import types import torch._C class _ClassNamespace(types.ModuleType): def __init__(self, name): super().__init__("torch.classes" + name) self.name = name def __getattr__(self, attr): proxy = torch._C._get_custom_class_python_wrapper(self.name, attr) if proxy is None: raise RuntimeError(f"Class {self.name}.{attr} not registered!") return proxy class _Classes(types.ModuleType): __file__ = "_classes.py" def __init__(self): super().__init__("torch.classes") def __getattr__(self, name): namespace = _ClassNamespace(name) setattr(self, name, namespace) return namespace @property def loaded_libraries(self): return torch.ops.loaded_libraries def load_library(self, path): """ Loads a shared library from the given path into the current process. The library being loaded may run global initialization code to register custom classes with the PyTorch JIT runtime. This allows dynamically loading custom classes. For this, you should compile your class and the static registration code into a shared library object, and then call ``torch.classes.load_library('path/to/libcustom.so')`` to load the shared object. After the library is loaded, it is added to the ``torch.classes.loaded_libraries`` attribute, a set that may be inspected for the paths of all libraries loaded using this function. Args: path (str): A path to a shared library to load. """ torch.ops.load_library(path) # The classes "namespace" classes = _Classes()