will be of shape: :math:`(A \times B \times C \times D)`. When :attr:`dim` is given, a squeeze operation is done only in the given dimension(s). If `input` is of shape: :math:`(A \times 1 \times B)`, ``squeeze(input, 0)`` leaves the tensor unchanged, but ``squeeze(input, 1)`` will squeeze the tensor to the shape :math:`(A \times B)`. .. note:: The returned tensor shares the storage with the input tensor, so changing the contents of one will change the contents of the other. .. warning:: If the tensor has a batch dimension of size 1, then `squeeze(input)` will also remove the batch dimension, which can lead to unexpected errors. Consider specifying only the dims you wish to be squeezed. Args: input (Tensor): the input tensor. dim (int or tuple of ints, optional): if given, the input will be squeezed only in the specified dimensions. .. versionchanged:: 2.0 :attr:`dim` now accepts tuples of dimensions. Example:: >>> x = torch.zeros(2, 1, 2, 1, 2) >>> x.size() torch.Size([2, 1, 2, 1, 2]) >>> y = torch.squeeze(x) >>> y.size() torch.Size([2, 2, 2]) >>> y = torch.squeeze(x, 0) >>> y.size() torch.Size([2, 1, 2, 1, 2]) >>> y = torch.squeeze(x, 1) >>> y.size() torch.Size([2, 2, 1, 2]) >>> y = torch.squeeze(x, (1, 2, 3)) torch.Size([2, 2, 2]) """ ... @overload def squeeze(input: Tensor, dim: Union[str, ellipsis, None]) -> Tensor: r""" squeeze(input, dim=None) -> Tensor Returns a tensor with all specified dimensions of :attr:`input` of size `1` removed. For example, if `input` is of shape: :math:`(A \times 1 \times B \times C \times 1 \times D)` then the `input.squeeze()` will be of shape: :math:`(A \times B \times C \times D)`. When :attr:`dim` is given, a squeeze operation is done only in the given dimension(s). If `input` is of shape: :math:`(A \times 1 \times B)`, ``squeeze(input, 0)`` leaves the tensor unchanged, but ``squeeze(input, 1)`` will squeeze the tensor to the shape :math:`(A \times B)`. .. note:: The returned tensor shares the storage with the input tensor, so changing the contents of one will change the contents of the other. .. warning:: If the tensor has a batch dimension of size 1, then `squeeze(input)` will also remove the batch dimension, which can lead to unexpected errors. Consider specifying only the dims you wish to be squeezed. Args: input (Tensor): the input tensor. dim (int or tuple of ints, optional): if given, the input will be squeezed only in the specified dimensions. .. versionchanged:: 2.0 :attr:`dim` now accepts tuples of dimensions. Example:: >>> x = torch.zeros(2, 1, 2, 1, 2) >>> x.size() torch.Size([2, 1, 2, 1, 2]) >>> y = torch.squeeze(x) >>> y.size() torch.Size([2, 2, 2]) >>> y = torch.squeeze(x, 0) >>> y.size() torch.Size([2, 1, 2, 1, 2]) >>> y = torch.squeeze(x, 1) >>> y.size() torch.Size([2, 2, 1, 2]) >>> y = torch.squeeze(x, (1, 2, 3)) torch.Size([2, 2, 2]) """ ... @overload def squeeze_copy(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" Performs the same operation as :func:`torch.squeeze`, but all output tensors are freshly created instead of aliasing the input. """ ... @overload def squeeze_copy(input: Tensor, dim: _int, *, out: Optional[Tensor] = None) -> Tensor: r""" Performs the same operation as :func:`torch.squeeze`, but all output tensors are freshly created instead of aliasing the input. """ ... @overload def squeeze_copy(input: Tensor, dim: _size, *, out: Optional[Tensor] = None) -> Tensor: r""" Performs the same operation as :func:`torch.squeeze`, but all output tensors are freshly created instead of aliasing the input. """ ... @overload def sspaddmm(beta: Union[Number, _complex], self: Tensor, alpha: Union[Number, _complex], mat1: Tensor, mat2: Tensor) -> Tensor: r""" sspaddmm(input, mat1, mat2, *, beta=1, alpha=1, out=None) -> Tensor Matrix multiplies a sparse tensor :attr:`mat1` with a dense tensor :attr:`mat2`, then adds the sparse tensor :attr:`input` to the result. Note: This function is equivalent to :func:`torch.addmm`, except :attr:`input` and :attr:`mat1` are sparse. Args: input (Tensor): a sparse matrix to be added mat1 (Tensor): a sparse matrix to be matrix multiplied mat2 (Tensor): a dense matrix to be matrix multiplied Keyword args: beta (Number, optional): multiplier for :attr:`mat` (:math:`\beta`) alpha (Number, optional): multiplier for :math:`mat1 @ mat2` (:math:`\alpha`) out (Tensor, optional): the output tensor. """ ... @overload def sspaddmm(input: Tensor, mat1: Tensor, mat2: Tensor, *, beta: Union[Number, _complex] = 1, alpha: Union[Number, _complex] = 1, out: Optional[Tensor] = None) -> Tensor: r""" sspaddmm(input, mat1, mat2, *, beta=1, alpha=1, out=None) -> Tensor Matrix multiplies a sparse tensor :attr:`mat1` with a dense tensor :attr:`mat2`, then adds the sparse tensor :attr:`input` to the result. Note: This function is equivalent to :func:`torch.addmm`, except :attr:`input` and :attr:`mat1` are sparse. Args: input (Tensor): a sparse matrix to be added mat1 (Tensor): a sparse matrix to be matrix multiplied mat2 (Tensor): a dense matrix to be matrix multiplied Keyword args: beta (Number, optional): multiplier for :attr:`mat` (:math:`\beta`) alpha (Number, optional): multiplier for :math:`mat1 @ mat2` (:math:`\alpha`) out (Tensor, optional): the output tensor. """ ... @overload def sspaddmm(beta: Union[Number, _complex], self: Tensor, mat1: Tensor, mat2: Tensor) -> Tensor: r""" sspaddmm(input, mat1, mat2, *, beta=1, alpha=1, out=None) -> Tensor Matrix multiplies a sparse tensor :attr:`mat1` with a dense tensor :attr:`mat2`, then adds the sparse tensor :attr:`input` to the result. Note: This function is equivalent to :func:`torch.addmm`, except :attr:`input` and :attr:`mat1` are sparse. Args: input (Tensor): a sparse matrix to be added mat1 (Tensor): a sparse matrix to be matrix multiplied mat2 (Tensor): a dense matrix to be matrix multiplied Keyword args: beta (Number, optional): multiplier for :attr:`mat` (:math:`\beta`) alpha (Number, optional): multiplier for :math:`mat1 @ mat2` (:math:`\alpha`) out (Tensor, optional): the output tensor. """ ... def stack(tensors: Union[Tuple[Tensor, ...], List[Tensor]], dim: _int = 0, *, out: Optional[Tensor] = None) -> Tensor: r""" stack(tensors, dim=0, *, out=None) -> Tensor Concatenates a sequence of tensors along a new dimension. All tensors need to be of the same size. .. seealso:: :func:`torch.cat` concatenates the given sequence along an existing dimension. Arguments: tensors (sequence of Tensors): sequence of tensors to concatenate dim (int, optional): dimension to insert. Has to be between 0 and the number of dimensions of concatenated tensors (inclusive). Default: 0 Keyword args: out (Tensor, optional): the output tensor. Example:: >>> x = torch.randn(2, 3) >>> x tensor([[ 0.3367, 0.1288, 0.2345], [ 0.2303, -1.1229, -0.1863]]) >>> x = torch.stack((x, x)) # same as torch.stack((x, x), dim=0) >>> x tensor([[[ 0.3367, 0.1288, 0.2345], [ 0.2303, -1.1229, -0.1863]], [[ 0.3367, 0.1288, 0.2345], [ 0.2303, -1.1229, -0.1863]]]) >>> x.size() torch.Size([2, 2, 3]) >>> x = torch.stack((x, x), dim=1) tensor([[[ 0.3367, 0.1288, 0.2345], [ 0.3367, 0.1288, 0.2345]], [[ 0.2303, -1.1229, -0.1863], [ 0.2303, -1.1229, -0.1863]]]) >>> x = torch.stack((x, x), dim=2) tensor([[[ 0.3367, 0.3367], [ 0.1288, 0.1288], [ 0.2345, 0.2345]], [[ 0.2303, 0.2303], [-1.1229, -1.1229], [-0.1863, -0.1863]]]) >>> x = torch.stack((x, x), dim=-1) tensor([[[ 0.3367, 0.3367], [ 0.1288, 0.1288], [ 0.2345, 0.2345]], [[ 0.2303, 0.2303], [-1.1229, -1.1229], [-0.1863, -0.1863]]]) """ ... @overload def std(input: Tensor, dim: Optional[Union[_int, _size]], unbiased: _bool = True, keepdim: _bool = False, *, out: Optional[Tensor] = None) -> Tensor: r""" std(input, dim=None, *, correction=1, keepdim=False, out=None) -> Tensor Calculates the standard deviation over the dimensions specified by :attr:`dim`. :attr:`dim` can be a single dimension, list of dimensions, or ``None`` to reduce over all dimensions. The standard deviation (:math:`\sigma`) is calculated as .. math:: \sigma = \sqrt{\frac{1}{\max(0,~N - \delta N)}\sum_{i=0}^{N-1}(x_i-\bar{x})^2} where :math:`x` is the sample set of elements, :math:`\bar{x}` is the sample mean, :math:`N` is the number of samples and :math:`\delta N` is the :attr:`correction`. If :attr:`keepdim` is ``True``, the output tensor is of the same size as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the output tensor having 1 (or ``len(dim)``) fewer dimension(s). Args: input (Tensor): the input tensor. dim (int or tuple of ints): the dimension or dimensions to reduce. Keyword args: correction (int): difference between the sample size and sample degrees of freedom. Defaults to `Bessel's correction`_, ``correction=1``. .. versionchanged:: 2.0 Previously this argument was called ``unbiased`` and was a boolean with ``True`` corresponding to ``correction=1`` and ``False`` being ``correction=0``. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. out (Tensor, optional): the output tensor. Example: >>> a = torch.tensor( ... [[ 0.2035, 1.2959, 1.8101, -0.4644], ... [ 1.5027, -0.3270, 0.5905, 0.6538], ... [-1.5745, 1.3330, -0.5596, -0.6548], ... [ 0.1264, -0.5080, 1.6420, 0.1992]]) >>> torch.std(a, dim=1, keepdim=True) tensor([[1.0311], [0.7477], [1.2204], [0.9087]]) .. _Bessel's correction: https://en.wikipedia.org/wiki/Bessel%27s_correction """ ... @overload def std(input: Tensor, dim: Optional[Union[_int, _size]] = None, *, correction: Optional[Union[Number, _complex]] = None, keepdim: _bool = False, out: Optional[Tensor] = None) -> Tensor: r""" std(input, dim=None, *, correction=1, keepdim=False, out=None) -> Tensor Calculates the standard deviation over the dimensions specified by :attr:`dim`. :attr:`dim` can be a single dimension, list of dimensions, or ``None`` to reduce over all dimensions. The standard deviation (:math:`\sigma`) is calculated as .. math:: \sigma = \sqrt{\frac{1}{\max(0,~N - \delta N)}\sum_{i=0}^{N-1}(x_i-\bar{x})^2} where :math:`x` is the sample set of elements, :math:`\bar{x}` is the sample mean, :math:`N` is the number of samples and :math:`\delta N` is the :attr:`correction`. If :attr:`keepdim` is ``True``, the output tensor is of the same size as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the output tensor having 1 (or ``len(dim)``) fewer dimension(s). Args: input (Tensor): the input tensor. dim (int or tuple of ints): the dimension or dimensions to reduce. Keyword args: correction (int): difference between the sample size and sample degrees of freedom. Defaults to `Bessel's correction`_, ``correction=1``. .. versionchanged:: 2.0 Previously this argument was called ``unbiased`` and was a boolean with ``True`` corresponding to ``correction=1`` and ``False`` being ``correction=0``. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. out (Tensor, optional): the output tensor. Example: >>> a = torch.tensor( ... [[ 0.2035, 1.2959, 1.8101, -0.4644], ... [ 1.5027, -0.3270, 0.5905, 0.6538], ... [-1.5745, 1.3330, -0.5596, -0.6548], ... [ 0.1264, -0.5080, 1.6420, 0.1992]]) >>> torch.std(a, dim=1, keepdim=True) tensor([[1.0311], [0.7477], [1.2204], [0.9087]]) .. _Bessel's correction: https://en.wikipedia.org/wiki/Bessel%27s_correction """ ... @overload def std(input: Tensor, unbiased: _bool = True) -> Tensor: r""" std(input, dim=None, *, correction=1, keepdim=False, out=None) -> Tensor Calculates the standard deviation over the dimensions specified by :attr:`dim`. :attr:`dim` can be a single dimension, list of dimensions, or ``None`` to reduce over all dimensions. The standard deviation (:math:`\sigma`) is calculated as .. math:: \sigma = \sqrt{\frac{1}{\max(0,~N - \delta N)}\sum_{i=0}^{N-1}(x_i-\bar{x})^2} where :math:`x` is the sample set of elements, :math:`\bar{x}` is the sample mean, :math:`N` is the number of samples and :math:`\delta N` is the :attr:`correction`. If :attr:`keepdim` is ``True``, the output tensor is of the same size as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the output tensor having 1 (or ``len(dim)``) fewer dimension(s). Args: input (Tensor): the input tensor. dim (int or tuple of ints): the dimension or dimensions to reduce. Keyword args: correction (int): difference between the sample size and sample degrees of freedom. Defaults to `Bessel's correction`_, ``correction=1``. .. versionchanged:: 2.0 Previously this argument was called ``unbiased`` and was a boolean with ``True`` corresponding to ``correction=1`` and ``False`` being ``correction=0``. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. out (Tensor, optional): the output tensor. Example: >>> a = torch.tensor( ... [[ 0.2035, 1.2959, 1.8101, -0.4644], ... [ 1.5027, -0.3270, 0.5905, 0.6538], ... [-1.5745, 1.3330, -0.5596, -0.6548], ... [ 0.1264, -0.5080, 1.6420, 0.1992]]) >>> torch.std(a, dim=1, keepdim=True) tensor([[1.0311], [0.7477], [1.2204], [0.9087]]) .. _Bessel's correction: https://en.wikipedia.org/wiki/Bessel%27s_correction """ ... @overload def std(input: Tensor, dim: Sequence[Union[str, ellipsis, None]], *, correction: Optional[Union[Number, _complex]] = None, keepdim: _bool = False, out: Optional[Tensor] = None) -> Tensor: r""" std(input, dim=None, *, correction=1, keepdim=False, out=None) -> Tensor Calculates the standard deviation over the dimensions specified by :attr:`dim`. :attr:`dim` can be a single dimension, list of dimensions, or ``None`` to reduce over all dimensions. The standard deviation (:math:`\sigma`) is calculated as .. math:: \sigma = \sqrt{\frac{1}{\max(0,~N - \delta N)}\sum_{i=0}^{N-1}(x_i-\bar{x})^2} where :math:`x` is the sample set of elements, :math:`\bar{x}` is the sample mean, :math:`N` is the number of samples and :math:`\delta N` is the :attr:`correction`. If :attr:`keepdim` is ``True``, the output tensor is of the same size as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the output tensor having 1 (or ``len(dim)``) fewer dimension(s). Args: input (Tensor): the input tensor. dim (int or tuple of ints): the dimension or dimensions to reduce. Keyword args: correction (int): difference between the sample size and sample degrees of freedom. Defaults to `Bessel's correction`_, ``correction=1``. .. versionchanged:: 2.0 Previously this argument was called ``unbiased`` and was a boolean with ``True`` corresponding to ``correction=1`` and ``False`` being ``correction=0``. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. out (Tensor, optional): the output tensor. Example: >>> a = torch.tensor( ... [[ 0.2035, 1.2959, 1.8101, -0.4644], ... [ 1.5027, -0.3270, 0.5905, 0.6538], ... [-1.5745, 1.3330, -0.5596, -0.6548], ... [ 0.1264, -0.5080, 1.6420, 0.1992]]) >>> torch.std(a, dim=1, keepdim=True) tensor([[1.0311], [0.7477], [1.2204], [0.9087]]) .. _Bessel's correction: https://en.wikipedia.org/wiki/Bessel%27s_correction """ ... @overload def std(input: Tensor, dim: Sequence[Union[str, ellipsis, None]], unbiased: _bool = True, keepdim: _bool = False, *, out: Optional[Tensor] = None) -> Tensor: r""" std(input, dim=None, *, correction=1, keepdim=False, out=None) -> Tensor Calculates the standard deviation over the dimensions specified by :attr:`dim`. :attr:`dim` can be a single dimension, list of dimensions, or ``None`` to reduce over all dimensions. The standard deviation (:math:`\sigma`) is calculated as .. math:: \sigma = \sqrt{\frac{1}{\max(0,~N - \delta N)}\sum_{i=0}^{N-1}(x_i-\bar{x})^2} where :math:`x` is the sample set of elements, :math:`\bar{x}` is the sample mean, :math:`N` is the number of samples and :math:`\delta N` is the :attr:`correction`. If :attr:`keepdim` is ``True``, the output tensor is of the same size as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the output tensor having 1 (or ``len(dim)``) fewer dimension(s). Args: input (Tensor): the input tensor. dim (int or tuple of ints): the dimension or dimensions to reduce. Keyword args: correction (int): difference between the sample size and sample degrees of freedom. Defaults to `Bessel's correction`_, ``correction=1``. .. versionchanged:: 2.0 Previously this argument was called ``unbiased`` and was a boolean with ``True`` corresponding to ``correction=1`` and ``False`` being ``correction=0``. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. out (Tensor, optional): the output tensor. Example: >>> a = torch.tensor( ... [[ 0.2035, 1.2959, 1.8101, -0.4644], ... [ 1.5027, -0.3270, 0.5905, 0.6538], ... [-1.5745, 1.3330, -0.5596, -0.6548], ... [ 0.1264, -0.5080, 1.6420, 0.1992]]) >>> torch.std(a, dim=1, keepdim=True) tensor([[1.0311], [0.7477], [1.2204], [0.9087]]) .. _Bessel's correction: https://en.wikipedia.org/wiki/Bessel%27s_correction """ ... @overload def std_mean(input: Tensor, dim: Optional[Union[_int, _size]], unbiased: _bool = True, keepdim: _bool = False) -> Tuple[Tensor, Tensor]: r""" std_mean(input, dim=None, *, correction=1, keepdim=False, out=None) -> (Tensor, Tensor) Calculates the standard deviation and mean over the dimensions specified by :attr:`dim`. :attr:`dim` can be a single dimension, list of dimensions, or ``None`` to reduce over all dimensions. The standard deviation (:math:`\sigma`) is calculated as .. math:: \sigma = \sqrt{\frac{1}{\max(0,~N - \delta N)}\sum_{i=0}^{N-1}(x_i-\bar{x})^2} where :math:`x` is the sample set of elements, :math:`\bar{x}` is the sample mean, :math:`N` is the number of samples and :math:`\delta N` is the :attr:`correction`. If :attr:`keepdim` is ``True``, the output tensor is of the same size as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the output tensor having 1 (or ``len(dim)``) fewer dimension(s). Args: input (Tensor): the input tensor. dim (int or tuple of ints, optional): the dimension or dimensions to reduce. If ``None``, all dimensions are reduced. Keyword args: correction (int): difference between the sample size and sample degrees of freedom. Defaults to `Bessel's correction`_, ``correction=1``. .. versionchanged:: 2.0 Previously this argument was called ``unbiased`` and was a boolean with ``True`` corresponding to ``correction=1`` and ``False`` being ``correction=0``. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. out (Tensor, optional): the output tensor. Returns: A tuple (std, mean) containing the standard deviation and mean. Example: >>> a = torch.tensor( ... [[ 0.2035, 1.2959, 1.8101, -0.4644], ... [ 1.5027, -0.3270, 0.5905, 0.6538], ... [-1.5745, 1.3330, -0.5596, -0.6548], ... [ 0.1264, -0.5080, 1.6420, 0.1992]]) >>> torch.std_mean(a, dim=0, keepdim=True) (tensor([[1.2620, 1.0028, 1.0957, 0.6038]]), tensor([[ 0.0645, 0.4485, 0.8707, -0.0665]])) .. _Bessel's correction: https://en.wikipedia.org/wiki/Bessel%27s_correction """ ... @overload def std_mean(input: Tensor, dim: Optional[Union[_int, _size]] = None, *, correction: Optional[Union[Number, _complex]] = None, keepdim: _bool = False) -> Tuple[Tensor, Tensor]: r""" std_mean(input, dim=None, *, correction=1, keepdim=False, out=None) -> (Tensor, Tensor) Calculates the standard deviation and mean over the dimensions specified by :attr:`dim`. :attr:`dim` can be a single dimension, list of dimensions, or ``None`` to reduce over all dimensions. The standard deviation (:math:`\sigma`) is calculated as .. math:: \sigma = \sqrt{\frac{1}{\max(0,~N - \delta N)}\sum_{i=0}^{N-1}(x_i-\bar{x})^2} where :math:`x` is the sample set of elements, :math:`\bar{x}` is the sample mean, :math:`N` is the number of samples and :math:`\delta N` is the :attr:`correction`. If :attr:`keepdim` is ``True``, the output tensor is of the same size as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the output tensor having 1 (or ``len(dim)``) fewer dimension(s). Args: input (Tensor): the input tensor. dim (int or tuple of ints, optional): the dimension or dimensions to reduce. If ``None``, all dimensions are reduced. Keyword args: correction (int): difference between the sample size and sample degrees of freedom. Defaults to `Bessel's correction`_, ``correction=1``. .. versionchanged:: 2.0 Previously this argument was called ``unbiased`` and was a boolean with ``True`` corresponding to ``correction=1`` and ``False`` being ``correction=0``. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. out (Tensor, optional): the output tensor. Returns: A tuple (std, mean) containing the standard deviation and mean. Example: >>> a = torch.tensor( ... [[ 0.2035, 1.2959, 1.8101, -0.4644], ... [ 1.5027, -0.3270, 0.5905, 0.6538], ... [-1.5745, 1.3330, -0.5596, -0.6548], ... [ 0.1264, -0.5080, 1.6420, 0.1992]]) >>> torch.std_mean(a, dim=0, keepdim=True) (tensor([[1.2620, 1.0028, 1.0957, 0.6038]]), tensor([[ 0.0645, 0.4485, 0.8707, -0.0665]])) .. _Bessel's correction: https://en.wikipedia.org/wiki/Bessel%27s_correction """ ... @overload def std_mean(input: Tensor, unbiased: _bool = True) -> Tuple[Tensor, Tensor]: r""" std_mean(input, dim=None, *, correction=1, keepdim=False, out=None) -> (Tensor, Tensor) Calculates the standard deviation and mean over the dimensions specified by :attr:`dim`. :attr:`dim` can be a single dimension, list of dimensions, or ``None`` to reduce over all dimensions. The standard deviation (:math:`\sigma`) is calculated as .. math:: \sigma = \sqrt{\frac{1}{\max(0,~N - \delta N)}\sum_{i=0}^{N-1}(x_i-\bar{x})^2} where :math:`x` is the sample set of elements, :math:`\bar{x}` is the sample mean, :math:`N` is the number of samples and :math:`\delta N` is the :attr:`correction`. If :attr:`keepdim` is ``True``, the output tensor is of the same size as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the output tensor having 1 (or ``len(dim)``) fewer dimension(s). Args: input (Tensor): the input tensor. dim (int or tuple of ints, optional): the dimension or dimensions to reduce. If ``None``, all dimensions are reduced. Keyword args: correction (int): difference between the sample size and sample degrees of freedom. Defaults to `Bessel's correction`_, ``correction=1``. .. versionchanged:: 2.0 Previously this argument was called ``unbiased`` and was a boolean with ``True`` corresponding to ``correction=1`` and ``False`` being ``correction=0``. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. out (Tensor, optional): the output tensor. Returns: A tuple (std, mean) containing the standard deviation and mean. Example: >>> a = torch.tensor( ... [[ 0.2035, 1.2959, 1.8101, -0.4644], ... [ 1.5027, -0.3270, 0.5905, 0.6538], ... [-1.5745, 1.3330, -0.5596, -0.6548], ... [ 0.1264, -0.5080, 1.6420, 0.1992]]) >>> torch.std_mean(a, dim=0, keepdim=True) (tensor([[1.2620, 1.0028, 1.0957, 0.6038]]), tensor([[ 0.0645, 0.4485, 0.8707, -0.0665]])) .. _Bessel's correction: https://en.wikipedia.org/wiki/Bessel%27s_correction """ ... @overload def std_mean(input: Tensor, dim: Sequence[Union[str, ellipsis, None]], *, correction: Optional[Union[Number, _complex]] = None, keepdim: _bool = False) -> Tuple[Tensor, Tensor]: r""" std_mean(input, dim=None, *, correction=1, keepdim=False, out=None) -> (Tensor, Tensor) Calculates the standard deviation and mean over the dimensions specified by :attr:`dim`. :attr:`dim` can be a single dimension, list of dimensions, or ``None`` to reduce over all dimensions. The standard deviation (:math:`\sigma`) is calculated as .. math:: \sigma = \sqrt{\frac{1}{\max(0,~N - \delta N)}\sum_{i=0}^{N-1}(x_i-\bar{x})^2} where :math:`x` is the sample set of elements, :math:`\bar{x}` is the sample mean, :math:`N` is the number of samples and :math:`\delta N` is the :attr:`correction`. If :attr:`keepdim` is ``True``, the output tensor is of the same size as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the output tensor having 1 (or ``len(dim)``) fewer dimension(s). Args: input (Tensor): the input tensor. dim (int or tuple of ints, optional): the dimension or dimensions to reduce. If ``None``, all dimensions are reduced. Keyword args: correction (int): difference between the sample size and sample degrees of freedom. Defaults to `Bessel's correction`_, ``correction=1``. .. versionchanged:: 2.0 Previously this argument was called ``unbiased`` and was a boolean with ``True`` corresponding to ``correction=1`` and ``False`` being ``correction=0``. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. out (Tensor, optional): the output tensor. Returns: A tuple (std, mean) containing the standard deviation and mean. Example: >>> a = torch.tensor( ... [[ 0.2035, 1.2959, 1.8101, -0.4644], ... [ 1.5027, -0.3270, 0.5905, 0.6538], ... [-1.5745, 1.3330, -0.5596, -0.6548], ... [ 0.1264, -0.5080, 1.6420, 0.1992]]) >>> torch.std_mean(a, dim=0, keepdim=True) (tensor([[1.2620, 1.0028, 1.0957, 0.6038]]), tensor([[ 0.0645, 0.4485, 0.8707, -0.0665]])) .. _Bessel's correction: https://en.wikipedia.org/wiki/Bessel%27s_correction """ ... @overload def std_mean(input: Tensor, dim: Sequence[Union[str, ellipsis, None]], unbiased: _bool = True, keepdim: _bool = False) -> Tuple[Tensor, Tensor]: r""" std_mean(input, dim=None, *, correction=1, keepdim=False, out=None) -> (Tensor, Tensor) Calculates the standard deviation and mean over the dimensions specified by :attr:`dim`. :attr:`dim` can be a single dimension, list of dimensions, or ``None`` to reduce over all dimensions. The standard deviation (:math:`\sigma`) is calculated as .. math:: \sigma = \sqrt{\frac{1}{\max(0,~N - \delta N)}\sum_{i=0}^{N-1}(x_i-\bar{x})^2} where :math:`x` is the sample set of elements, :math:`\bar{x}` is the sample mean, :math:`N` is the number of samples and :math:`\delta N` is the :attr:`correction`. If :attr:`keepdim` is ``True``, the output tensor is of the same size as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the output tensor having 1 (or ``len(dim)``) fewer dimension(s). Args: input (Tensor): the input tensor. dim (int or tuple of ints, optional): the dimension or dimensions to reduce. If ``None``, all dimensions are reduced. Keyword args: correction (int): difference between the sample size and sample degrees of freedom. Defaults to `Bessel's correction`_, ``correction=1``. .. versionchanged:: 2.0 Previously this argument was called ``unbiased`` and was a boolean with ``True`` corresponding to ``correction=1`` and ``False`` being ``correction=0``. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. out (Tensor, optional): the output tensor. Returns: A tuple (std, mean) containing the standard deviation and mean. Example: >>> a = torch.tensor( ... [[ 0.2035, 1.2959, 1.8101, -0.4644], ... [ 1.5027, -0.3270, 0.5905, 0.6538], ... [-1.5745, 1.3330, -0.5596, -0.6548], ... [ 0.1264, -0.5080, 1.6420, 0.1992]]) >>> torch.std_mean(a, dim=0, keepdim=True) (tensor([[1.2620, 1.0028, 1.0957, 0.6038]]), tensor([[ 0.0645, 0.4485, 0.8707, -0.0665]])) .. _Bessel's correction: https://en.wikipedia.org/wiki/Bessel%27s_correction """ ... @overload def sub(input: Union[Tensor, Number, _complex], other: Union[Tensor, Number, _complex], *, alpha: Optional[Union[Number, _complex]] = 1, out: Optional[Tensor] = None) -> Tensor: r""" sub(input, other, *, alpha=1, out=None) -> Tensor Subtracts :attr:`other`, scaled by :attr:`alpha`, from :attr:`input`. .. math:: \text{{out}}_i = \text{{input}}_i - \text{{alpha}} \times \text{{other}}_i Supports :ref:`broadcasting to a common shape `, :ref:`type promotion `, and integer, float, and complex inputs. Args: input (Tensor): the input tensor. other (Tensor or Number): the tensor or number to subtract from :attr:`input`. Keyword args: alpha (Number): the multiplier for :attr:`other`. out (Tensor, optional): the output tensor. Example:: >>> a = torch.tensor((1, 2)) >>> b = torch.tensor((0, 1)) >>> torch.sub(a, b, alpha=2) tensor([1, 0]) """ ... @overload def sub(self: Tensor, alpha: Union[Number, _complex], other: Tensor) -> Tensor: r""" sub(input, other, *, alpha=1, out=None) -> Tensor Subtracts :attr:`other`, scaled by :attr:`alpha`, from :attr:`input`. .. math:: \text{{out}}_i = \text{{input}}_i - \text{{alpha}} \times \text{{other}}_i Supports :ref:`broadcasting to a common shape `, :ref:`type promotion `, and integer, float, and complex inputs. Args: input (Tensor): the input tensor. other (Tensor or Number): the tensor or number to subtract from :attr:`input`. Keyword args: alpha (Number): the multiplier for :attr:`other`. out (Tensor, optional): the output tensor. Example:: >>> a = torch.tensor((1, 2)) >>> b = torch.tensor((0, 1)) >>> torch.sub(a, b, alpha=2) tensor([1, 0]) """ ... @overload def sub(self: Tensor, alpha: Union[Number, _complex], other: Tensor, *, out: Tensor) -> Tensor: r""" sub(input, other, *, alpha=1, out=None) -> Tensor Subtracts :attr:`other`, scaled by :attr:`alpha`, from :attr:`input`. .. math:: \text{{out}}_i = \text{{input}}_i - \text{{alpha}} \times \text{{other}}_i Supports :ref:`broadcasting to a common shape `, :ref:`type promotion `, and integer, float, and complex inputs. Args: input (Tensor): the input tensor. other (Tensor or Number): the tensor or number to subtract from :attr:`input`. Keyword args: alpha (Number): the multiplier for :attr:`other`. out (Tensor, optional): the output tensor. Example:: >>> a = torch.tensor((1, 2)) >>> b = torch.tensor((0, 1)) >>> torch.sub(a, b, alpha=2) tensor([1, 0]) """ ... @overload def subtract(input: Tensor, other: Tensor, *, alpha: Union[Number, _complex] = 1, out: Optional[Tensor] = None) -> Tensor: r""" subtract(input, other, *, alpha=1, out=None) -> Tensor Alias for :func:`torch.sub`. """ ... @overload def subtract(input: Tensor, other: Union[Number, _complex], alpha: Union[Number, _complex] = 1) -> Tensor: r""" subtract(input, other, *, alpha=1, out=None) -> Tensor Alias for :func:`torch.sub`. """ ... @overload def sum(input: Tensor, *, dtype: Optional[_dtype] = None) -> Tensor: r""" sum(input, *, dtype=None) -> Tensor Returns the sum of all elements in the :attr:`input` tensor. Args: input (Tensor): the input tensor. Keyword args: dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. If specified, the input tensor is casted to :attr:`dtype` before the operation is performed. This is useful for preventing data type overflows. Default: None. Example:: >>> a = torch.randn(1, 3) >>> a tensor([[ 0.1133, -0.9567, 0.2958]]) >>> torch.sum(a) tensor(-0.5475) .. function:: sum(input, dim, keepdim=False, *, dtype=None) -> Tensor :noindex: Returns the sum of each row of the :attr:`input` tensor in the given dimension :attr:`dim`. If :attr:`dim` is a list of dimensions, reduce over all of them. If :attr:`keepdim` is ``True``, the output tensor is of the same size as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the output tensor having 1 (or ``len(dim)``) fewer dimension(s). Args: input (Tensor): the input tensor. dim (int or tuple of ints, optional): the dimension or dimensions to reduce. If ``None``, all dimensions are reduced. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. Keyword args: dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. If specified, the input tensor is casted to :attr:`dtype` before the operation is performed. This is useful for preventing data type overflows. Default: None. Example:: >>> a = torch.randn(4, 4) >>> a tensor([[ 0.0569, -0.2475, 0.0737, -0.3429], [-0.2993, 0.9138, 0.9337, -1.6864], [ 0.1132, 0.7892, -0.1003, 0.5688], [ 0.3637, -0.9906, -0.4752, -1.5197]]) >>> torch.sum(a, 1) tensor([-0.4598, -0.1381, 1.3708, -2.6217]) >>> b = torch.arange(4 * 5 * 6).view(4, 5, 6) >>> torch.sum(b, (2, 1)) tensor([ 435., 1335., 2235., 3135.]) """ ... @overload def sum(input: Tensor, dim: Optional[Union[_int, _size]], keepdim: _bool = False, *, dtype: Optional[_dtype] = None, out: Optional[Tensor] = None) -> Tensor: r""" sum(input, *, dtype=None) -> Tensor Returns the sum of all elements in the :attr:`input` tensor. Args: input (Tensor): the input tensor. Keyword args: dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. If specified, the input tensor is casted to :attr:`dtype` before the operation is performed. This is useful for preventing data type overflows. Default: None. Example:: >>> a = torch.randn(1, 3) >>> a tensor([[ 0.1133, -0.9567, 0.2958]]) >>> torch.sum(a) tensor(-0.5475) .. function:: sum(input, dim, keepdim=False, *, dtype=None) -> Tensor :noindex: Returns the sum of each row of the :attr:`input` tensor in the given dimension :attr:`dim`. If :attr:`dim` is a list of dimensions, reduce over all of them. If :attr:`keepdim` is ``True``, the output tensor is of the same size as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the output tensor having 1 (or ``len(dim)``) fewer dimension(s). Args: input (Tensor): the input tensor. dim (int or tuple of ints, optional): the dimension or dimensions to reduce. If ``None``, all dimensions are reduced. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. Keyword args: dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. If specified, the input tensor is casted to :attr:`dtype` before the operation is performed. This is useful for preventing data type overflows. Default: None. Example:: >>> a = torch.randn(4, 4) >>> a tensor([[ 0.0569, -0.2475, 0.0737, -0.3429], [-0.2993, 0.9138, 0.9337, -1.6864], [ 0.1132, 0.7892, -0.1003, 0.5688], [ 0.3637, -0.9906, -0.4752, -1.5197]]) >>> torch.sum(a, 1) tensor([-0.4598, -0.1381, 1.3708, -2.6217]) >>> b = torch.arange(4 * 5 * 6).view(4, 5, 6) >>> torch.sum(b, (2, 1)) tensor([ 435., 1335., 2235., 3135.]) """ ... @overload def sum(input: Tensor, dim: Sequence[Union[str, ellipsis, None]], keepdim: _bool = False, *, dtype: Optional[_dtype] = None, out: Optional[Tensor] = None) -> Tensor: r""" sum(input, *, dtype=None) -> Tensor Returns the sum of all elements in the :attr:`input` tensor. Args: input (Tensor): the input tensor. Keyword args: dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. If specified, the input tensor is casted to :attr:`dtype` before the operation is performed. This is useful for preventing data type overflows. Default: None. Example:: >>> a = torch.randn(1, 3) >>> a tensor([[ 0.1133, -0.9567, 0.2958]]) >>> torch.sum(a) tensor(-0.5475) .. function:: sum(input, dim, keepdim=False, *, dtype=None) -> Tensor :noindex: Returns the sum of each row of the :attr:`input` tensor in the given dimension :attr:`dim`. If :attr:`dim` is a list of dimensions, reduce over all of them. If :attr:`keepdim` is ``True``, the output tensor is of the same size as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the output tensor having 1 (or ``len(dim)``) fewer dimension(s). Args: input (Tensor): the input tensor. dim (int or tuple of ints, optional): the dimension or dimensions to reduce. If ``None``, all dimensions are reduced. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. Keyword args: dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. If specified, the input tensor is casted to :attr:`dtype` before the operation is performed. This is useful for preventing data type overflows. Default: None. Example:: >>> a = torch.randn(4, 4) >>> a tensor([[ 0.0569, -0.2475, 0.0737, -0.3429], [-0.2993, 0.9138, 0.9337, -1.6864], [ 0.1132, 0.7892, -0.1003, 0.5688], [ 0.3637, -0.9906, -0.4752, -1.5197]]) >>> torch.sum(a, 1) tensor([-0.4598, -0.1381, 1.3708, -2.6217]) >>> b = torch.arange(4 * 5 * 6).view(4, 5, 6) >>> torch.sum(b, (2, 1)) tensor([ 435., 1335., 2235., 3135.]) """ ... def svd(input: Tensor, some: _bool = True, compute_uv: _bool = True, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.svd: r""" svd(input, some=True, compute_uv=True, *, out=None) -> (Tensor, Tensor, Tensor) Computes the singular value decomposition of either a matrix or batch of matrices :attr:`input`. The singular value decomposition is represented as a namedtuple `(U, S, V)`, such that :attr:`input` :math:`= U \text{diag}(S) V^{\text{H}}`. where :math:`V^{\text{H}}` is the transpose of `V` for real inputs, and the conjugate transpose of `V` for complex inputs. If :attr:`input` is a batch of matrices, then `U`, `S`, and `V` are also batched with the same batch dimensions as :attr:`input`. If :attr:`some` is `True` (default), the method returns the reduced singular value decomposition. In this case, if the last two dimensions of :attr:`input` are `m` and `n`, then the returned `U` and `V` matrices will contain only `min(n, m)` orthonormal columns. If :attr:`compute_uv` is `False`, the returned `U` and `V` will be zero-filled matrices of shape `(m, m)` and `(n, n)` respectively, and the same device as :attr:`input`. The argument :attr:`some` has no effect when :attr:`compute_uv` is `False`. Supports :attr:`input` of float, double, cfloat and cdouble data types. The dtypes of `U` and `V` are the same as :attr:`input`'s. `S` will always be real-valued, even if :attr:`input` is complex. .. warning:: :func:`torch.svd` is deprecated in favor of :func:`torch.linalg.svd` and will be removed in a future PyTorch release. ``U, S, V = torch.svd(A, some=some, compute_uv=True)`` (default) should be replaced with .. code:: python U, S, Vh = torch.linalg.svd(A, full_matrices=not some) V = Vh.mH ``_, S, _ = torch.svd(A, some=some, compute_uv=False)`` should be replaced with .. code:: python S = torch.linalg.svdvals(A) .. note:: Differences with :func:`torch.linalg.svd`: * :attr:`some` is the opposite of :func:`torch.linalg.svd`'s :attr:`full_matrices`. Note that default value for both is `True`, so the default behavior is effectively the opposite. * :func:`torch.svd` returns `V`, whereas :func:`torch.linalg.svd` returns `Vh`, that is, :math:`V^{\text{H}}`. * If :attr:`compute_uv` is `False`, :func:`torch.svd` returns zero-filled tensors for `U` and `Vh`, whereas :func:`torch.linalg.svd` returns empty tensors. .. note:: The singular values are returned in descending order. If :attr:`input` is a batch of matrices, then the singular values of each matrix in the batch are returned in descending order. .. note:: The `S` tensor can only be used to compute gradients if :attr:`compute_uv` is `True`. .. note:: When :attr:`some` is `False`, the gradients on `U[..., :, min(m, n):]` and `V[..., :, min(m, n):]` will be ignored in the backward pass, as those vectors can be arbitrary bases of the corresponding subspaces. .. note:: The implementation of :func:`torch.linalg.svd` on CPU uses LAPACK's routine `?gesdd` (a divide-and-conquer algorithm) instead of `?gesvd` for speed. Analogously, on GPU, it uses cuSOLVER's routines `gesvdj` and `gesvdjBatched` on CUDA 10.1.243 and later, and MAGMA's routine `gesdd` on earlier versions of CUDA. .. note:: The returned `U` will not be contiguous. The matrix (or batch of matrices) will be represented as a column-major matrix (i.e. Fortran-contiguous). .. warning:: The gradients with respect to `U` and `V` will only be finite when the input does not have zero nor repeated singular values. .. warning:: If the distance between any two singular values is close to zero, the gradients with respect to `U` and `V` will be numerically unstable, as they depends on :math:`\frac{1}{\min_{i \neq j} \sigma_i^2 - \sigma_j^2}`. The same happens when the matrix has small singular values, as these gradients also depend on `S^{-1}`. .. warning:: For complex-valued :attr:`input` the singular value decomposition is not unique, as `U` and `V` may be multiplied by an arbitrary phase factor :math:`e^{i \phi}` on every column. The same happens when :attr:`input` has repeated singular values, where one may multiply the columns of the spanning subspace in `U` and `V` by a rotation matrix and `the resulting vectors will span the same subspace`_. Different platforms, like NumPy, or inputs on different device types, may produce different `U` and `V` tensors. Args: input (Tensor): the input tensor of size `(*, m, n)` where `*` is zero or more batch dimensions consisting of `(m, n)` matrices. some (bool, optional): controls whether to compute the reduced or full decomposition, and consequently, the shape of returned `U` and `V`. Default: `True`. compute_uv (bool, optional): controls whether to compute `U` and `V`. Default: `True`. Keyword args: out (tuple, optional): the output tuple of tensors Example:: >>> a = torch.randn(5, 3) >>> a tensor([[ 0.2364, -0.7752, 0.6372], [ 1.7201, 0.7394, -0.0504], [-0.3371, -1.0584, 0.5296], [ 0.3550, -0.4022, 1.5569], [ 0.2445, -0.0158, 1.1414]]) >>> u, s, v = torch.svd(a) >>> u tensor([[ 0.4027, 0.0287, 0.5434], [-0.1946, 0.8833, 0.3679], [ 0.4296, -0.2890, 0.5261], [ 0.6604, 0.2717, -0.2618], [ 0.4234, 0.2481, -0.4733]]) >>> s tensor([2.3289, 2.0315, 0.7806]) >>> v tensor([[-0.0199, 0.8766, 0.4809], [-0.5080, 0.4054, -0.7600], [ 0.8611, 0.2594, -0.4373]]) >>> torch.dist(a, torch.mm(torch.mm(u, torch.diag(s)), v.t())) tensor(8.6531e-07) >>> a_big = torch.randn(7, 5, 3) >>> u, s, v = torch.svd(a_big) >>> torch.dist(a_big, torch.matmul(torch.matmul(u, torch.diag_embed(s)), v.mT)) tensor(2.6503e-06) .. _the resulting vectors will span the same subspace: (https://en.wikipedia.org/wiki/Singular_value_decomposition#Singular_values,_singular_vectors,_and_their_relation_to_the_SVD) """ ... def swapaxes(input: Tensor, axis0: _int, axis1: _int) -> Tensor: r""" swapaxes(input, axis0, axis1) -> Tensor Alias for :func:`torch.transpose`. This function is equivalent to NumPy's swapaxes function. Examples:: >>> x = torch.tensor([[[0,1],[2,3]],[[4,5],[6,7]]]) >>> x tensor([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]) >>> torch.swapaxes(x, 0, 1) tensor([[[0, 1], [4, 5]], [[2, 3], [6, 7]]]) >>> torch.swapaxes(x, 0, 2) tensor([[[0, 4], [2, 6]], [[1, 5], [3, 7]]]) """ ... def swapdims(input: Tensor, dim0: _int, dim1: _int) -> Tensor: r""" swapdims(input, dim0, dim1) -> Tensor Alias for :func:`torch.transpose`. This function is equivalent to NumPy's swapaxes function. Examples:: >>> x = torch.tensor([[[0,1],[2,3]],[[4,5],[6,7]]]) >>> x tensor([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]) >>> torch.swapdims(x, 0, 1) tensor([[[0, 1], [4, 5]], [[2, 3], [6, 7]]]) >>> torch.swapdims(x, 0, 2) tensor([[[0, 4], [2, 6]], [[1, 5], [3, 7]]]) """ ... def sym_constrain_range(size: Union[Number, _complex], *, min: Optional[_int] = None, max: Optional[_int] = None) -> None: ... def sym_constrain_range_for_size(size: Union[Number, _complex], *, min: Optional[_int] = None, max: Optional[_int] = None) -> None: ... def t(input: Tensor) -> Tensor: r""" t(input) -> Tensor Expects :attr:`input` to be <= 2-D tensor and transposes dimensions 0 and 1. 0-D and 1-D tensors are returned as is. When input is a 2-D tensor this is equivalent to ``transpose(input, 0, 1)``. Args: input (Tensor): the input tensor. Example:: >>> x = torch.randn(()) >>> x tensor(0.1995) >>> torch.t(x) tensor(0.1995) >>> x = torch.randn(3) >>> x tensor([ 2.4320, -0.4608, 0.7702]) >>> torch.t(x) tensor([ 2.4320, -0.4608, 0.7702]) >>> x = torch.randn(2, 3) >>> x tensor([[ 0.4875, 0.9158, -0.5872], [ 0.3938, -0.6929, 0.6932]]) >>> torch.t(x) tensor([[ 0.4875, 0.3938], [ 0.9158, -0.6929], [-0.5872, 0.6932]]) See also :func:`torch.transpose`. """ ... def t_copy(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" Performs the same operation as :func:`torch.t`, but all output tensors are freshly created instead of aliasing the input. """ ... def take(input: Tensor, index: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" take(input, index) -> Tensor Returns a new tensor with the elements of :attr:`input` at the given indices. The input tensor is treated as if it were viewed as a 1-D tensor. The result takes the same shape as the indices. Args: input (Tensor): the input tensor. index (LongTensor): the indices into tensor Example:: >>> src = torch.tensor([[4, 3, 5], ... [6, 7, 8]]) >>> torch.take(src, torch.tensor([0, 2, 5])) tensor([ 4, 5, 8]) """ ... def take_along_dim(input: Tensor, indices: Tensor, dim: Optional[_int] = None, *, out: Optional[Tensor] = None) -> Tensor: r""" take_along_dim(input, indices, dim=None, *, out=None) -> Tensor Selects values from :attr:`input` at the 1-dimensional indices from :attr:`indices` along the given :attr:`dim`. If :attr:`dim` is None, the input array is treated as if it has been flattened to 1d. Functions that return indices along a dimension, like :func:`torch.argmax` and :func:`torch.argsort`, are designed to work with this function. See the examples below. .. note:: This function is similar to NumPy's `take_along_axis`. See also :func:`torch.gather`. Args: input (Tensor): the input tensor. indices (tensor): the indices into :attr:`input`. Must have long dtype. dim (int, optional): dimension to select along. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> t = torch.tensor([[10, 30, 20], [60, 40, 50]]) >>> max_idx = torch.argmax(t) >>> torch.take_along_dim(t, max_idx) tensor([60]) >>> sorted_idx = torch.argsort(t, dim=1) >>> torch.take_along_dim(t, sorted_idx, dim=1) tensor([[10, 20, 30], [40, 50, 60]]) """ ... def tan(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" tan(input, *, out=None) -> Tensor Returns a new tensor with the tangent of the elements of :attr:`input`. .. math:: \text{out}_{i} = \tan(\text{input}_{i}) Args: input (Tensor): the input tensor. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.randn(4) >>> a tensor([-1.2027, -1.7687, 0.4412, -1.3856]) >>> torch.tan(a) tensor([-2.5930, 4.9859, 0.4722, -5.3366]) """ ... def tan_(input: Tensor) -> Tensor: ... def tanh(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" tanh(input, *, out=None) -> Tensor Returns a new tensor with the hyperbolic tangent of the elements of :attr:`input`. .. math:: \text{out}_{i} = \tanh(\text{input}_{i}) Args: input (Tensor): the input tensor. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.randn(4) >>> a tensor([ 0.8986, -0.7279, 1.1745, 0.2611]) >>> torch.tanh(a) tensor([ 0.7156, -0.6218, 0.8257, 0.2553]) """ ... def tanh_(input: Tensor) -> Tensor: ... def tensor(data: Any, dtype: Optional[_dtype] = None, device: Optional[DeviceLikeType] = None, requires_grad: _bool = False, pin_memory: _bool = False) -> Tensor: r""" tensor(data, *, dtype=None, device=None, requires_grad=False, pin_memory=False) -> Tensor Constructs a tensor with no autograd history (also known as a "leaf tensor", see :doc:`/notes/autograd`) by copying :attr:`data`. .. warning:: When working with tensors prefer using :func:`torch.Tensor.clone`, :func:`torch.Tensor.detach`, and :func:`torch.Tensor.requires_grad_` for readability. Letting `t` be a tensor, ``torch.tensor(t)`` is equivalent to ``t.clone().detach()``, and ``torch.tensor(t, requires_grad=True)`` is equivalent to ``t.clone().detach().requires_grad_(True)``. .. seealso:: :func:`torch.as_tensor` preserves autograd history and avoids copies where possible. :func:`torch.from_numpy` creates a tensor that shares storage with a NumPy array. Args: data (array_like): Initial data for the tensor. Can be a list, tuple, NumPy ``ndarray``, scalar, and other types. Keyword args: dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, infers data type from :attr:`data`. device (:class:`torch.device`, optional): the device of the constructed tensor. If None and data is a tensor then the device of data is used. If None and data is not a tensor then the result tensor is constructed on the current device. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. pin_memory (bool, optional): If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default: ``False``. Example:: >>> torch.tensor([[0.1, 1.2], [2.2, 3.1], [4.9, 5.2]]) tensor([[ 0.1000, 1.2000], [ 2.2000, 3.1000], [ 4.9000, 5.2000]]) >>> torch.tensor([0, 1]) # Type inference on data tensor([ 0, 1]) >>> torch.tensor([[0.11111, 0.222222, 0.3333333]], ... dtype=torch.float64, ... device=torch.device('cuda:0')) # creates a double tensor on a CUDA device tensor([[ 0.1111, 0.2222, 0.3333]], dtype=torch.float64, device='cuda:0') >>> torch.tensor(3.14159) # Create a zero-dimensional (scalar) tensor tensor(3.1416) >>> torch.tensor([]) # Create an empty tensor (of size (0,)) tensor([]) """ ... @overload def tensor_split(input: Tensor, tensor_indices_or_sections: Tensor, dim: _int = 0) -> Tuple[Tensor, ...]: r""" tensor_split(input, indices_or_sections, dim=0) -> List of Tensors Splits a tensor into multiple sub-tensors, all of which are views of :attr:`input`, along dimension :attr:`dim` according to the indices or number of sections specified by :attr:`indices_or_sections`. This function is based on NumPy's :func:`numpy.array_split`. Args: input (Tensor): the tensor to split indices_or_sections (Tensor, int or list or tuple of ints): If :attr:`indices_or_sections` is an integer ``n`` or a zero dimensional long tensor with value ``n``, :attr:`input` is split into ``n`` sections along dimension :attr:`dim`. If :attr:`input` is divisible by ``n`` along dimension :attr:`dim`, each section will be of equal size, :code:`input.size(dim) / n`. If :attr:`input` is not divisible by ``n``, the sizes of the first :code:`int(input.size(dim) % n)` sections will have size :code:`int(input.size(dim) / n) + 1`, and the rest will have size :code:`int(input.size(dim) / n)`. If :attr:`indices_or_sections` is a list or tuple of ints, or a one-dimensional long tensor, then :attr:`input` is split along dimension :attr:`dim` at each of the indices in the list, tuple or tensor. For instance, :code:`indices_or_sections=[2, 3]` and :code:`dim=0` would result in the tensors :code:`input[:2]`, :code:`input[2:3]`, and :code:`input[3:]`. If :attr:`indices_or_sections` is a tensor, it must be a zero-dimensional or one-dimensional long tensor on the CPU. dim (int, optional): dimension along which to split the tensor. Default: ``0`` Example:: >>> x = torch.arange(8) >>> torch.tensor_split(x, 3) (tensor([0, 1, 2]), tensor([3, 4, 5]), tensor([6, 7])) >>> x = torch.arange(7) >>> torch.tensor_split(x, 3) (tensor([0, 1, 2]), tensor([3, 4]), tensor([5, 6])) >>> torch.tensor_split(x, (1, 6)) (tensor([0]), tensor([1, 2, 3, 4, 5]), tensor([6])) >>> x = torch.arange(14).reshape(2, 7) >>> x tensor([[ 0, 1, 2, 3, 4, 5, 6], [ 7, 8, 9, 10, 11, 12, 13]]) >>> torch.tensor_split(x, 3, dim=1) (tensor([[0, 1, 2], [7, 8, 9]]), tensor([[ 3, 4], [10, 11]]), tensor([[ 5, 6], [12, 13]])) >>> torch.tensor_split(x, (1, 6), dim=1) (tensor([[0], [7]]), tensor([[ 1, 2, 3, 4, 5], [ 8, 9, 10, 11, 12]]), tensor([[ 6], [13]])) """ ... @overload def tensor_split(input: Tensor, sections: Union[_int, SymInt], dim: _int = 0) -> Tuple[Tensor, ...]: r""" tensor_split(input, indices_or_sections, dim=0) -> List of Tensors Splits a tensor into multiple sub-tensors, all of which are views of :attr:`input`, along dimension :attr:`dim` according to the indices or number of sections specified by :attr:`indices_or_sections`. This function is based on NumPy's :func:`numpy.array_split`. Args: input (Tensor): the tensor to split indices_or_sections (Tensor, int or list or tuple of ints): If :attr:`indices_or_sections` is an integer ``n`` or a zero dimensional long tensor with value ``n``, :attr:`input` is split into ``n`` sections along dimension :attr:`dim`. If :attr:`input` is divisible by ``n`` along dimension :attr:`dim`, each section will be of equal size, :code:`input.size(dim) / n`. If :attr:`input` is not divisible by ``n``, the sizes of the first :code:`int(input.size(dim) % n)` sections will have size :code:`int(input.size(dim) / n) + 1`, and the rest will have size :code:`int(input.size(dim) / n)`. If :attr:`indices_or_sections` is a list or tuple of ints, or a one-dimensional long tensor, then :attr:`input` is split along dimension :attr:`dim` at each of the indices in the list, tuple or tensor. For instance, :code:`indices_or_sections=[2, 3]` and :code:`dim=0` would result in the tensors :code:`input[:2]`, :code:`input[2:3]`, and :code:`input[3:]`. If :attr:`indices_or_sections` is a tensor, it must be a zero-dimensional or one-dimensional long tensor on the CPU. dim (int, optional): dimension along which to split the tensor. Default: ``0`` Example:: >>> x = torch.arange(8) >>> torch.tensor_split(x, 3) (tensor([0, 1, 2]), tensor([3, 4, 5]), tensor([6, 7])) >>> x = torch.arange(7) >>> torch.tensor_split(x, 3) (tensor([0, 1, 2]), tensor([3, 4]), tensor([5, 6])) >>> torch.tensor_split(x, (1, 6)) (tensor([0]), tensor([1, 2, 3, 4, 5]), tensor([6])) >>> x = torch.arange(14).reshape(2, 7) >>> x tensor([[ 0, 1, 2, 3, 4, 5, 6], [ 7, 8, 9, 10, 11, 12, 13]]) >>> torch.tensor_split(x, 3, dim=1) (tensor([[0, 1, 2], [7, 8, 9]]), tensor([[ 3, 4], [10, 11]]), tensor([[ 5, 6], [12, 13]])) >>> torch.tensor_split(x, (1, 6), dim=1) (tensor([[0], [7]]), tensor([[ 1, 2, 3, 4, 5], [ 8, 9, 10, 11, 12]]), tensor([[ 6], [13]])) """ ... @overload def tensor_split(input: Tensor, indices: Sequence[Union[_int, SymInt]], dim: _int = 0) -> Tuple[Tensor, ...]: r""" tensor_split(input, indices_or_sections, dim=0) -> List of Tensors Splits a tensor into multiple sub-tensors, all of which are views of :attr:`input`, along dimension :attr:`dim` according to the indices or number of sections specified by :attr:`indices_or_sections`. This function is based on NumPy's :func:`numpy.array_split`. Args: input (Tensor): the tensor to split indices_or_sections (Tensor, int or list or tuple of ints): If :attr:`indices_or_sections` is an integer ``n`` or a zero dimensional long tensor with value ``n``, :attr:`input` is split into ``n`` sections along dimension :attr:`dim`. If :attr:`input` is divisible by ``n`` along dimension :attr:`dim`, each section will be of equal size, :code:`input.size(dim) / n`. If :attr:`input` is not divisible by ``n``, the sizes of the first :code:`int(input.size(dim) % n)` sections will have size :code:`int(input.size(dim) / n) + 1`, and the rest will have size :code:`int(input.size(dim) / n)`. If :attr:`indices_or_sections` is a list or tuple of ints, or a one-dimensional long tensor, then :attr:`input` is split along dimension :attr:`dim` at each of the indices in the list, tuple or tensor. For instance, :code:`indices_or_sections=[2, 3]` and :code:`dim=0` would result in the tensors :code:`input[:2]`, :code:`input[2:3]`, and :code:`input[3:]`. If :attr:`indices_or_sections` is a tensor, it must be a zero-dimensional or one-dimensional long tensor on the CPU. dim (int, optional): dimension along which to split the tensor. Default: ``0`` Example:: >>> x = torch.arange(8) >>> torch.tensor_split(x, 3) (tensor([0, 1, 2]), tensor([3, 4, 5]), tensor([6, 7])) >>> x = torch.arange(7) >>> torch.tensor_split(x, 3) (tensor([0, 1, 2]), tensor([3, 4]), tensor([5, 6])) >>> torch.tensor_split(x, (1, 6)) (tensor([0]), tensor([1, 2, 3, 4, 5]), tensor([6])) >>> x = torch.arange(14).reshape(2, 7) >>> x tensor([[ 0, 1, 2, 3, 4, 5, 6], [ 7, 8, 9, 10, 11, 12, 13]]) >>> torch.tensor_split(x, 3, dim=1) (tensor([[0, 1, 2], [7, 8, 9]]), tensor([[ 3, 4], [10, 11]]), tensor([[ 5, 6], [12, 13]])) >>> torch.tensor_split(x, (1, 6), dim=1) (tensor([[0], [7]]), tensor([[ 1, 2, 3, 4, 5], [ 8, 9, 10, 11, 12]]), tensor([[ 6], [13]])) """ ... def threshold(input: Tensor, threshold: Union[Number, _complex], value: Union[Number, _complex], *, out: Optional[Tensor] = None) -> Tensor: ... def threshold_(input: Tensor, threshold: Union[Number, _complex], value: Union[Number, _complex]) -> Tensor: ... def tile(input: Tensor, dims: Sequence[Union[_int, SymInt]]) -> Tensor: r""" tile(input, dims) -> Tensor Constructs a tensor by repeating the elements of :attr:`input`. The :attr:`dims` argument specifies the number of repetitions in each dimension. If :attr:`dims` specifies fewer dimensions than :attr:`input` has, then ones are prepended to :attr:`dims` until all dimensions are specified. For example, if :attr:`input` has shape (8, 6, 4, 2) and :attr:`dims` is (2, 2), then :attr:`dims` is treated as (1, 1, 2, 2). Analogously, if :attr:`input` has fewer dimensions than :attr:`dims` specifies, then :attr:`input` is treated as if it were unsqueezed at dimension zero until it has as many dimensions as :attr:`dims` specifies. For example, if :attr:`input` has shape (4, 2) and :attr:`dims` is (3, 3, 2, 2), then :attr:`input` is treated as if it had the shape (1, 1, 4, 2). .. note:: This function is similar to NumPy's tile function. Args: input (Tensor): the tensor whose elements to repeat. dims (tuple): the number of repetitions per dimension. Example:: >>> x = torch.tensor([1, 2, 3]) >>> x.tile((2,)) tensor([1, 2, 3, 1, 2, 3]) >>> y = torch.tensor([[1, 2], [3, 4]]) >>> torch.tile(y, (2, 2)) tensor([[1, 2, 1, 2], [3, 4, 3, 4], [1, 2, 1, 2], [3, 4, 3, 4]]) """ ... def topk(input: Tensor, k: Union[_int, SymInt], dim: _int = -1, largest: _bool = True, sorted: _bool = True, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.topk: r""" topk(input, k, dim=None, largest=True, sorted=True, *, out=None) -> (Tensor, LongTensor) Returns the :attr:`k` largest elements of the given :attr:`input` tensor along a given dimension. If :attr:`dim` is not given, the last dimension of the `input` is chosen. If :attr:`largest` is ``False`` then the `k` smallest elements are returned. A namedtuple of `(values, indices)` is returned with the `values` and `indices` of the largest `k` elements of each row of the `input` tensor in the given dimension `dim`. The boolean option :attr:`sorted` if ``True``, will make sure that the returned `k` elements are themselves sorted Args: input (Tensor): the input tensor. k (int): the k in "top-k" dim (int, optional): the dimension to sort along largest (bool, optional): controls whether to return largest or smallest elements sorted (bool, optional): controls whether to return the elements in sorted order Keyword args: out (tuple, optional): the output tuple of (Tensor, LongTensor) that can be optionally given to be used as output buffers Example:: >>> x = torch.arange(1., 6.) >>> x tensor([ 1., 2., 3., 4., 5.]) >>> torch.topk(x, 3) torch.return_types.topk(values=tensor([5., 4., 3.]), indices=tensor([4, 3, 2])) """ ... def trace(input: Tensor) -> Tensor: r""" trace(input) -> Tensor Returns the sum of the elements of the diagonal of the input 2-D matrix. Example:: >>> x = torch.arange(1., 10.).view(3, 3) >>> x tensor([[ 1., 2., 3.], [ 4., 5., 6.], [ 7., 8., 9.]]) >>> torch.trace(x) tensor(15.) """ ... @overload def transpose(input: Tensor, dim0: _int, dim1: _int) -> Tensor: r""" transpose(input, dim0, dim1) -> Tensor Returns a tensor that is a transposed version of :attr:`input`. The given dimensions :attr:`dim0` and :attr:`dim1` are swapped. If :attr:`input` is a strided tensor then the resulting :attr:`out` tensor shares its underlying storage with the :attr:`input` tensor, so changing the content of one would change the content of the other. If :attr:`input` is a :ref:`sparse tensor ` then the resulting :attr:`out` tensor *does not* share the underlying storage with the :attr:`input` tensor. If :attr:`input` is a :ref:`sparse tensor ` with compressed layout (SparseCSR, SparseBSR, SparseCSC or SparseBSC) the arguments :attr:`dim0` and :attr:`dim1` must be both batch dimensions, or must both be sparse dimensions. The batch dimensions of a sparse tensor are the dimensions preceding the sparse dimensions. .. note:: Transpositions which interchange the sparse dimensions of a `SparseCSR` or `SparseCSC` layout tensor will result in the layout changing between the two options. Transposition of the sparse dimensions of a ` SparseBSR` or `SparseBSC` layout tensor will likewise generate a result with the opposite layout. Args: input (Tensor): the input tensor. dim0 (int): the first dimension to be transposed dim1 (int): the second dimension to be transposed Example:: >>> x = torch.randn(2, 3) >>> x tensor([[ 1.0028, -0.9893, 0.5809], [-0.1669, 0.7299, 0.4942]]) >>> torch.transpose(x, 0, 1) tensor([[ 1.0028, -0.1669], [-0.9893, 0.7299], [ 0.5809, 0.4942]]) See also :func:`torch.t`. """ ... @overload def transpose(input: Tensor, dim0: Union[str, ellipsis, None], dim1: Union[str, ellipsis, None]) -> Tensor: r""" transpose(input, dim0, dim1) -> Tensor Returns a tensor that is a transposed version of :attr:`input`. The given dimensions :attr:`dim0` and :attr:`dim1` are swapped. If :attr:`input` is a strided tensor then the resulting :attr:`out` tensor shares its underlying storage with the :attr:`input` tensor, so changing the content of one would change the content of the other. If :attr:`input` is a :ref:`sparse tensor ` then the resulting :attr:`out` tensor *does not* share the underlying storage with the :attr:`input` tensor. If :attr:`input` is a :ref:`sparse tensor ` with compressed layout (SparseCSR, SparseBSR, SparseCSC or SparseBSC) the arguments :attr:`dim0` and :attr:`dim1` must be both batch dimensions, or must both be sparse dimensions. The batch dimensions of a sparse tensor are the dimensions preceding the sparse dimensions. .. note:: Transpositions which interchange the sparse dimensions of a `SparseCSR` or `SparseCSC` layout tensor will result in the layout changing between the two options. Transposition of the sparse dimensions of a ` SparseBSR` or `SparseBSC` layout tensor will likewise generate a result with the opposite layout. Args: input (Tensor): the input tensor. dim0 (int): the first dimension to be transposed dim1 (int): the second dimension to be transposed Example:: >>> x = torch.randn(2, 3) >>> x tensor([[ 1.0028, -0.9893, 0.5809], [-0.1669, 0.7299, 0.4942]]) >>> torch.transpose(x, 0, 1) tensor([[ 1.0028, -0.1669], [-0.9893, 0.7299], [ 0.5809, 0.4942]]) See also :func:`torch.t`. """ ... def transpose_copy(input: Tensor, dim0: _int, dim1: _int, *, out: Optional[Tensor] = None) -> Tensor: r""" Performs the same operation as :func:`torch.transpose`, but all output tensors are freshly created instead of aliasing the input. """ ... @overload def trapezoid(y: Tensor, x: Tensor, *, dim: _int = -1) -> Tensor: r""" trapezoid(y, x=None, *, dx=None, dim=-1) -> Tensor Computes the `trapezoidal rule `_ along :attr:`dim`. By default the spacing between elements is assumed to be 1, but :attr:`dx` can be used to specify a different constant spacing, and :attr:`x` can be used to specify arbitrary spacing along :attr:`dim`. Assuming :attr:`y` is a one-dimensional tensor with elements :math:`{y_0, y_1, ..., y_n}`, the default computation is .. math:: \begin{aligned} \sum_{i = 1}^{n-1} \frac{1}{2} (y_i + y_{i-1}) \end{aligned} When :attr:`dx` is specified the computation becomes .. math:: \begin{aligned} \sum_{i = 1}^{n-1} \frac{\Delta x}{2} (y_i + y_{i-1}) \end{aligned} effectively multiplying the result by :attr:`dx`. When :attr:`x` is specified, assuming :attr:`x` is also a one-dimensional tensor with elements :math:`{x_0, x_1, ..., x_n}`, the computation becomes .. math:: \begin{aligned} \sum_{i = 1}^{n-1} \frac{(x_i - x_{i-1})}{2} (y_i + y_{i-1}) \end{aligned} When :attr:`x` and :attr:`y` have the same size, the computation is as described above and no broadcasting is needed. The broadcasting behavior of this function is as follows when their sizes are different. For both :attr:`x` and :attr:`y`, the function computes the difference between consecutive elements along dimension :attr:`dim`. This effectively creates two tensors, `x_diff` and `y_diff`, that have the same shape as the original tensors except their lengths along the dimension :attr:`dim` is reduced by 1. After that, those two tensors are broadcast together to compute final output as part of the trapezoidal rule. See the examples below for details. .. note:: The trapezoidal rule is a technique for approximating the definite integral of a function by averaging its left and right Riemann sums. The approximation becomes more accurate as the resolution of the partition increases. Arguments: y (Tensor): Values to use when computing the trapezoidal rule. x (Tensor): If specified, defines spacing between values as specified above. Keyword arguments: dx (float): constant spacing between values. If neither :attr:`x` or :attr:`dx` are specified then this defaults to 1. Effectively multiplies the result by its value. dim (int): The dimension along which to compute the trapezoidal rule. The last (inner-most) dimension by default. Examples:: >>> # Computes the trapezoidal rule in 1D, spacing is implicitly 1 >>> y = torch.tensor([1, 5, 10]) >>> torch.trapezoid(y) tensor(10.5) >>> # Computes the same trapezoidal rule directly to verify >>> (1 + 10 + 10) / 2 10.5 >>> # Computes the trapezoidal rule in 1D with constant spacing of 2 >>> # NOTE: the result is the same as before, but multiplied by 2 >>> torch.trapezoid(y, dx=2) 21.0 >>> # Computes the trapezoidal rule in 1D with arbitrary spacing >>> x = torch.tensor([1, 3, 6]) >>> torch.trapezoid(y, x) 28.5 >>> # Computes the same trapezoidal rule directly to verify >>> ((3 - 1) * (1 + 5) + (6 - 3) * (5 + 10)) / 2 28.5 >>> # Computes the trapezoidal rule for each row of a 3x3 matrix >>> y = torch.arange(9).reshape(3, 3) tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) >>> torch.trapezoid(y) tensor([ 2., 8., 14.]) >>> # Computes the trapezoidal rule for each column of the matrix >>> torch.trapezoid(y, dim=0) tensor([ 6., 8., 10.]) >>> # Computes the trapezoidal rule for each row of a 3x3 ones matrix >>> # with the same arbitrary spacing >>> y = torch.ones(3, 3) >>> x = torch.tensor([1, 3, 6]) >>> torch.trapezoid(y, x) array([5., 5., 5.]) >>> # Computes the trapezoidal rule for each row of a 3x3 ones matrix >>> # with different arbitrary spacing per row >>> y = torch.ones(3, 3) >>> x = torch.tensor([[1, 2, 3], [1, 3, 5], [1, 4, 7]]) >>> torch.trapezoid(y, x) array([2., 4., 6.]) """ ... @overload def trapezoid(y: Tensor, *, dx: Union[Number, _complex] = 1, dim: _int = -1) -> Tensor: r""" trapezoid(y, x=None, *, dx=None, dim=-1) -> Tensor Computes the `trapezoidal rule `_ along :attr:`dim`. By default the spacing between elements is assumed to be 1, but :attr:`dx` can be used to specify a different constant spacing, and :attr:`x` can be used to specify arbitrary spacing along :attr:`dim`. Assuming :attr:`y` is a one-dimensional tensor with elements :math:`{y_0, y_1, ..., y_n}`, the default computation is .. math:: \begin{aligned} \sum_{i = 1}^{n-1} \frac{1}{2} (y_i + y_{i-1}) \end{aligned} When :attr:`dx` is specified the computation becomes .. math:: \begin{aligned} \sum_{i = 1}^{n-1} \frac{\Delta x}{2} (y_i + y_{i-1}) \end{aligned} effectively multiplying the result by :attr:`dx`. When :attr:`x` is specified, assuming :attr:`x` is also a one-dimensional tensor with elements :math:`{x_0, x_1, ..., x_n}`, the computation becomes .. math:: \begin{aligned} \sum_{i = 1}^{n-1} \frac{(x_i - x_{i-1})}{2} (y_i + y_{i-1}) \end{aligned} When :attr:`x` and :attr:`y` have the same size, the computation is as described above and no broadcasting is needed. The broadcasting behavior of this function is as follows when their sizes are different. For both :attr:`x` and :attr:`y`, the function computes the difference between consecutive elements along dimension :attr:`dim`. This effectively creates two tensors, `x_diff` and `y_diff`, that have the same shape as the original tensors except their lengths along the dimension :attr:`dim` is reduced by 1. After that, those two tensors are broadcast together to compute final output as part of the trapezoidal rule. See the examples below for details. .. note:: The trapezoidal rule is a technique for approximating the definite integral of a function by averaging its left and right Riemann sums. The approximation becomes more accurate as the resolution of the partition increases. Arguments: y (Tensor): Values to use when computing the trapezoidal rule. x (Tensor): If specified, defines spacing between values as specified above. Keyword arguments: dx (float): constant spacing between values. If neither :attr:`x` or :attr:`dx` are specified then this defaults to 1. Effectively multiplies the result by its value. dim (int): The dimension along which to compute the trapezoidal rule. The last (inner-most) dimension by default. Examples:: >>> # Computes the trapezoidal rule in 1D, spacing is implicitly 1 >>> y = torch.tensor([1, 5, 10]) >>> torch.trapezoid(y) tensor(10.5) >>> # Computes the same trapezoidal rule directly to verify >>> (1 + 10 + 10) / 2 10.5 >>> # Computes the trapezoidal rule in 1D with constant spacing of 2 >>> # NOTE: the result is the same as before, but multiplied by 2 >>> torch.trapezoid(y, dx=2) 21.0 >>> # Computes the trapezoidal rule in 1D with arbitrary spacing >>> x = torch.tensor([1, 3, 6]) >>> torch.trapezoid(y, x) 28.5 >>> # Computes the same trapezoidal rule directly to verify >>> ((3 - 1) * (1 + 5) + (6 - 3) * (5 + 10)) / 2 28.5 >>> # Computes the trapezoidal rule for each row of a 3x3 matrix >>> y = torch.arange(9).reshape(3, 3) tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) >>> torch.trapezoid(y) tensor([ 2., 8., 14.]) >>> # Computes the trapezoidal rule for each column of the matrix >>> torch.trapezoid(y, dim=0) tensor([ 6., 8., 10.]) >>> # Computes the trapezoidal rule for each row of a 3x3 ones matrix >>> # with the same arbitrary spacing >>> y = torch.ones(3, 3) >>> x = torch.tensor([1, 3, 6]) >>> torch.trapezoid(y, x) array([5., 5., 5.]) >>> # Computes the trapezoidal rule for each row of a 3x3 ones matrix >>> # with different arbitrary spacing per row >>> y = torch.ones(3, 3) >>> x = torch.tensor([[1, 2, 3], [1, 3, 5], [1, 4, 7]]) >>> torch.trapezoid(y, x) array([2., 4., 6.]) """ ... @overload def trapz(y: Tensor, *, dx: _float = 1, dim: _int = -1) -> Tensor: r""" trapz(y, x, *, dim=-1) -> Tensor Alias for :func:`torch.trapezoid`. """ ... @overload def trapz(y: Tensor, x: Tensor, *, dim: _int = -1) -> Tensor: r""" trapz(y, x, *, dim=-1) -> Tensor Alias for :func:`torch.trapezoid`. """ ... def triangular_solve(input: Tensor, A: Tensor, upper: _bool = True, transpose: _bool = False, unitriangular: _bool = False, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.triangular_solve: r""" triangular_solve(b, A, upper=True, transpose=False, unitriangular=False, *, out=None) -> (Tensor, Tensor) Solves a system of equations with a square upper or lower triangular invertible matrix :math:`A` and multiple right-hand sides :math:`b`. In symbols, it solves :math:`AX = b` and assumes :math:`A` is square upper-triangular (or lower-triangular if :attr:`upper`\ `= False`) and does not have zeros on the diagonal. `torch.triangular_solve(b, A)` can take in 2D inputs `b, A` or inputs that are batches of 2D matrices. If the inputs are batches, then returns batched outputs `X` If the diagonal of :attr:`A` contains zeros or elements that are very close to zero and :attr:`unitriangular`\ `= False` (default) or if the input matrix is badly conditioned, the result may contain `NaN` s. Supports input of float, double, cfloat and cdouble data types. .. warning:: :func:`torch.triangular_solve` is deprecated in favor of :func:`torch.linalg.solve_triangular` and will be removed in a future PyTorch release. :func:`torch.linalg.solve_triangular` has its arguments reversed and does not return a copy of one of the inputs. ``X = torch.triangular_solve(B, A).solution`` should be replaced with .. code:: python X = torch.linalg.solve_triangular(A, B) Args: b (Tensor): multiple right-hand sides of size :math:`(*, m, k)` where :math:`*` is zero of more batch dimensions A (Tensor): the input triangular coefficient matrix of size :math:`(*, m, m)` where :math:`*` is zero or more batch dimensions upper (bool, optional): whether :math:`A` is upper or lower triangular. Default: ``True``. transpose (bool, optional): solves `op(A)X = b` where `op(A) = A^T` if this flag is ``True``, and `op(A) = A` if it is ``False``. Default: ``False``. unitriangular (bool, optional): whether :math:`A` is unit triangular. If True, the diagonal elements of :math:`A` are assumed to be 1 and not referenced from :math:`A`. Default: ``False``. Keyword args: out ((Tensor, Tensor), optional): tuple of two tensors to write the output to. Ignored if `None`. Default: `None`. Returns: A namedtuple `(solution, cloned_coefficient)` where `cloned_coefficient` is a clone of :math:`A` and `solution` is the solution :math:`X` to :math:`AX = b` (or whatever variant of the system of equations, depending on the keyword arguments.) Examples:: >>> A = torch.randn(2, 2).triu() >>> A tensor([[ 1.1527, -1.0753], [ 0.0000, 0.7986]]) >>> b = torch.randn(2, 3) >>> b tensor([[-0.0210, 2.3513, -1.5492], [ 1.5429, 0.7403, -1.0243]]) >>> torch.triangular_solve(b, A) torch.return_types.triangular_solve( solution=tensor([[ 1.7841, 2.9046, -2.5405], [ 1.9320, 0.9270, -1.2826]]), cloned_coefficient=tensor([[ 1.1527, -1.0753], [ 0.0000, 0.7986]])) """ ... def tril(input: Tensor, diagonal: _int = 0, *, out: Optional[Tensor] = None) -> Tensor: r""" tril(input, diagonal=0, *, out=None) -> Tensor Returns the lower triangular part of the matrix (2-D tensor) or batch of matrices :attr:`input`, the other elements of the result tensor :attr:`out` are set to 0. The lower triangular part of the matrix is defined as the elements on and below the diagonal. The argument :attr:`diagonal` controls which diagonal to consider. If :attr:`diagonal` = 0, all elements on and below the main diagonal are retained. A positive value includes just as many diagonals above the main diagonal, and similarly a negative value excludes just as many diagonals below the main diagonal. The main diagonal are the set of indices :math:`\lbrace (i, i) \rbrace` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where :math:`d_{1}, d_{2}` are the dimensions of the matrix. Args: input (Tensor): the input tensor. diagonal (int, optional): the diagonal to consider Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.randn(3, 3) >>> a tensor([[-1.0813, -0.8619, 0.7105], [ 0.0935, 0.1380, 2.2112], [-0.3409, -0.9828, 0.0289]]) >>> torch.tril(a) tensor([[-1.0813, 0.0000, 0.0000], [ 0.0935, 0.1380, 0.0000], [-0.3409, -0.9828, 0.0289]]) >>> b = torch.randn(4, 6) >>> b tensor([[ 1.2219, 0.5653, -0.2521, -0.2345, 1.2544, 0.3461], [ 0.4785, -0.4477, 0.6049, 0.6368, 0.8775, 0.7145], [ 1.1502, 3.2716, -1.1243, -0.5413, 0.3615, 0.6864], [-0.0614, -0.7344, -1.3164, -0.7648, -1.4024, 0.0978]]) >>> torch.tril(b, diagonal=1) tensor([[ 1.2219, 0.5653, 0.0000, 0.0000, 0.0000, 0.0000], [ 0.4785, -0.4477, 0.6049, 0.0000, 0.0000, 0.0000], [ 1.1502, 3.2716, -1.1243, -0.5413, 0.0000, 0.0000], [-0.0614, -0.7344, -1.3164, -0.7648, -1.4024, 0.0000]]) >>> torch.tril(b, diagonal=-1) tensor([[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [ 0.4785, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [ 1.1502, 3.2716, 0.0000, 0.0000, 0.0000, 0.0000], [-0.0614, -0.7344, -1.3164, 0.0000, 0.0000, 0.0000]]) """ ... def tril_indices(row: _int, col: _int, offset: _int = 0, *, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" tril_indices(row, col, offset=0, *, dtype=torch.long, device='cpu', layout=torch.strided) -> Tensor Returns the indices of the lower triangular part of a :attr:`row`-by- :attr:`col` matrix in a 2-by-N Tensor, where the first row contains row coordinates of all indices and the second row contains column coordinates. Indices are ordered based on rows and then columns. The lower triangular part of the matrix is defined as the elements on and below the diagonal. The argument :attr:`offset` controls which diagonal to consider. If :attr:`offset` = 0, all elements on and below the main diagonal are retained. A positive value includes just as many diagonals above the main diagonal, and similarly a negative value excludes just as many diagonals below the main diagonal. The main diagonal are the set of indices :math:`\lbrace (i, i) \rbrace` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where :math:`d_{1}, d_{2}` are the dimensions of the matrix. .. note:: When running on CUDA, ``row * col`` must be less than :math:`2^{59}` to prevent overflow during calculation. Args: row (``int``): number of rows in the 2-D matrix. col (``int``): number of columns in the 2-D matrix. offset (``int``): diagonal offset from the main diagonal. Default: if not provided, 0. Keyword args: dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, ``torch.long``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. layout (:class:`torch.layout`, optional): currently only support ``torch.strided``. Example:: >>> a = torch.tril_indices(3, 3) >>> a tensor([[0, 1, 1, 2, 2, 2], [0, 0, 1, 0, 1, 2]]) >>> a = torch.tril_indices(4, 3, -1) >>> a tensor([[1, 2, 2, 3, 3, 3], [0, 0, 1, 0, 1, 2]]) >>> a = torch.tril_indices(4, 3, 1) >>> a tensor([[0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3], [0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 2]]) """ ... def triplet_margin_loss(anchor: Tensor, positive: Tensor, negative: Tensor, margin: _float = 1.0, p: _float = 2, eps: _float = 1e-06, swap: _bool = False, reduction: _int = 1) -> Tensor: ... def triu(input: Tensor, diagonal: _int = 0, *, out: Optional[Tensor] = None) -> Tensor: r""" triu(input, diagonal=0, *, out=None) -> Tensor Returns the upper triangular part of a matrix (2-D tensor) or batch of matrices :attr:`input`, the other elements of the result tensor :attr:`out` are set to 0. The upper triangular part of the matrix is defined as the elements on and above the diagonal. The argument :attr:`diagonal` controls which diagonal to consider. If :attr:`diagonal` = 0, all elements on and above the main diagonal are retained. A positive value excludes just as many diagonals above the main diagonal, and similarly a negative value includes just as many diagonals below the main diagonal. The main diagonal are the set of indices :math:`\lbrace (i, i) \rbrace` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where :math:`d_{1}, d_{2}` are the dimensions of the matrix. Args: input (Tensor): the input tensor. diagonal (int, optional): the diagonal to consider Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.randn(3, 3) >>> a tensor([[ 0.2309, 0.5207, 2.0049], [ 0.2072, -1.0680, 0.6602], [ 0.3480, -0.5211, -0.4573]]) >>> torch.triu(a) tensor([[ 0.2309, 0.5207, 2.0049], [ 0.0000, -1.0680, 0.6602], [ 0.0000, 0.0000, -0.4573]]) >>> torch.triu(a, diagonal=1) tensor([[ 0.0000, 0.5207, 2.0049], [ 0.0000, 0.0000, 0.6602], [ 0.0000, 0.0000, 0.0000]]) >>> torch.triu(a, diagonal=-1) tensor([[ 0.2309, 0.5207, 2.0049], [ 0.2072, -1.0680, 0.6602], [ 0.0000, -0.5211, -0.4573]]) >>> b = torch.randn(4, 6) >>> b tensor([[ 0.5876, -0.0794, -1.8373, 0.6654, 0.2604, 1.5235], [-0.2447, 0.9556, -1.2919, 1.3378, -0.1768, -1.0857], [ 0.4333, 0.3146, 0.6576, -1.0432, 0.9348, -0.4410], [-0.9888, 1.0679, -1.3337, -1.6556, 0.4798, 0.2830]]) >>> torch.triu(b, diagonal=1) tensor([[ 0.0000, -0.0794, -1.8373, 0.6654, 0.2604, 1.5235], [ 0.0000, 0.0000, -1.2919, 1.3378, -0.1768, -1.0857], [ 0.0000, 0.0000, 0.0000, -1.0432, 0.9348, -0.4410], [ 0.0000, 0.0000, 0.0000, 0.0000, 0.4798, 0.2830]]) >>> torch.triu(b, diagonal=-1) tensor([[ 0.5876, -0.0794, -1.8373, 0.6654, 0.2604, 1.5235], [-0.2447, 0.9556, -1.2919, 1.3378, -0.1768, -1.0857], [ 0.0000, 0.3146, 0.6576, -1.0432, 0.9348, -0.4410], [ 0.0000, 0.0000, -1.3337, -1.6556, 0.4798, 0.2830]]) """ ... def triu_indices(row: _int, col: _int, offset: _int = 0, *, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" triu_indices(row, col, offset=0, *, dtype=torch.long, device='cpu', layout=torch.strided) -> Tensor Returns the indices of the upper triangular part of a :attr:`row` by :attr:`col` matrix in a 2-by-N Tensor, where the first row contains row coordinates of all indices and the second row contains column coordinates. Indices are ordered based on rows and then columns. The upper triangular part of the matrix is defined as the elements on and above the diagonal. The argument :attr:`offset` controls which diagonal to consider. If :attr:`offset` = 0, all elements on and above the main diagonal are retained. A positive value excludes just as many diagonals above the main diagonal, and similarly a negative value includes just as many diagonals below the main diagonal. The main diagonal are the set of indices :math:`\lbrace (i, i) \rbrace` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where :math:`d_{1}, d_{2}` are the dimensions of the matrix. .. note:: When running on CUDA, ``row * col`` must be less than :math:`2^{59}` to prevent overflow during calculation. Args: row (``int``): number of rows in the 2-D matrix. col (``int``): number of columns in the 2-D matrix. offset (``int``): diagonal offset from the main diagonal. Default: if not provided, 0. Keyword args: dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, ``torch.long``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. layout (:class:`torch.layout`, optional): currently only support ``torch.strided``. Example:: >>> a = torch.triu_indices(3, 3) >>> a tensor([[0, 0, 0, 1, 1, 2], [0, 1, 2, 1, 2, 2]]) >>> a = torch.triu_indices(4, 3, -1) >>> a tensor([[0, 0, 0, 1, 1, 1, 2, 2, 3], [0, 1, 2, 0, 1, 2, 1, 2, 2]]) >>> a = torch.triu_indices(4, 3, 1) >>> a tensor([[0, 0, 1], [1, 2, 2]]) """ ... def true_divide(input: Union[Tensor, Number], other: Union[Tensor, Number], *, out: Optional[Tensor] = None) -> Tensor: r""" true_divide(dividend, divisor, *, out) -> Tensor Alias for :func:`torch.div` with ``rounding_mode=None``. """ ... def trunc(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" trunc(input, *, out=None) -> Tensor Returns a new tensor with the truncated integer values of the elements of :attr:`input`. For integer inputs, follows the array-api convention of returning a copy of the input tensor. Args: input (Tensor): the input tensor. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.randn(4) >>> a tensor([ 3.4742, 0.5466, -0.8008, -0.9079]) >>> torch.trunc(a) tensor([ 3., 0., -0., -0.]) """ ... def trunc_(input: Tensor) -> Tensor: ... @overload def unbind(input: Tensor, dim: _int = 0) -> Tuple[Tensor, ...]: r""" unbind(input, dim=0) -> seq Removes a tensor dimension. Returns a tuple of all slices along a given dimension, already without it. Arguments: input (Tensor): the tensor to unbind dim (int): dimension to remove Example:: >>> torch.unbind(torch.tensor([[1, 2, 3], >>> [4, 5, 6], >>> [7, 8, 9]])) (tensor([1, 2, 3]), tensor([4, 5, 6]), tensor([7, 8, 9])) """ ... @overload def unbind(input: Tensor, dim: Union[str, ellipsis, None]) -> Tuple[Tensor, ...]: r""" unbind(input, dim=0) -> seq Removes a tensor dimension. Returns a tuple of all slices along a given dimension, already without it. Arguments: input (Tensor): the tensor to unbind dim (int): dimension to remove Example:: >>> torch.unbind(torch.tensor([[1, 2, 3], >>> [4, 5, 6], >>> [7, 8, 9]])) (tensor([1, 2, 3]), tensor([4, 5, 6]), tensor([7, 8, 9])) """ ... def unbind_copy(input: Tensor, dim: _int = 0, *, out: Union[Tuple[Tensor, ...], List[Tensor], None] = None) -> None: r""" Performs the same operation as :func:`torch.unbind`, but all output tensors are freshly created instead of aliasing the input. """ ... @overload def unflatten(input: Tensor, dim: Union[str, ellipsis, None], sizes: Sequence[Union[_int, SymInt]], names: Sequence[Union[str, ellipsis, None]]) -> Tensor: r""" unflatten(input, dim, sizes) -> Tensor Expands a dimension of the input tensor over multiple dimensions. .. seealso:: :func:`torch.flatten` the inverse of this function. It coalesces several dimensions into one. Args: input (Tensor): the input tensor. dim (int): Dimension to be unflattened, specified as an index into ``input.shape``. sizes (Tuple[int]): New shape of the unflattened dimension. One of its elements can be `-1` in which case the corresponding output dimension is inferred. Otherwise, the product of ``sizes`` *must* equal ``input.shape[dim]``. Returns: A View of input with the specified dimension unflattened. Examples:: >>> torch.unflatten(torch.randn(3, 4, 1), 1, (2, 2)).shape torch.Size([3, 2, 2, 1]) >>> torch.unflatten(torch.randn(3, 4, 1), 1, (-1, 2)).shape torch.Size([3, 2, 2, 1]) >>> torch.unflatten(torch.randn(5, 12, 3), -2, (2, 2, 3, 1, 1)).shape torch.Size([5, 2, 2, 3, 1, 1, 3]) """ ... @overload def unflatten(input: Tensor, dim: _int, sizes: Sequence[Union[_int, SymInt]]) -> Tensor: r""" unflatten(input, dim, sizes) -> Tensor Expands a dimension of the input tensor over multiple dimensions. .. seealso:: :func:`torch.flatten` the inverse of this function. It coalesces several dimensions into one. Args: input (Tensor): the input tensor. dim (int): Dimension to be unflattened, specified as an index into ``input.shape``. sizes (Tuple[int]): New shape of the unflattened dimension. One of its elements can be `-1` in which case the corresponding output dimension is inferred. Otherwise, the product of ``sizes`` *must* equal ``input.shape[dim]``. Returns: A View of input with the specified dimension unflattened. Examples:: >>> torch.unflatten(torch.randn(3, 4, 1), 1, (2, 2)).shape torch.Size([3, 2, 2, 1]) >>> torch.unflatten(torch.randn(3, 4, 1), 1, (-1, 2)).shape torch.Size([3, 2, 2, 1]) >>> torch.unflatten(torch.randn(5, 12, 3), -2, (2, 2, 3, 1, 1)).shape torch.Size([5, 2, 2, 3, 1, 1, 3]) """ ... def unfold_copy(input: Tensor, dimension: _int, size: _int, step: _int, *, out: Optional[Tensor] = None) -> Tensor: r""" Performs the same operation as :func:`torch.unfold`, but all output tensors are freshly created instead of aliasing the input. """ ... def unique_dim(input: Tensor, dim: _int, sorted: _bool = True, return_inverse: _bool = False, return_counts: _bool = False) -> Tuple[Tensor, Tensor, Tensor]: ... def unsafe_chunk(input: Tensor, chunks: _int, dim: _int = 0) -> Tuple[Tensor, ...]: r""" unsafe_chunk(input, chunks, dim=0) -> List of Tensors Works like :func:`torch.chunk` but without enforcing the autograd restrictions on inplace modification of the outputs. .. warning:: This function is safe to use as long as only the input, or only the outputs are modified inplace after calling this function. It is user's responsibility to ensure that is the case. If both the input and one or more of the outputs are modified inplace, gradients computed by autograd will be silently incorrect. """ ... def unsafe_split(input: Tensor, split_size: Union[_int, SymInt], dim: _int = 0) -> Tuple[Tensor, ...]: r""" unsafe_split(tensor, split_size_or_sections, dim=0) -> List of Tensors Works like :func:`torch.split` but without enforcing the autograd restrictions on inplace modification of the outputs. .. warning:: This function is safe to use as long as only the input, or only the outputs are modified inplace after calling this function. It is user's responsibility to ensure that is the case. If both the input and one or more of the outputs are modified inplace, gradients computed by autograd will be silently incorrect. """ ... def unsafe_split_with_sizes(input: Tensor, split_sizes: Sequence[Union[_int, SymInt]], dim: _int = 0) -> Tuple[Tensor, ...]: ... def unsqueeze(input: Tensor, dim: _int) -> Tensor: r""" unsqueeze(input, dim) -> Tensor Returns a new tensor with a dimension of size one inserted at the specified position. The returned tensor shares the same underlying data with this tensor. A :attr:`dim` value within the range ``[-input.dim() - 1, input.dim() + 1)`` can be used. Negative :attr:`dim` will correspond to :meth:`unsqueeze` applied at :attr:`dim` = ``dim + input.dim() + 1``. Args: input (Tensor): the input tensor. dim (int): the index at which to insert the singleton dimension Example:: >>> x = torch.tensor([1, 2, 3, 4]) >>> torch.unsqueeze(x, 0) tensor([[ 1, 2, 3, 4]]) >>> torch.unsqueeze(x, 1) tensor([[ 1], [ 2], [ 3], [ 4]]) """ ... def unsqueeze_copy(input: Tensor, dim: _int, *, out: Optional[Tensor] = None) -> Tensor: r""" Performs the same operation as :func:`torch.unsqueeze`, but all output tensors are freshly created instead of aliasing the input. """ ... def values_copy(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" Performs the same operation as :func:`torch.values`, but all output tensors are freshly created instead of aliasing the input. """ ... def vander(x: Tensor, N: Optional[_int] = None, increasing: _bool = False) -> Tensor: r""" vander(x, N=None, increasing=False) -> Tensor Generates a Vandermonde matrix. The columns of the output matrix are elementwise powers of the input vector :math:`x^{(N-1)}, x^{(N-2)}, ..., x^0`. If increasing is True, the order of the columns is reversed :math:`x^0, x^1, ..., x^{(N-1)}`. Such a matrix with a geometric progression in each row is named for Alexandre-Theophile Vandermonde. Arguments: x (Tensor): 1-D input tensor. N (int, optional): Number of columns in the output. If N is not specified, a square array is returned :math:`(N = len(x))`. increasing (bool, optional): Order of the powers of the columns. If True, the powers increase from left to right, if False (the default) they are reversed. Returns: Tensor: Vandermonde matrix. If increasing is False, the first column is :math:`x^{(N-1)}`, the second :math:`x^{(N-2)}` and so forth. If increasing is True, the columns are :math:`x^0, x^1, ..., x^{(N-1)}`. Example:: >>> x = torch.tensor([1, 2, 3, 5]) >>> torch.vander(x) tensor([[ 1, 1, 1, 1], [ 8, 4, 2, 1], [ 27, 9, 3, 1], [125, 25, 5, 1]]) >>> torch.vander(x, N=3) tensor([[ 1, 1, 1], [ 4, 2, 1], [ 9, 3, 1], [25, 5, 1]]) >>> torch.vander(x, N=3, increasing=True) tensor([[ 1, 1, 1], [ 1, 2, 4], [ 1, 3, 9], [ 1, 5, 25]]) """ ... @overload def var(input: Tensor, dim: Optional[Union[_int, _size]], unbiased: _bool = True, keepdim: _bool = False, *, out: Optional[Tensor] = None) -> Tensor: r""" var(input, dim=None, *, correction=1, keepdim=False, out=None) -> Tensor Calculates the variance over the dimensions specified by :attr:`dim`. :attr:`dim` can be a single dimension, list of dimensions, or ``None`` to reduce over all dimensions. The variance (:math:`\sigma^2`) is calculated as .. math:: \sigma^2 = \frac{1}{\max(0,~N - \delta N)}\sum_{i=0}^{N-1}(x_i-\bar{x})^2 where :math:`x` is the sample set of elements, :math:`\bar{x}` is the sample mean, :math:`N` is the number of samples and :math:`\delta N` is the :attr:`correction`. If :attr:`keepdim` is ``True``, the output tensor is of the same size as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the output tensor having 1 (or ``len(dim)``) fewer dimension(s). Args: input (Tensor): the input tensor. dim (int or tuple of ints, optional): the dimension or dimensions to reduce. If ``None``, all dimensions are reduced. Keyword args: correction (int): difference between the sample size and sample degrees of freedom. Defaults to `Bessel's correction`_, ``correction=1``. .. versionchanged:: 2.0 Previously this argument was called ``unbiased`` and was a boolean with ``True`` corresponding to ``correction=1`` and ``False`` being ``correction=0``. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. out (Tensor, optional): the output tensor. Example: >>> a = torch.tensor( ... [[ 0.2035, 1.2959, 1.8101, -0.4644], ... [ 1.5027, -0.3270, 0.5905, 0.6538], ... [-1.5745, 1.3330, -0.5596, -0.6548], ... [ 0.1264, -0.5080, 1.6420, 0.1992]]) >>> torch.var(a, dim=1, keepdim=True) tensor([[1.0631], [0.5590], [1.4893], [0.8258]]) .. _Bessel's correction: https://en.wikipedia.org/wiki/Bessel%27s_correction """ ... @overload def var(input: Tensor, dim: Optional[Union[_int, _size]] = None, *, correction: Optional[Union[Number, _complex]] = None, keepdim: _bool = False, out: Optional[Tensor] = None) -> Tensor: r""" var(input, dim=None, *, correction=1, keepdim=False, out=None) -> Tensor Calculates the variance over the dimensions specified by :attr:`dim`. :attr:`dim` can be a single dimension, list of dimensions, or ``None`` to reduce over all dimensions. The variance (:math:`\sigma^2`) is calculated as .. math:: \sigma^2 = \frac{1}{\max(0,~N - \delta N)}\sum_{i=0}^{N-1}(x_i-\bar{x})^2 where :math:`x` is the sample set of elements, :math:`\bar{x}` is the sample mean, :math:`N` is the number of samples and :math:`\delta N` is the :attr:`correction`. If :attr:`keepdim` is ``True``, the output tensor is of the same size as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the output tensor having 1 (or ``len(dim)``) fewer dimension(s). Args: input (Tensor): the input tensor. dim (int or tuple of ints, optional): the dimension or dimensions to reduce. If ``None``, all dimensions are reduced. Keyword args: correction (int): difference between the sample size and sample degrees of freedom. Defaults to `Bessel's correction`_, ``correction=1``. .. versionchanged:: 2.0 Previously this argument was called ``unbiased`` and was a boolean with ``True`` corresponding to ``correction=1`` and ``False`` being ``correction=0``. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. out (Tensor, optional): the output tensor. Example: >>> a = torch.tensor( ... [[ 0.2035, 1.2959, 1.8101, -0.4644], ... [ 1.5027, -0.3270, 0.5905, 0.6538], ... [-1.5745, 1.3330, -0.5596, -0.6548], ... [ 0.1264, -0.5080, 1.6420, 0.1992]]) >>> torch.var(a, dim=1, keepdim=True) tensor([[1.0631], [0.5590], [1.4893], [0.8258]]) .. _Bessel's correction: https://en.wikipedia.org/wiki/Bessel%27s_correction """ ... @overload def var(input: Tensor, unbiased: _bool = True) -> Tensor: r""" var(input, dim=None, *, correction=1, keepdim=False, out=None) -> Tensor Calculates the variance over the dimensions specified by :attr:`dim`. :attr:`dim` can be a single dimension, list of dimensions, or ``None`` to reduce over all dimensions. The variance (:math:`\sigma^2`) is calculated as .. math:: \sigma^2 = \frac{1}{\max(0,~N - \delta N)}\sum_{i=0}^{N-1}(x_i-\bar{x})^2 where :math:`x` is the sample set of elements, :math:`\bar{x}` is the sample mean, :math:`N` is the number of samples and :math:`\delta N` is the :attr:`correction`. If :attr:`keepdim` is ``True``, the output tensor is of the same size as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the output tensor having 1 (or ``len(dim)``) fewer dimension(s). Args: input (Tensor): the input tensor. dim (int or tuple of ints, optional): the dimension or dimensions to reduce. If ``None``, all dimensions are reduced. Keyword args: correction (int): difference between the sample size and sample degrees of freedom. Defaults to `Bessel's correction`_, ``correction=1``. .. versionchanged:: 2.0 Previously this argument was called ``unbiased`` and was a boolean with ``True`` corresponding to ``correction=1`` and ``False`` being ``correction=0``. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. out (Tensor, optional): the output tensor. Example: >>> a = torch.tensor( ... [[ 0.2035, 1.2959, 1.8101, -0.4644], ... [ 1.5027, -0.3270, 0.5905, 0.6538], ... [-1.5745, 1.3330, -0.5596, -0.6548], ... [ 0.1264, -0.5080, 1.6420, 0.1992]]) >>> torch.var(a, dim=1, keepdim=True) tensor([[1.0631], [0.5590], [1.4893], [0.8258]]) .. _Bessel's correction: https://en.wikipedia.org/wiki/Bessel%27s_correction """ ... @overload def var(input: Tensor, dim: Sequence[Union[str, ellipsis, None]], *, correction: Optional[Union[Number, _complex]] = None, keepdim: _bool = False, out: Optional[Tensor] = None) -> Tensor: r""" var(input, dim=None, *, correction=1, keepdim=False, out=None) -> Tensor Calculates the variance over the dimensions specified by :attr:`dim`. :attr:`dim` can be a single dimension, list of dimensions, or ``None`` to reduce over all dimensions. The variance (:math:`\sigma^2`) is calculated as .. math:: \sigma^2 = \frac{1}{\max(0,~N - \delta N)}\sum_{i=0}^{N-1}(x_i-\bar{x})^2 where :math:`x` is the sample set of elements, :math:`\bar{x}` is the sample mean, :math:`N` is the number of samples and :math:`\delta N` is the :attr:`correction`. If :attr:`keepdim` is ``True``, the output tensor is of the same size as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the output tensor having 1 (or ``len(dim)``) fewer dimension(s). Args: input (Tensor): the input tensor. dim (int or tuple of ints, optional): the dimension or dimensions to reduce. If ``None``, all dimensions are reduced. Keyword args: correction (int): difference between the sample size and sample degrees of freedom. Defaults to `Bessel's correction`_, ``correction=1``. .. versionchanged:: 2.0 Previously this argument was called ``unbiased`` and was a boolean with ``True`` corresponding to ``correction=1`` and ``False`` being ``correction=0``. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. out (Tensor, optional): the output tensor. Example: >>> a = torch.tensor( ... [[ 0.2035, 1.2959, 1.8101, -0.4644], ... [ 1.5027, -0.3270, 0.5905, 0.6538], ... [-1.5745, 1.3330, -0.5596, -0.6548], ... [ 0.1264, -0.5080, 1.6420, 0.1992]]) >>> torch.var(a, dim=1, keepdim=True) tensor([[1.0631], [0.5590], [1.4893], [0.8258]]) .. _Bessel's correction: https://en.wikipedia.org/wiki/Bessel%27s_correction """ ... @overload def var(input: Tensor, dim: Sequence[Union[str, ellipsis, None]], unbiased: _bool = True, keepdim: _bool = False, *, out: Optional[Tensor] = None) -> Tensor: r""" var(input, dim=None, *, correction=1, keepdim=False, out=None) -> Tensor Calculates the variance over the dimensions specified by :attr:`dim`. :attr:`dim` can be a single dimension, list of dimensions, or ``None`` to reduce over all dimensions. The variance (:math:`\sigma^2`) is calculated as .. math:: \sigma^2 = \frac{1}{\max(0,~N - \delta N)}\sum_{i=0}^{N-1}(x_i-\bar{x})^2 where :math:`x` is the sample set of elements, :math:`\bar{x}` is the sample mean, :math:`N` is the number of samples and :math:`\delta N` is the :attr:`correction`. If :attr:`keepdim` is ``True``, the output tensor is of the same size as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the output tensor having 1 (or ``len(dim)``) fewer dimension(s). Args: input (Tensor): the input tensor. dim (int or tuple of ints, optional): the dimension or dimensions to reduce. If ``None``, all dimensions are reduced. Keyword args: correction (int): difference between the sample size and sample degrees of freedom. Defaults to `Bessel's correction`_, ``correction=1``. .. versionchanged:: 2.0 Previously this argument was called ``unbiased`` and was a boolean with ``True`` corresponding to ``correction=1`` and ``False`` being ``correction=0``. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. out (Tensor, optional): the output tensor. Example: >>> a = torch.tensor( ... [[ 0.2035, 1.2959, 1.8101, -0.4644], ... [ 1.5027, -0.3270, 0.5905, 0.6538], ... [-1.5745, 1.3330, -0.5596, -0.6548], ... [ 0.1264, -0.5080, 1.6420, 0.1992]]) >>> torch.var(a, dim=1, keepdim=True) tensor([[1.0631], [0.5590], [1.4893], [0.8258]]) .. _Bessel's correction: https://en.wikipedia.org/wiki/Bessel%27s_correction """ ... @overload def var_mean(input: Tensor, dim: Optional[Union[_int, _size]], unbiased: _bool = True, keepdim: _bool = False) -> Tuple[Tensor, Tensor]: r""" var_mean(input, dim=None, *, correction=1, keepdim=False, out=None) -> (Tensor, Tensor) Calculates the variance and mean over the dimensions specified by :attr:`dim`. :attr:`dim` can be a single dimension, list of dimensions, or ``None`` to reduce over all dimensions. The variance (:math:`\sigma^2`) is calculated as .. math:: \sigma^2 = \frac{1}{\max(0,~N - \delta N)}\sum_{i=0}^{N-1}(x_i-\bar{x})^2 where :math:`x` is the sample set of elements, :math:`\bar{x}` is the sample mean, :math:`N` is the number of samples and :math:`\delta N` is the :attr:`correction`. If :attr:`keepdim` is ``True``, the output tensor is of the same size as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the output tensor having 1 (or ``len(dim)``) fewer dimension(s). Args: input (Tensor): the input tensor. dim (int or tuple of ints, optional): the dimension or dimensions to reduce. If ``None``, all dimensions are reduced. Keyword args: correction (int): difference between the sample size and sample degrees of freedom. Defaults to `Bessel's correction`_, ``correction=1``. .. versionchanged:: 2.0 Previously this argument was called ``unbiased`` and was a boolean with ``True`` corresponding to ``correction=1`` and ``False`` being ``correction=0``. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. out (Tensor, optional): the output tensor. Returns: A tuple (var, mean) containing the variance and mean. Example: >>> a = torch.tensor( ... [[ 0.2035, 1.2959, 1.8101, -0.4644], ... [ 1.5027, -0.3270, 0.5905, 0.6538], ... [-1.5745, 1.3330, -0.5596, -0.6548], ... [ 0.1264, -0.5080, 1.6420, 0.1992]]) >>> torch.var_mean(a, dim=0, keepdim=True) (tensor([[1.5926, 1.0056, 1.2005, 0.3646]]), tensor([[ 0.0645, 0.4485, 0.8707, -0.0665]])) .. _Bessel's correction: https://en.wikipedia.org/wiki/Bessel%27s_correction """ ... @overload def var_mean(input: Tensor, dim: Optional[Union[_int, _size]] = None, *, correction: Optional[Union[Number, _complex]] = None, keepdim: _bool = False) -> Tuple[Tensor, Tensor]: r""" var_mean(input, dim=None, *, correction=1, keepdim=False, out=None) -> (Tensor, Tensor) Calculates the variance and mean over the dimensions specified by :attr:`dim`. :attr:`dim` can be a single dimension, list of dimensions, or ``None`` to reduce over all dimensions. The variance (:math:`\sigma^2`) is calculated as .. math:: \sigma^2 = \frac{1}{\max(0,~N - \delta N)}\sum_{i=0}^{N-1}(x_i-\bar{x})^2 where :math:`x` is the sample set of elements, :math:`\bar{x}` is the sample mean, :math:`N` is the number of samples and :math:`\delta N` is the :attr:`correction`. If :attr:`keepdim` is ``True``, the output tensor is of the same size as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the output tensor having 1 (or ``len(dim)``) fewer dimension(s). Args: input (Tensor): the input tensor. dim (int or tuple of ints, optional): the dimension or dimensions to reduce. If ``None``, all dimensions are reduced. Keyword args: correction (int): difference between the sample size and sample degrees of freedom. Defaults to `Bessel's correction`_, ``correction=1``. .. versionchanged:: 2.0 Previously this argument was called ``unbiased`` and was a boolean with ``True`` corresponding to ``correction=1`` and ``False`` being ``correction=0``. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. out (Tensor, optional): the output tensor. Returns: A tuple (var, mean) containing the variance and mean. Example: >>> a = torch.tensor( ... [[ 0.2035, 1.2959, 1.8101, -0.4644], ... [ 1.5027, -0.3270, 0.5905, 0.6538], ... [-1.5745, 1.3330, -0.5596, -0.6548], ... [ 0.1264, -0.5080, 1.6420, 0.1992]]) >>> torch.var_mean(a, dim=0, keepdim=True) (tensor([[1.5926, 1.0056, 1.2005, 0.3646]]), tensor([[ 0.0645, 0.4485, 0.8707, -0.0665]])) .. _Bessel's correction: https://en.wikipedia.org/wiki/Bessel%27s_correction """ ... @overload def var_mean(input: Tensor, unbiased: _bool = True) -> Tuple[Tensor, Tensor]: r""" var_mean(input, dim=None, *, correction=1, keepdim=False, out=None) -> (Tensor, Tensor) Calculates the variance and mean over the dimensions specified by :attr:`dim`. :attr:`dim` can be a single dimension, list of dimensions, or ``None`` to reduce over all dimensions. The variance (:math:`\sigma^2`) is calculated as .. math:: \sigma^2 = \frac{1}{\max(0,~N - \delta N)}\sum_{i=0}^{N-1}(x_i-\bar{x})^2 where :math:`x` is the sample set of elements, :math:`\bar{x}` is the sample mean, :math:`N` is the number of samples and :math:`\delta N` is the :attr:`correction`. If :attr:`keepdim` is ``True``, the output tensor is of the same size as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the output tensor having 1 (or ``len(dim)``) fewer dimension(s). Args: input (Tensor): the input tensor. dim (int or tuple of ints, optional): the dimension or dimensions to reduce. If ``None``, all dimensions are reduced. Keyword args: correction (int): difference between the sample size and sample degrees of freedom. Defaults to `Bessel's correction`_, ``correction=1``. .. versionchanged:: 2.0 Previously this argument was called ``unbiased`` and was a boolean with ``True`` corresponding to ``correction=1`` and ``False`` being ``correction=0``. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. out (Tensor, optional): the output tensor. Returns: A tuple (var, mean) containing the variance and mean. Example: >>> a = torch.tensor( ... [[ 0.2035, 1.2959, 1.8101, -0.4644], ... [ 1.5027, -0.3270, 0.5905, 0.6538], ... [-1.5745, 1.3330, -0.5596, -0.6548], ... [ 0.1264, -0.5080, 1.6420, 0.1992]]) >>> torch.var_mean(a, dim=0, keepdim=True) (tensor([[1.5926, 1.0056, 1.2005, 0.3646]]), tensor([[ 0.0645, 0.4485, 0.8707, -0.0665]])) .. _Bessel's correction: https://en.wikipedia.org/wiki/Bessel%27s_correction """ ... @overload def var_mean(input: Tensor, dim: Sequence[Union[str, ellipsis, None]], *, correction: Optional[Union[Number, _complex]] = None, keepdim: _bool = False) -> Tuple[Tensor, Tensor]: r""" var_mean(input, dim=None, *, correction=1, keepdim=False, out=None) -> (Tensor, Tensor) Calculates the variance and mean over the dimensions specified by :attr:`dim`. :attr:`dim` can be a single dimension, list of dimensions, or ``None`` to reduce over all dimensions. The variance (:math:`\sigma^2`) is calculated as .. math:: \sigma^2 = \frac{1}{\max(0,~N - \delta N)}\sum_{i=0}^{N-1}(x_i-\bar{x})^2 where :math:`x` is the sample set of elements, :math:`\bar{x}` is the sample mean, :math:`N` is the number of samples and :math:`\delta N` is the :attr:`correction`. If :attr:`keepdim` is ``True``, the output tensor is of the same size as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the output tensor having 1 (or ``len(dim)``) fewer dimension(s). Args: input (Tensor): the input tensor. dim (int or tuple of ints, optional): the dimension or dimensions to reduce. If ``None``, all dimensions are reduced. Keyword args: correction (int): difference between the sample size and sample degrees of freedom. Defaults to `Bessel's correction`_, ``correction=1``. .. versionchanged:: 2.0 Previously this argument was called ``unbiased`` and was a boolean with ``True`` corresponding to ``correction=1`` and ``False`` being ``correction=0``. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. out (Tensor, optional): the output tensor. Returns: A tuple (var, mean) containing the variance and mean. Example: >>> a = torch.tensor( ... [[ 0.2035, 1.2959, 1.8101, -0.4644], ... [ 1.5027, -0.3270, 0.5905, 0.6538], ... [-1.5745, 1.3330, -0.5596, -0.6548], ... [ 0.1264, -0.5080, 1.6420, 0.1992]]) >>> torch.var_mean(a, dim=0, keepdim=True) (tensor([[1.5926, 1.0056, 1.2005, 0.3646]]), tensor([[ 0.0645, 0.4485, 0.8707, -0.0665]])) .. _Bessel's correction: https://en.wikipedia.org/wiki/Bessel%27s_correction """ ... @overload def var_mean(input: Tensor, dim: Sequence[Union[str, ellipsis, None]], unbiased: _bool = True, keepdim: _bool = False) -> Tuple[Tensor, Tensor]: r""" var_mean(input, dim=None, *, correction=1, keepdim=False, out=None) -> (Tensor, Tensor) Calculates the variance and mean over the dimensions specified by :attr:`dim`. :attr:`dim` can be a single dimension, list of dimensions, or ``None`` to reduce over all dimensions. The variance (:math:`\sigma^2`) is calculated as .. math:: \sigma^2 = \frac{1}{\max(0,~N - \delta N)}\sum_{i=0}^{N-1}(x_i-\bar{x})^2 where :math:`x` is the sample set of elements, :math:`\bar{x}` is the sample mean, :math:`N` is the number of samples and :math:`\delta N` is the :attr:`correction`. If :attr:`keepdim` is ``True``, the output tensor is of the same size as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the output tensor having 1 (or ``len(dim)``) fewer dimension(s). Args: input (Tensor): the input tensor. dim (int or tuple of ints, optional): the dimension or dimensions to reduce. If ``None``, all dimensions are reduced. Keyword args: correction (int): difference between the sample size and sample degrees of freedom. Defaults to `Bessel's correction`_, ``correction=1``. .. versionchanged:: 2.0 Previously this argument was called ``unbiased`` and was a boolean with ``True`` corresponding to ``correction=1`` and ``False`` being ``correction=0``. keepdim (bool): whether the output tensor has :attr:`dim` retained or not. out (Tensor, optional): the output tensor. Returns: A tuple (var, mean) containing the variance and mean. Example: >>> a = torch.tensor( ... [[ 0.2035, 1.2959, 1.8101, -0.4644], ... [ 1.5027, -0.3270, 0.5905, 0.6538], ... [-1.5745, 1.3330, -0.5596, -0.6548], ... [ 0.1264, -0.5080, 1.6420, 0.1992]]) >>> torch.var_mean(a, dim=0, keepdim=True) (tensor([[1.5926, 1.0056, 1.2005, 0.3646]]), tensor([[ 0.0645, 0.4485, 0.8707, -0.0665]])) .. _Bessel's correction: https://en.wikipedia.org/wiki/Bessel%27s_correction """ ... def vdot(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" vdot(input, other, *, out=None) -> Tensor Computes the dot product of two 1D vectors along a dimension. In symbols, this function computes .. math:: \sum_{i=1}^n \overline{x_i}y_i. where :math:`\overline{x_i}` denotes the conjugate for complex vectors, and it is the identity for real vectors. .. note:: Unlike NumPy's vdot, torch.vdot intentionally only supports computing the dot product of two 1D tensors with the same number of elements. .. seealso:: :func:`torch.linalg.vecdot` computes the dot product of two batches of vectors along a dimension. Args: input (Tensor): first tensor in the dot product, must be 1D. Its conjugate is used if it's complex. other (Tensor): second tensor in the dot product, must be 1D. Keyword args: .. note:: out (Tensor, optional): the output tensor. Example:: >>> torch.vdot(torch.tensor([2, 3]), torch.tensor([2, 1])) tensor(7) >>> a = torch.tensor((1 +2j, 3 - 1j)) >>> b = torch.tensor((2 +1j, 4 - 0j)) >>> torch.vdot(a, b) tensor([16.+1.j]) >>> torch.vdot(b, a) tensor([16.-1.j]) """ ... def view_as_complex(input: Tensor) -> Tensor: r""" view_as_complex(input) -> Tensor Returns a view of :attr:`input` as a complex tensor. For an input complex tensor of :attr:`size` :math:`m1, m2, \dots, mi, 2`, this function returns a new complex tensor of :attr:`size` :math:`m1, m2, \dots, mi` where the last dimension of the input tensor is expected to represent the real and imaginary components of complex numbers. .. warning:: :func:`view_as_complex` is only supported for tensors with :class:`torch.dtype` ``torch.float64`` and ``torch.float32``. The input is expected to have the last dimension of :attr:`size` 2. In addition, the tensor must have a `stride` of 1 for its last dimension. The strides of all other dimensions must be even numbers. Args: input (Tensor): the input tensor. Example:: >>> x=torch.randn(4, 2) >>> x tensor([[ 1.6116, -0.5772], [-1.4606, -0.9120], [ 0.0786, -1.7497], [-0.6561, -1.6623]]) >>> torch.view_as_complex(x) tensor([(1.6116-0.5772j), (-1.4606-0.9120j), (0.0786-1.7497j), (-0.6561-1.6623j)]) """ ... def view_as_complex_copy(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" Performs the same operation as :func:`torch.view_as_complex`, but all output tensors are freshly created instead of aliasing the input. """ ... def view_as_real(input: Tensor) -> Tensor: r""" view_as_real(input) -> Tensor Returns a view of :attr:`input` as a real tensor. For an input complex tensor of :attr:`size` :math:`m1, m2, \dots, mi`, this function returns a new real tensor of size :math:`m1, m2, \dots, mi, 2`, where the last dimension of size 2 represents the real and imaginary components of complex numbers. .. warning:: :func:`view_as_real` is only supported for tensors with ``complex dtypes``. Args: input (Tensor): the input tensor. Example:: >>> x=torch.randn(4, dtype=torch.cfloat) >>> x tensor([(0.4737-0.3839j), (-0.2098-0.6699j), (0.3470-0.9451j), (-0.5174-1.3136j)]) >>> torch.view_as_real(x) tensor([[ 0.4737, -0.3839], [-0.2098, -0.6699], [ 0.3470, -0.9451], [-0.5174, -1.3136]]) """ ... def view_as_real_copy(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" Performs the same operation as :func:`torch.view_as_real`, but all output tensors are freshly created instead of aliasing the input. """ ... @overload def view_copy(input: Tensor, dtype: _dtype, *, out: Optional[Tensor] = None) -> Tensor: r""" Performs the same operation as :func:`torch.view`, but all output tensors are freshly created instead of aliasing the input. """ ... @overload def view_copy(input: Tensor, size: Sequence[Union[_int, SymInt]], *, out: Optional[Tensor] = None) -> Tensor: r""" Performs the same operation as :func:`torch.view`, but all output tensors are freshly created instead of aliasing the input. """ ... @overload def vsplit(input: Tensor, sections: _int) -> Tuple[Tensor, ...]: r""" vsplit(input, indices_or_sections) -> List of Tensors Splits :attr:`input`, a tensor with two or more dimensions, into multiple tensors vertically according to :attr:`indices_or_sections`. Each split is a view of :attr:`input`. This is equivalent to calling torch.tensor_split(input, indices_or_sections, dim=0) (the split dimension is 0), except that if :attr:`indices_or_sections` is an integer it must evenly divide the split dimension or a runtime error will be thrown. This function is based on NumPy's :func:`numpy.vsplit`. Args: input (Tensor): tensor to split. indices_or_sections (int or list or tuple of ints): See argument in :func:`torch.tensor_split`. Example:: >>> t = torch.arange(16.0).reshape(4,4) >>> t tensor([[ 0., 1., 2., 3.], [ 4., 5., 6., 7.], [ 8., 9., 10., 11.], [12., 13., 14., 15.]]) >>> torch.vsplit(t, 2) (tensor([[0., 1., 2., 3.], [4., 5., 6., 7.]]), tensor([[ 8., 9., 10., 11.], [12., 13., 14., 15.]])) >>> torch.vsplit(t, [3, 6]) (tensor([[ 0., 1., 2., 3.], [ 4., 5., 6., 7.], [ 8., 9., 10., 11.]]), tensor([[12., 13., 14., 15.]]), tensor([], size=(0, 4))) """ ... @overload def vsplit(input: Tensor, indices: _size) -> Tuple[Tensor, ...]: r""" vsplit(input, indices_or_sections) -> List of Tensors Splits :attr:`input`, a tensor with two or more dimensions, into multiple tensors vertically according to :attr:`indices_or_sections`. Each split is a view of :attr:`input`. This is equivalent to calling torch.tensor_split(input, indices_or_sections, dim=0) (the split dimension is 0), except that if :attr:`indices_or_sections` is an integer it must evenly divide the split dimension or a runtime error will be thrown. This function is based on NumPy's :func:`numpy.vsplit`. Args: input (Tensor): tensor to split. indices_or_sections (int or list or tuple of ints): See argument in :func:`torch.tensor_split`. Example:: >>> t = torch.arange(16.0).reshape(4,4) >>> t tensor([[ 0., 1., 2., 3.], [ 4., 5., 6., 7.], [ 8., 9., 10., 11.], [12., 13., 14., 15.]]) >>> torch.vsplit(t, 2) (tensor([[0., 1., 2., 3.], [4., 5., 6., 7.]]), tensor([[ 8., 9., 10., 11.], [12., 13., 14., 15.]])) >>> torch.vsplit(t, [3, 6]) (tensor([[ 0., 1., 2., 3.], [ 4., 5., 6., 7.], [ 8., 9., 10., 11.]]), tensor([[12., 13., 14., 15.]]), tensor([], size=(0, 4))) """ ... def vstack(tensors: Union[Tuple[Tensor, ...], List[Tensor]], *, out: Optional[Tensor] = None) -> Tensor: r""" vstack(tensors, *, out=None) -> Tensor Stack tensors in sequence vertically (row wise). This is equivalent to concatenation along the first axis after all 1-D tensors have been reshaped by :func:`torch.atleast_2d`. Args: tensors (sequence of Tensors): sequence of tensors to concatenate Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.tensor([1, 2, 3]) >>> b = torch.tensor([4, 5, 6]) >>> torch.vstack((a,b)) tensor([[1, 2, 3], [4, 5, 6]]) >>> a = torch.tensor([[1],[2],[3]]) >>> b = torch.tensor([[4],[5],[6]]) >>> torch.vstack((a,b)) tensor([[1], [2], [3], [4], [5], [6]]) """ ... @overload def where(condition: Tensor) -> Tuple[Tensor, ...]: r""" where(condition, input, other, *, out=None) -> Tensor Return a tensor of elements selected from either :attr:`input` or :attr:`other`, depending on :attr:`condition`. The operation is defined as: .. math:: \text{out}_i = \begin{cases} \text{input}_i & \text{if } \text{condition}_i \\ \text{other}_i & \text{otherwise} \\ \end{cases} .. note:: The tensors :attr:`condition`, :attr:`input`, :attr:`other` must be :ref:`broadcastable `. Arguments: condition (BoolTensor): When True (nonzero), yield input, otherwise yield other input (Tensor or Scalar): value (if :attr:`input` is a scalar) or values selected at indices where :attr:`condition` is ``True`` other (Tensor or Scalar): value (if :attr:`other` is a scalar) or values selected at indices where :attr:`condition` is ``False`` Keyword args: out (Tensor, optional): the output tensor. Returns: Tensor: A tensor of shape equal to the broadcasted shape of :attr:`condition`, :attr:`input`, :attr:`other` Example:: >>> x = torch.randn(3, 2) >>> y = torch.ones(3, 2) >>> x tensor([[-0.4620, 0.3139], [ 0.3898, -0.7197], [ 0.0478, -0.1657]]) >>> torch.where(x > 0, 1.0, 0.0) tensor([[0., 1.], [1., 0.], [1., 0.]]) >>> torch.where(x > 0, x, y) tensor([[ 1.0000, 0.3139], [ 0.3898, 1.0000], [ 0.0478, 1.0000]]) >>> x = torch.randn(2, 2, dtype=torch.double) >>> x tensor([[ 1.0779, 0.0383], [-0.8785, -1.1089]], dtype=torch.float64) >>> torch.where(x > 0, x, 0.) tensor([[1.0779, 0.0383], [0.0000, 0.0000]], dtype=torch.float64) .. function:: where(condition) -> tuple of LongTensor :noindex: ``torch.where(condition)`` is identical to ``torch.nonzero(condition, as_tuple=True)``. .. note:: See also :func:`torch.nonzero`. """ ... @overload def where(condition: Tensor, input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" where(condition, input, other, *, out=None) -> Tensor Return a tensor of elements selected from either :attr:`input` or :attr:`other`, depending on :attr:`condition`. The operation is defined as: .. math:: \text{out}_i = \begin{cases} \text{input}_i & \text{if } \text{condition}_i \\ \text{other}_i & \text{otherwise} \\ \end{cases} .. note:: The tensors :attr:`condition`, :attr:`input`, :attr:`other` must be :ref:`broadcastable `. Arguments: condition (BoolTensor): When True (nonzero), yield input, otherwise yield other input (Tensor or Scalar): value (if :attr:`input` is a scalar) or values selected at indices where :attr:`condition` is ``True`` other (Tensor or Scalar): value (if :attr:`other` is a scalar) or values selected at indices where :attr:`condition` is ``False`` Keyword args: out (Tensor, optional): the output tensor. Returns: Tensor: A tensor of shape equal to the broadcasted shape of :attr:`condition`, :attr:`input`, :attr:`other` Example:: >>> x = torch.randn(3, 2) >>> y = torch.ones(3, 2) >>> x tensor([[-0.4620, 0.3139], [ 0.3898, -0.7197], [ 0.0478, -0.1657]]) >>> torch.where(x > 0, 1.0, 0.0) tensor([[0., 1.], [1., 0.], [1., 0.]]) >>> torch.where(x > 0, x, y) tensor([[ 1.0000, 0.3139], [ 0.3898, 1.0000], [ 0.0478, 1.0000]]) >>> x = torch.randn(2, 2, dtype=torch.double) >>> x tensor([[ 1.0779, 0.0383], [-0.8785, -1.1089]], dtype=torch.float64) >>> torch.where(x > 0, x, 0.) tensor([[1.0779, 0.0383], [0.0000, 0.0000]], dtype=torch.float64) .. function:: where(condition) -> tuple of LongTensor :noindex: ``torch.where(condition)`` is identical to ``torch.nonzero(condition, as_tuple=True)``. .. note:: See also :func:`torch.nonzero`. """ ... @overload def where(condition: Tensor, self: Union[Number, _complex], other: Tensor) -> Tensor: r""" where(condition, input, other, *, out=None) -> Tensor Return a tensor of elements selected from either :attr:`input` or :attr:`other`, depending on :attr:`condition`. The operation is defined as: .. math:: \text{out}_i = \begin{cases} \text{input}_i & \text{if } \text{condition}_i \\ \text{other}_i & \text{otherwise} \\ \end{cases} .. note:: The tensors :attr:`condition`, :attr:`input`, :attr:`other` must be :ref:`broadcastable `. Arguments: condition (BoolTensor): When True (nonzero), yield input, otherwise yield other input (Tensor or Scalar): value (if :attr:`input` is a scalar) or values selected at indices where :attr:`condition` is ``True`` other (Tensor or Scalar): value (if :attr:`other` is a scalar) or values selected at indices where :attr:`condition` is ``False`` Keyword args: out (Tensor, optional): the output tensor. Returns: Tensor: A tensor of shape equal to the broadcasted shape of :attr:`condition`, :attr:`input`, :attr:`other` Example:: >>> x = torch.randn(3, 2) >>> y = torch.ones(3, 2) >>> x tensor([[-0.4620, 0.3139], [ 0.3898, -0.7197], [ 0.0478, -0.1657]]) >>> torch.where(x > 0, 1.0, 0.0) tensor([[0., 1.], [1., 0.], [1., 0.]]) >>> torch.where(x > 0, x, y) tensor([[ 1.0000, 0.3139], [ 0.3898, 1.0000], [ 0.0478, 1.0000]]) >>> x = torch.randn(2, 2, dtype=torch.double) >>> x tensor([[ 1.0779, 0.0383], [-0.8785, -1.1089]], dtype=torch.float64) >>> torch.where(x > 0, x, 0.) tensor([[1.0779, 0.0383], [0.0000, 0.0000]], dtype=torch.float64) .. function:: where(condition) -> tuple of LongTensor :noindex: ``torch.where(condition)`` is identical to ``torch.nonzero(condition, as_tuple=True)``. .. note:: See also :func:`torch.nonzero`. """ ... @overload def where(condition: Tensor, input: Tensor, other: Union[Number, _complex]) -> Tensor: r""" where(condition, input, other, *, out=None) -> Tensor Return a tensor of elements selected from either :attr:`input` or :attr:`other`, depending on :attr:`condition`. The operation is defined as: .. math:: \text{out}_i = \begin{cases} \text{input}_i & \text{if } \text{condition}_i \\ \text{other}_i & \text{otherwise} \\ \end{cases} .. note:: The tensors :attr:`condition`, :attr:`input`, :attr:`other` must be :ref:`broadcastable `. Arguments: condition (BoolTensor): When True (nonzero), yield input, otherwise yield other input (Tensor or Scalar): value (if :attr:`input` is a scalar) or values selected at indices where :attr:`condition` is ``True`` other (Tensor or Scalar): value (if :attr:`other` is a scalar) or values selected at indices where :attr:`condition` is ``False`` Keyword args: out (Tensor, optional): the output tensor. Returns: Tensor: A tensor of shape equal to the broadcasted shape of :attr:`condition`, :attr:`input`, :attr:`other` Example:: >>> x = torch.randn(3, 2) >>> y = torch.ones(3, 2) >>> x tensor([[-0.4620, 0.3139], [ 0.3898, -0.7197], [ 0.0478, -0.1657]]) >>> torch.where(x > 0, 1.0, 0.0) tensor([[0., 1.], [1., 0.], [1., 0.]]) >>> torch.where(x > 0, x, y) tensor([[ 1.0000, 0.3139], [ 0.3898, 1.0000], [ 0.0478, 1.0000]]) >>> x = torch.randn(2, 2, dtype=torch.double) >>> x tensor([[ 1.0779, 0.0383], [-0.8785, -1.1089]], dtype=torch.float64) >>> torch.where(x > 0, x, 0.) tensor([[1.0779, 0.0383], [0.0000, 0.0000]], dtype=torch.float64) .. function:: where(condition) -> tuple of LongTensor :noindex: ``torch.where(condition)`` is identical to ``torch.nonzero(condition, as_tuple=True)``. .. note:: See also :func:`torch.nonzero`. """ ... @overload def where(condition: Tensor, self: Union[Number, _complex], other: Union[Number, _complex]) -> Tensor: r""" where(condition, input, other, *, out=None) -> Tensor Return a tensor of elements selected from either :attr:`input` or :attr:`other`, depending on :attr:`condition`. The operation is defined as: .. math:: \text{out}_i = \begin{cases} \text{input}_i & \text{if } \text{condition}_i \\ \text{other}_i & \text{otherwise} \\ \end{cases} .. note:: The tensors :attr:`condition`, :attr:`input`, :attr:`other` must be :ref:`broadcastable `. Arguments: condition (BoolTensor): When True (nonzero), yield input, otherwise yield other input (Tensor or Scalar): value (if :attr:`input` is a scalar) or values selected at indices where :attr:`condition` is ``True`` other (Tensor or Scalar): value (if :attr:`other` is a scalar) or values selected at indices where :attr:`condition` is ``False`` Keyword args: out (Tensor, optional): the output tensor. Returns: Tensor: A tensor of shape equal to the broadcasted shape of :attr:`condition`, :attr:`input`, :attr:`other` Example:: >>> x = torch.randn(3, 2) >>> y = torch.ones(3, 2) >>> x tensor([[-0.4620, 0.3139], [ 0.3898, -0.7197], [ 0.0478, -0.1657]]) >>> torch.where(x > 0, 1.0, 0.0) tensor([[0., 1.], [1., 0.], [1., 0.]]) >>> torch.where(x > 0, x, y) tensor([[ 1.0000, 0.3139], [ 0.3898, 1.0000], [ 0.0478, 1.0000]]) >>> x = torch.randn(2, 2, dtype=torch.double) >>> x tensor([[ 1.0779, 0.0383], [-0.8785, -1.1089]], dtype=torch.float64) >>> torch.where(x > 0, x, 0.) tensor([[1.0779, 0.0383], [0.0000, 0.0000]], dtype=torch.float64) .. function:: where(condition) -> tuple of LongTensor :noindex: ``torch.where(condition)`` is identical to ``torch.nonzero(condition, as_tuple=True)``. .. note:: See also :func:`torch.nonzero`. """ ... @overload def xlogy(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" xlogy(input, other, *, out=None) -> Tensor Alias for :func:`torch.special.xlogy`. """ ... @overload def xlogy(self: Union[Number, _complex], other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: r""" xlogy(input, other, *, out=None) -> Tensor Alias for :func:`torch.special.xlogy`. """ ... @overload def xlogy(input: Tensor, other: Union[Number, _complex], *, out: Optional[Tensor] = None) -> Tensor: r""" xlogy(input, other, *, out=None) -> Tensor Alias for :func:`torch.special.xlogy`. """ ... @overload def xlogy_(input: Tensor, other: Tensor) -> Tensor: ... @overload def xlogy_(input: Tensor, other: Union[Number, _complex]) -> Tensor: ... def zero_(input: Tensor) -> Tensor: ... @overload def zeros(size: Sequence[Union[_int, SymInt]], *, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" zeros(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor Returns a tensor filled with the scalar value `0`, with the shape defined by the variable argument :attr:`size`. Args: size (int...): a sequence of integers defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple. Keyword args: out (Tensor, optional): the output tensor. dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. Example:: >>> torch.zeros(2, 3) tensor([[ 0., 0., 0.], [ 0., 0., 0.]]) >>> torch.zeros(5) tensor([ 0., 0., 0., 0., 0.]) """ ... @overload def zeros(*size: _int, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" zeros(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor Returns a tensor filled with the scalar value `0`, with the shape defined by the variable argument :attr:`size`. Args: size (int...): a sequence of integers defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple. Keyword args: out (Tensor, optional): the output tensor. dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. Example:: >>> torch.zeros(2, 3) tensor([[ 0., 0., 0.], [ 0., 0., 0.]]) >>> torch.zeros(5) tensor([ 0., 0., 0., 0., 0.]) """ ... @overload def zeros(size: _size, *, names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" zeros(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor Returns a tensor filled with the scalar value `0`, with the shape defined by the variable argument :attr:`size`. Args: size (int...): a sequence of integers defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple. Keyword args: out (Tensor, optional): the output tensor. dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. Example:: >>> torch.zeros(2, 3) tensor([[ 0., 0., 0.], [ 0., 0., 0.]]) >>> torch.zeros(5) tensor([ 0., 0., 0., 0., 0.]) """ ... @overload def zeros(*size: _int, names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" zeros(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor Returns a tensor filled with the scalar value `0`, with the shape defined by the variable argument :attr:`size`. Args: size (int...): a sequence of integers defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple. Keyword args: out (Tensor, optional): the output tensor. dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_device`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. Example:: >>> torch.zeros(2, 3) tensor([[ 0., 0., 0.], [ 0., 0., 0.]]) >>> torch.zeros(5) tensor([ 0., 0., 0., 0., 0.]) """ ... def zeros_like(input: Tensor, *, memory_format: Optional[memory_format] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: r""" zeros_like(input, *, dtype=None, layout=None, device=None, requires_grad=False, memory_format=torch.preserve_format) -> Tensor Returns a tensor filled with the scalar value `0`, with the same size as :attr:`input`. ``torch.zeros_like(input)`` is equivalent to ``torch.zeros(input.size(), dtype=input.dtype, layout=input.layout, device=input.device)``. .. warning:: As of 0.4, this function does not support an :attr:`out` keyword. As an alternative, the old ``torch.zeros_like(input, out=output)`` is equivalent to ``torch.zeros(input.size(), out=output)``. Args: input (Tensor): the size of :attr:`input` will determine size of the output tensor. Keyword args: dtype (:class:`torch.dtype`, optional): the desired data type of returned Tensor. Default: if ``None``, defaults to the dtype of :attr:`input`. layout (:class:`torch.layout`, optional): the desired layout of returned tensor. Default: if ``None``, defaults to the layout of :attr:`input`. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, defaults to the device of :attr:`input`. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. memory_format (:class:`torch.memory_format`, optional): the desired memory format of returned Tensor. Default: ``torch.preserve_format``. Example:: >>> input = torch.empty(2, 3) >>> torch.zeros_like(input) tensor([[ 0., 0., 0.], [ 0., 0., 0.]]) """ ... __all__ = ['__and__', '__lshift__', '__or__', '__rshift__', '__xor__', '_adaptive_avg_pool2d', '_adaptive_avg_pool3d', '_add_batch_dim', '_add_relu', '_add_relu_', '_addmm_activation', '_aminmax', '_amp_foreach_non_finite_check_and_unscale_', '_amp_update_scale_', '_assert_async', '_assert_scalar', '_assert_tensor_metadata', '_batch_norm_impl_index', '_cast_Byte', '_cast_Char', '_cast_Double', '_cast_Float', '_cast_Half', '_cast_Int', '_cast_Long', '_cast_Short', '_choose_qparams_per_tensor', '_chunk_cat', '_coalesce', '_compute_linear_combination', '_conj', '_conj_copy', '_conj_physical', '_convert_indices_from_coo_to_csr', '_convert_indices_from_csr_to_coo', '_convert_weight_to_int4pack', '_convolution', '_convolution_mode', '_copy_from', '_copy_from_and_resize', '_cslt_compress', '_cslt_sparse_mm', '_cslt_sparse_mm_search', '_ctc_loss', '_cudnn_ctc_loss', '_cudnn_init_dropout_state', '_cudnn_rnn', '_cudnn_rnn_flatten_weight', '_cufft_clear_plan_cache', '_cufft_get_plan_cache_max_size', '_cufft_get_plan_cache_size', '_cufft_set_plan_cache_max_size', '_cummax_helper', '_cummin_helper', '_debug_has_internal_overlap', '_dim_arange', '_dirichlet_grad', '_disable_functionalization', '_efficientzerotensor', '_embedding_bag', '_embedding_bag_forward_only', '_empty_affine_quantized', '_empty_per_channel_affine_quantized', '_enable_functionalization', '_euclidean_dist', '_fake_quantize_learnable_per_channel_affine', '_fake_quantize_learnable_per_tensor_affine', '_fake_quantize_per_tensor_affine_cachemask_tensor_qparams', '_fake_quantize_per_tensor_affine_cachemask_tensor_qparams', '_fft_c2c', '_fft_c2r', '_fft_r2c', '_fill_mem_eff_dropout_mask_', '_foobar', '_foreach_abs', '_foreach_abs_', '_foreach_acos', '_foreach_acos_', '_foreach_add', '_foreach_add_', '_foreach_addcdiv', '_foreach_addcdiv_', '_foreach_addcmul', '_foreach_addcmul_', '_foreach_asin', '_foreach_asin_', '_foreach_atan', '_foreach_atan_', '_foreach_ceil', '_foreach_ceil_', '_foreach_clamp_max', '_foreach_clamp_max_', '_foreach_clamp_min', '_foreach_clamp_min_', '_foreach_copy_', '_foreach_cos', '_foreach_cos_', '_foreach_cosh', '_foreach_cosh_', '_foreach_div', '_foreach_div_', '_foreach_erf', '_foreach_erf_', '_foreach_erfc', '_foreach_erfc_', '_foreach_exp', '_foreach_exp_', '_foreach_expm1', '_foreach_expm1_', '_foreach_floor', '_foreach_floor_', '_foreach_frac', '_foreach_frac_', '_foreach_lerp', '_foreach_lerp_', '_foreach_lgamma', '_foreach_lgamma_', '_foreach_log', '_foreach_log10', '_foreach_log10_', '_foreach_log1p', '_foreach_log1p_', '_foreach_log2', '_foreach_log2_', '_foreach_log_', '_foreach_maximum', '_foreach_maximum_', '_foreach_minimum', '_foreach_minimum_', '_foreach_mul', '_foreach_mul_', '_foreach_neg', '_foreach_neg_', '_foreach_norm', '_foreach_pow', '_foreach_pow_', '_foreach_reciprocal', '_foreach_reciprocal_', '_foreach_round', '_foreach_round_', '_foreach_sigmoid', '_foreach_sigmoid_', '_foreach_sign', '_foreach_sign_', '_foreach_sin', '_foreach_sin_', '_foreach_sinh', '_foreach_sinh_', '_foreach_sqrt', '_foreach_sqrt_', '_foreach_sub', '_foreach_sub_', '_foreach_tan', '_foreach_tan_', '_foreach_tanh', '_foreach_tanh_', '_foreach_trunc', '_foreach_trunc_', '_foreach_zero_', '_from_functional_tensor', '_functional_assert_async', '_functional_assert_scalar', '_functional_sym_constrain_range', '_functional_sym_constrain_range_for_size', '_functionalize_are_all_mutations_hidden_from_autograd', '_functionalize_are_all_mutations_under_no_grad_or_inference_mode', '_functionalize_commit_update', '_functionalize_mark_mutation_hidden_from_autograd', '_functionalize_replace', '_functionalize_sync', '_fused_adam_', '_fused_adamw_', '_fused_dropout', '_fused_moving_avg_obs_fq_helper', '_fused_moving_avg_obs_fq_helper', '_fused_sdp_choice', '_fused_sgd_', '_fw_primal_copy', '_grid_sampler_2d_cpu_fallback', '_has_compatible_shallow_copy_type', '_histogramdd_bin_edges', '_histogramdd_from_bin_cts', '_histogramdd_from_bin_tensors', '_index_put_impl_', '_indices_copy', '_int_mm', '_is_all_true', '_is_any_true', '_is_functional_tensor', '_is_zerotensor', '_lazy_clone', '_linalg_check_errors', '_linalg_det', '_linalg_det', '_linalg_eigh', '_linalg_eigh', '_linalg_slogdet', '_linalg_slogdet', '_linalg_solve_ex', '_linalg_solve_ex', '_linalg_svd', '_linalg_svd', '_log_softmax', '_log_softmax_backward_data', '_logcumsumexp', '_lstm_mps', '_lu_with_info', '_lu_with_info', '_make_dep_token', '_make_dual', '_make_dual_copy', '_make_per_channel_quantized_tensor', '_make_per_tensor_quantized_tensor', '_masked_scale', '_masked_softmax', '_mixed_dtypes_linear', '_mkldnn_reshape', '_mkldnn_transpose', '_mkldnn_transpose_', '_mps_convolution', '_mps_convolution_transpose', '_native_batch_norm_legit', '_native_batch_norm_legit_no_training', '_native_multi_head_attention', '_neg_view', '_neg_view_copy', '_nested_from_padded', '_nested_from_padded_and_nested_example', '_nested_get_jagged_dummy', '_nested_get_lengths', '_nested_get_offsets', '_nested_get_ragged_idx', '_nested_get_values', '_nested_get_values_copy', '_nested_tensor_from_mask', '_nested_tensor_from_mask_left_aligned', '_nested_tensor_from_tensor_list', '_nested_tensor_softmax_with_shape', '_nested_view_from_buffer', '_nested_view_from_buffer_copy', '_nested_view_from_jagged', '_nested_view_from_jagged_copy', '_nnpack_available', '_nnpack_spatial_convolution', '_pack_padded_sequence', '_pad_packed_sequence', '_pin_memory', '_prelu_kernel', '_print', '_propagate_xla_data', '_remove_batch_dim', '_reshape_alias_copy', '_reshape_from_tensor', '_resize_output_', '_rowwise_prune', '_sample_dirichlet', '_saturate_weight_to_fp16', '_scaled_dot_product_attention_math', '_scaled_dot_product_cudnn_attention', '_scaled_dot_product_cudnn_attention', '_scaled_dot_product_efficient_attention', '_scaled_dot_product_efficient_attention', '_scaled_dot_product_flash_attention', '_scaled_dot_product_flash_attention', '_scaled_dot_product_flash_attention_for_cpu', '_scaled_dot_product_flash_attention_for_cpu', '_scaled_mm', '_shape_as_tensor', '_sobol_engine_draw', '_sobol_engine_ff_', '_sobol_engine_initialize_state_', '_sobol_engine_scramble_', '_softmax', '_softmax_backward_data', '_sparse_broadcast_to', '_sparse_broadcast_to_copy', '_sparse_csr_prod', '_sparse_csr_sum', '_sparse_log_softmax_backward_data', '_sparse_semi_structured_linear', '_sparse_softmax_backward_data', '_sparse_sparse_matmul', '_sparse_sum', '_stack', '_standard_gamma', '_standard_gamma_grad', '_sync', '_test_autograd_multiple_dispatch', '_test_autograd_multiple_dispatch_view', '_test_autograd_multiple_dispatch_view_copy', '_test_check_tensor', '_test_functorch_fallback', '_test_parallel_materialize', '_test_serialization_subcmul', '_to_cpu', '_to_functional_tensor', '_to_sparse_semi_structured', '_transform_bias_rescale_qkv', '_transformer_encoder_layer_fwd', '_trilinear', '_triton_multi_head_attention', '_triton_scaled_dot_attention', '_unique', '_unique2', '_unpack_dual', '_unpack_dual', '_unsafe_index', '_unsafe_index_put', '_use_cudnn_ctc_loss', '_use_cudnn_rnn_flatten_weight', '_validate_compressed_sparse_indices', '_validate_sparse_bsc_tensor_args', '_validate_sparse_bsr_tensor_args', '_validate_sparse_compressed_tensor_args', '_validate_sparse_coo_tensor_args', '_validate_sparse_csc_tensor_args', '_validate_sparse_csr_tensor_args', '_values_copy', '_weight_int4pack_mm', '_weight_int8pack_mm', '_weight_norm', '_weight_norm_interface', 'abs', 'abs_', 'absolute', 'acos', 'acos_', 'acosh', 'acosh_', 'adaptive_avg_pool1d', 'adaptive_max_pool1d', 'add', 'addbmm', 'addcdiv', 'addcmul', 'addmm', 'addmv', 'addmv_', 'addr', 'adjoint', 'affine_grid_generator', 'alias_copy', 'all', 'allclose', 'alpha_dropout', 'alpha_dropout_', 'amax', 'amin', 'aminmax', 'aminmax', 'angle', 'any', 'arange', 'arccos', 'arccos_', 'arccosh', 'arccosh_', 'arcsin', 'arcsin_', 'arcsinh', 'arcsinh_', 'arctan', 'arctan2', 'arctan_', 'arctanh', 'arctanh_', 'argmax', 'argmin', 'argsort', 'argwhere', 'as_strided', 'as_strided_', 'as_strided_copy', 'as_strided_scatter', 'as_tensor', 'asarray', 'asin', 'asin_', 'asinh', 'asinh_', 'atan', 'atan2', 'atan_', 'atanh', 'atanh_', 'avg_pool1d', 'baddbmm', 'bartlett_window', 'batch_norm', 'batch_norm_backward_elemt', 'batch_norm_backward_reduce', 'batch_norm_elemt', 'batch_norm_gather_stats', 'batch_norm_gather_stats_with_counts', 'batch_norm_stats', 'batch_norm_update_stats', 'bernoulli', 'bilinear', 'binary_cross_entropy_with_logits', 'bincount', 'binomial', 'bitwise_and', 'bitwise_left_shift', 'bitwise_not', 'bitwise_or', 'bitwise_right_shift', 'bitwise_xor', 'blackman_window', 'bmm', 'broadcast_to', 'bucketize', 'can_cast', 'cat', 'ccol_indices_copy', 'ceil', 'ceil_', 'celu', 'celu_', 'channel_shuffle', 'cholesky', 'cholesky_inverse', 'cholesky_solve', 'choose_qparams_optimized', 'chunk', 'clamp', 'clamp_', 'clamp_max', 'clamp_max_', 'clamp_min', 'clamp_min_', 'clip', 'clip_', 'clone', 'col_indices_copy', 'column_stack', 'combinations', 'complex', 'concat', 'concatenate', 'conj', 'conj_physical', 'conj_physical_', 'constant_pad_nd', 'conv1d', 'conv2d', 'conv3d', 'conv_tbc', 'conv_transpose1d', 'conv_transpose2d', 'conv_transpose3d', 'convolution', 'copysign', 'corrcoef', 'cos', 'cos_', 'cosh', 'cosh_', 'cosine_embedding_loss', 'cosine_similarity', 'count_nonzero', 'cov', 'cross', 'crow_indices_copy', 'ctc_loss', 'cudnn_affine_grid_generator', 'cudnn_batch_norm', 'cudnn_convolution', 'cudnn_convolution_add_relu', 'cudnn_convolution_relu', 'cudnn_convolution_transpose', 'cudnn_grid_sampler', 'cudnn_is_acceptable', 'cummax', 'cummax', 'cummin', 'cummin', 'cumprod', 'cumsum', 'cumulative_trapezoid', 'deg2rad', 'deg2rad_', 'dequantize', 'det', 'detach', 'detach_', 'detach_copy', 'diag', 'diag_embed', 'diagflat', 'diagonal', 'diagonal_copy', 'diagonal_scatter', 'diff', 'digamma', 'dist', 'div', 'divide', 'dot', 'dropout', 'dropout_', 'dsmm', 'dsplit', 'dstack', 'embedding', 'embedding_bag', 'embedding_renorm_', 'empty', 'empty_like', 'empty_permuted', 'empty_quantized', 'empty_strided', 'eq', 'equal', 'erf', 'erf_', 'erfc', 'erfc_', 'erfinv', 'exp', 'exp2', 'exp2_', 'exp_', 'expand_copy', 'expm1', 'expm1_', 'eye', 'fake_quantize_per_channel_affine', 'fake_quantize_per_tensor_affine', 'fbgemm_linear_fp16_weight', 'fbgemm_linear_fp16_weight_fp32_activation', 'fbgemm_linear_int8_weight', 'fbgemm_linear_int8_weight_fp32_activation', 'fbgemm_linear_quantize_weight', 'fbgemm_pack_gemm_matrix_fp16', 'fbgemm_pack_quantized_matrix', 'feature_alpha_dropout', 'feature_alpha_dropout_', 'feature_dropout', 'feature_dropout_', 'fill', 'fill_', 'fix', 'fix_', 'flatten', 'flip', 'fliplr', 'flipud', 'float_power', 'floor', 'floor_', 'floor_divide', 'fmax', 'fmin', 'fmod', 'frac', 'frac_', 'frexp', 'frexp', 'frobenius_norm', 'from_file', 'from_numpy', 'frombuffer', 'full', 'full_like', 'fused_moving_avg_obs_fake_quant', 'gather', 'gcd', 'gcd_', 'ge', 'geqrf', 'geqrf', 'ger', 'get_default_dtype', 'get_num_interop_threads', 'get_num_threads', 'gradient', 'greater', 'greater_equal', 'grid_sampler', 'grid_sampler_2d', 'grid_sampler_3d', 'group_norm', 'gru', 'gru_cell', 'gt', 'hamming_window', 'hann_window', 'hardshrink', 'heaviside', 'hinge_embedding_loss', 'histc', 'histogram', 'histogram', 'histogramdd', 'histogramdd', 'hsmm', 'hsplit', 'hspmm', 'hstack', 'hypot', 'i0', 'i0_', 'igamma', 'igammac', 'imag', 'index_add', 'index_copy', 'index_fill', 'index_put', 'index_put_', 'index_reduce', 'index_select', 'indices_copy', 'init_num_threads', 'inner', 'instance_norm', 'int_repr', 'inverse', 'is_complex', 'is_conj', 'is_distributed', 'is_floating_point', 'is_grad_enabled', 'is_inference', 'is_inference_mode_enabled', 'is_neg', 'is_nonzero', 'is_same_size', 'is_signed', 'is_vulkan_available', 'isclose', 'isfinite', 'isin', 'isinf', 'isnan', 'isneginf', 'isposinf', 'isreal', 'istft', 'kaiser_window', 'kl_div', 'kron', 'kthvalue', 'kthvalue', 'layer_norm', 'lcm', 'lcm_', 'ldexp', 'ldexp_', 'le', 'lerp', 'less', 'less_equal', 'lgamma', 'linspace', 'log', 'log10', 'log10_', 'log1p', 'log1p_', 'log2', 'log2_', 'log_', 'log_softmax', 'logaddexp', 'logaddexp2', 'logcumsumexp', 'logdet', 'logical_and', 'logical_not', 'logical_or', 'logical_xor', 'logit', 'logit_', 'logspace', 'logsumexp', 'lstm', 'lstm_cell', 'lt', 'lu_solve', 'lu_unpack', 'lu_unpack', 'margin_ranking_loss', 'masked_fill', 'masked_scatter', 'masked_select', 'matmul', 'matrix_exp', 'matrix_power', 'max', 'max', 'max_pool1d', 'max_pool1d_with_indices', 'max_pool2d', 'max_pool3d', 'maximum', 'mean', 'median', 'median', 'min', 'min', 'minimum', 'miopen_batch_norm', 'miopen_convolution', 'miopen_convolution_add_relu', 'miopen_convolution_relu', 'miopen_convolution_transpose', 'miopen_depthwise_convolution', 'miopen_rnn', 'mkldnn_adaptive_avg_pool2d', 'mkldnn_convolution', 'mkldnn_linear_backward_weights', 'mkldnn_max_pool2d', 'mkldnn_max_pool3d', 'mkldnn_rnn_layer', 'mm', 'mode', 'mode', 'moveaxis', 'movedim', 'msort', 'mul', 'multinomial', 'multiply', 'mv', 'mvlgamma', 'nan_to_num', 'nan_to_num_', 'nanmean', 'nanmedian', 'nanmedian', 'nanquantile', 'nansum', 'narrow', 'narrow_copy', 'native_batch_norm', 'native_channel_shuffle', 'native_dropout', 'native_group_norm', 'native_layer_norm', 'native_norm', 'ne', 'neg', 'neg_', 'negative', 'negative_', 'nextafter', 'nonzero', 'nonzero_static', 'norm_except_dim', 'normal', 'not_equal', 'nuclear_norm', 'numel', 'ones', 'ones_like', 'orgqr', 'ormqr', 'outer', 'pairwise_distance', 'pdist', 'permute', 'permute_copy', 'pinverse', 'pixel_shuffle', 'pixel_unshuffle', 'poisson', 'poisson_nll_loss', 'polar', 'polygamma', 'positive', 'pow', 'prelu', 'prod', 'promote_types', 'put', 'q_per_channel_axis', 'q_per_channel_scales', 'q_per_channel_zero_points', 'q_scale', 'q_zero_point', 'qr', 'qr', 'quantile', 'quantize_per_channel', 'quantize_per_tensor', 'quantize_per_tensor_dynamic', 'quantized_batch_norm', 'quantized_gru_cell', 'quantized_lstm_cell', 'quantized_max_pool1d', 'quantized_max_pool2d', 'quantized_max_pool3d', 'quantized_rnn_relu_cell', 'quantized_rnn_tanh_cell', 'rad2deg', 'rad2deg_', 'rand', 'rand_like', 'randint', 'randint_like', 'randn', 'randn_like', 'randperm', 'range', 'ravel', 'real', 'reciprocal', 'reciprocal_', 'relu', 'relu_', 'remainder', 'renorm', 'repeat_interleave', 'reshape', 'resize_as_', 'resize_as_sparse_', 'resolve_conj', 'resolve_neg', 'result_type', 'rnn_relu', 'rnn_relu_cell', 'rnn_tanh', 'rnn_tanh_cell', 'roll', 'rot90', 'round', 'round_', 'row_indices_copy', 'row_stack', 'rrelu', 'rrelu_', 'rsqrt', 'rsqrt_', 'rsub', 'saddmm', 'scalar_tensor', 'scatter', 'scatter_add', 'scatter_reduce', 'searchsorted', 'segment_reduce', 'select', 'select_copy', 'select_scatter', 'selu', 'selu_', 'set_flush_denormal', 'set_num_interop_threads', 'set_num_threads', 'sgn', 'sigmoid', 'sigmoid_', 'sign', 'signbit', 'sin', 'sin_', 'sinc', 'sinc_', 'sinh', 'sinh_', 'slice_copy', 'slice_inverse', 'slice_scatter', 'slogdet', 'slogdet', 'smm', 'softmax', 'sort', 'sort', 'sparse_bsc_tensor', 'sparse_bsr_tensor', 'sparse_compressed_tensor', 'sparse_coo_tensor', 'sparse_csc_tensor', 'sparse_csr_tensor', 'split_copy', 'split_with_sizes', 'split_with_sizes_copy', 'spmm', 'sqrt', 'sqrt_', 'square', 'square_', 'squeeze', 'squeeze_copy', 'sspaddmm', 'stack', 'std', 'std_mean', 'sub', 'subtract', 'sum', 'svd', 'svd', 'swapaxes', 'swapdims', 'sym_constrain_range', 'sym_constrain_range_for_size', 't', 't_copy', 'take', 'take_along_dim', 'tan', 'tan_', 'tanh', 'tanh_', 'tensor', 'tensor_split', 'threshold', 'threshold_', 'tile', 'topk', 'topk', 'trace', 'transpose', 'transpose_copy', 'trapezoid', 'trapz', 'triangular_solve', 'triangular_solve', 'tril', 'tril_indices', 'triplet_margin_loss', 'triu', 'triu_indices', 'true_divide', 'trunc', 'trunc_', 'unbind', 'unbind_copy', 'unflatten', 'unfold_copy', 'unique_dim', 'unsafe_chunk', 'unsafe_split', 'unsafe_split_with_sizes', 'unsqueeze', 'unsqueeze_copy', 'values_copy', 'vander', 'var', 'var_mean', 'vdot', 'view_as_complex', 'view_as_complex_copy', 'view_as_real', 'view_as_real_copy', 'view_copy', 'vsplit', 'vstack', 'where', 'xlogy', 'xlogy_', 'zero_', 'zeros', 'zeros_like']