"""Various linear algebra utility methods for internal use. """ from typing import Optional, Tuple import torch from torch import Tensor def is_sparse(A): """Check if tensor A is a sparse tensor""" if isinstance(A, torch.Tensor): return A.layout == torch.sparse_coo error_str = "expected Tensor" if not torch.jit.is_scripting(): error_str += f" but got {type(A)}" raise TypeError(error_str) def get_floating_dtype(A): """Return the floating point dtype of tensor A. Integer types map to float32. """ dtype = A.dtype if dtype in (torch.float16, torch.float32, torch.float64): return dtype return torch.float32 def matmul(A: Optional[Tensor], B: Tensor) -> Tensor: """Multiply two matrices. If A is None, return B. A can be sparse or dense. B is always dense. """ if A is None: return B if is_sparse(A): return torch.sparse.mm(A, B) return torch.matmul(A, B) def conjugate(A): """Return conjugate of tensor A. .. note:: If A's dtype is not complex, A is returned. """ if A.is_complex(): return A.conj() return A def transpose(A): """Return transpose of a matrix or batches of matrices.""" ndim = len(A.shape) return A.transpose(ndim - 1, ndim - 2) def transjugate(A): """Return transpose conjugate of a matrix or batches of matrices.""" return conjugate(transpose(A)) def bform(X: Tensor, A: Optional[Tensor], Y: Tensor) -> Tensor: """Return bilinear form of matrices: :math:`X^T A Y`.""" return matmul(transpose(X), matmul(A, Y)) def qform(A: Optional[Tensor], S: Tensor): """Return quadratic form :math:`S^T A S`.""" return bform(S, A, S) def basis(A): """Return orthogonal basis of A columns.""" return torch.linalg.qr(A).Q def symeig(A: Tensor, largest: Optional[bool] = False) -> Tuple[Tensor, Tensor]: """Return eigenpairs of A with specified ordering.""" if largest is None: largest = False E, Z = torch.linalg.eigh(A, UPLO="U") # assuming that E is ordered if largest: E = torch.flip(E, dims=(-1,)) Z = torch.flip(Z, dims=(-1,)) return E, Z # These functions were deprecated and removed # This nice error message can be removed in version 1.13+ def matrix_rank(input, tol=None, symmetric=False, *, out=None) -> Tensor: raise RuntimeError( "This function was deprecated since version 1.9 and is now removed.\n" "Please use the `torch.linalg.matrix_rank` function instead. " "The parameter 'symmetric' was renamed in `torch.linalg.matrix_rank()` to 'hermitian'." ) def solve(input: Tensor, A: Tensor, *, out=None) -> Tuple[Tensor, Tensor]: raise RuntimeError( "This function was deprecated since version 1.9 and is now removed. " "`torch.solve` is deprecated in favor of `torch.linalg.solve`. " "`torch.linalg.solve` has its arguments reversed and does not return the LU factorization.\n\n" "To get the LU factorization see `torch.lu`, which can be used with `torch.lu_solve` or `torch.lu_unpack`.\n" "X = torch.solve(B, A).solution " "should be replaced with:\n" "X = torch.linalg.solve(A, B)" ) def lstsq(input: Tensor, A: Tensor, *, out=None) -> Tuple[Tensor, Tensor]: raise RuntimeError( "This function was deprecated since version 1.9 and is now removed. " "`torch.lstsq` is deprecated in favor of `torch.linalg.lstsq`.\n" "`torch.linalg.lstsq` has reversed arguments and does not return the QR decomposition in " "the returned tuple (although it returns other information about the problem).\n\n" "To get the QR decomposition consider using `torch.linalg.qr`.\n\n" "The returned solution in `torch.lstsq` stored the residuals of the solution in the " "last m - n columns of the returned value whenever m > n. In torch.linalg.lstsq, " "the residuals are in the field 'residuals' of the returned named tuple.\n\n" "The unpacking of the solution, as in\n" "X, _ = torch.lstsq(B, A).solution[:A.size(1)]\n" "should be replaced with:\n" "X = torch.linalg.lstsq(A, B).solution" ) def _symeig( input, eigenvectors=False, upper=True, *, out=None ) -> Tuple[Tensor, Tensor]: raise RuntimeError( "This function was deprecated since version 1.9 and is now removed. " "The default behavior has changed from using the upper triangular portion of the matrix by default " "to using the lower triangular portion.\n\n" "L, _ = torch.symeig(A, upper=upper) " "should be replaced with:\n" "L = torch.linalg.eigvalsh(A, UPLO='U' if upper else 'L')\n\n" "and\n\n" "L, V = torch.symeig(A, eigenvectors=True) " "should be replaced with:\n" "L, V = torch.linalg.eigh(A, UPLO='U' if upper else 'L')" ) def eig( self: Tensor, eigenvectors: bool = False, *, e=None, v=None ) -> Tuple[Tensor, Tensor]: raise RuntimeError( "This function was deprecated since version 1.9 and is now removed. " "`torch.linalg.eig` returns complex tensors of dtype `cfloat` or `cdouble` rather than real tensors " "mimicking complex tensors.\n\n" "L, _ = torch.eig(A) " "should be replaced with:\n" "L_complex = torch.linalg.eigvals(A)\n\n" "and\n\n" "L, V = torch.eig(A, eigenvectors=True) " "should be replaced with:\n" "L_complex, V_complex = torch.linalg.eig(A)" )