"""Tools to support array_api.""" import itertools import math from functools import wraps import numpy import scipy.special as special from .._config import get_config from .fixes import parse_version _NUMPY_NAMESPACE_NAMES = {"numpy", "array_api_compat.numpy"} def yield_namespaces(include_numpy_namespaces=True): """Yield supported namespace. This is meant to be used for testing purposes only. Parameters ---------- include_numpy_namespaces : bool, default=True If True, also yield numpy namespaces. Returns ------- array_namespace : str The name of the Array API namespace. """ for array_namespace in [ # The following is used to test the array_api_compat wrapper when # array_api_dispatch is enabled: in particular, the arrays used in the # tests are regular numpy arrays without any "device" attribute. "numpy", # Stricter NumPy-based Array API implementation. The # array_api_strict.Array instances always have a dummy "device" attribute. "array_api_strict", "cupy", "cupy.array_api", "torch", ]: if not include_numpy_namespaces and array_namespace in _NUMPY_NAMESPACE_NAMES: continue yield array_namespace def yield_namespace_device_dtype_combinations(include_numpy_namespaces=True): """Yield supported namespace, device, dtype tuples for testing. Use this to test that an estimator works with all combinations. Parameters ---------- include_numpy_namespaces : bool, default=True If True, also yield numpy namespaces. Returns ------- array_namespace : str The name of the Array API namespace. device : str The name of the device on which to allocate the arrays. Can be None to indicate that the default value should be used. dtype_name : str The name of the data type to use for arrays. Can be None to indicate that the default value should be used. """ for array_namespace in yield_namespaces( include_numpy_namespaces=include_numpy_namespaces ): if array_namespace == "torch": for device, dtype in itertools.product( ("cpu", "cuda"), ("float64", "float32") ): yield array_namespace, device, dtype yield array_namespace, "mps", "float32" else: yield array_namespace, None, None def _check_array_api_dispatch(array_api_dispatch): """Check that array_api_compat is installed and NumPy version is compatible. array_api_compat follows NEP29, which has a higher minimum NumPy version than scikit-learn. """ if array_api_dispatch: try: import array_api_compat # noqa except ImportError: raise ImportError( "array_api_compat is required to dispatch arrays using the API" " specification" ) numpy_version = parse_version(numpy.__version__) min_numpy_version = "1.21" if numpy_version < parse_version(min_numpy_version): raise ImportError( f"NumPy must be {min_numpy_version} or newer to dispatch array using" " the API specification" ) def _single_array_device(array): """Hardware device where the array data resides on.""" if isinstance(array, (numpy.ndarray, numpy.generic)) or not hasattr( array, "device" ): return "cpu" else: return array.device def device(*array_list, remove_none=True, remove_types=(str,)): """Hardware device where the array data resides on. If the hardware device is not the same for all arrays, an error is raised. Parameters ---------- *array_list : arrays List of array instances from NumPy or an array API compatible library. remove_none : bool, default=True Whether to ignore None objects passed in array_list. remove_types : tuple or list, default=(str,) Types to ignore in array_list. Returns ------- out : device `device` object (see the "Device Support" section of the array API spec). """ array_list = _remove_non_arrays( *array_list, remove_none=remove_none, remove_types=remove_types ) # Note that _remove_non_arrays ensures that array_list is not empty. device_ = _single_array_device(array_list[0]) # Note: here we cannot simply use a Python `set` as it requires # hashable members which is not guaranteed for Array API device # objects. In particular, CuPy devices are not hashable at the # time of writing. for array in array_list[1:]: device_other = _single_array_device(array) if device_ != device_other: raise ValueError( f"Input arrays use different devices: {str(device_)}, " f"{str(device_other)}" ) return device_ def size(x): """Return the total number of elements of x. Parameters ---------- x : array Array instance from NumPy or an array API compatible library. Returns ------- out : int Total number of elements. """ return math.prod(x.shape) def _is_numpy_namespace(xp): """Return True if xp is backed by NumPy.""" return xp.__name__ in _NUMPY_NAMESPACE_NAMES def _union1d(a, b, xp): if _is_numpy_namespace(xp): return xp.asarray(numpy.union1d(a, b)) assert a.ndim == b.ndim == 1 return xp.unique_values(xp.concat([xp.unique_values(a), xp.unique_values(b)])) def isdtype(dtype, kind, *, xp): """Returns a boolean indicating whether a provided dtype is of type "kind". Included in the v2022.12 of the Array API spec. https://data-apis.org/array-api/latest/API_specification/generated/array_api.isdtype.html """ if isinstance(kind, tuple): return any(_isdtype_single(dtype, k, xp=xp) for k in kind) else: return _isdtype_single(dtype, kind, xp=xp) def _isdtype_single(dtype, kind, *, xp): if isinstance(kind, str): if kind == "bool": return dtype == xp.bool elif kind == "signed integer": return dtype in {xp.int8, xp.int16, xp.int32, xp.int64} elif kind == "unsigned integer": return dtype in {xp.uint8, xp.uint16, xp.uint32, xp.uint64} elif kind == "integral": return any( _isdtype_single(dtype, k, xp=xp) for k in ("signed integer", "unsigned integer") ) elif kind == "real floating": return dtype in supported_float_dtypes(xp) elif kind == "complex floating": # Some name spaces do not have complex, such as cupy.array_api complex_dtypes = set() if hasattr(xp, "complex64"): complex_dtypes.add(xp.complex64) if hasattr(xp, "complex128"): complex_dtypes.add(xp.complex128) return dtype in complex_dtypes elif kind == "numeric": return any( _isdtype_single(dtype, k, xp=xp) for k in ("integral", "real floating", "complex floating") ) else: raise ValueError(f"Unrecognized data type kind: {kind!r}") else: return dtype == kind def supported_float_dtypes(xp): """Supported floating point types for the namespace. Note: float16 is not officially part of the Array API spec at the time of writing but scikit-learn estimators and functions can choose to accept it when xp.float16 is defined. https://data-apis.org/array-api/latest/API_specification/data_types.html """ if hasattr(xp, "float16"): return (xp.float64, xp.float32, xp.float16) else: return (xp.float64, xp.float32) def ensure_common_namespace_device(reference, *arrays): """Ensure that all arrays use the same namespace and device as reference. If neccessary the arrays are moved to the same namespace and device as the reference array. Parameters ---------- reference : array Reference array. *arrays : array Arrays to check. Returns ------- arrays : list Arrays with the same namespace and device as reference. """ xp, is_array_api = get_namespace(reference) if is_array_api: device_ = device(reference) # Move arrays to the same namespace and device as the reference array. return [xp.asarray(a, device=device_) for a in arrays] else: return arrays class _ArrayAPIWrapper: """sklearn specific Array API compatibility wrapper This wrapper makes it possible for scikit-learn maintainers to deal with discrepancies between different implementations of the Python Array API standard and its evolution over time. The Python Array API standard specification: https://data-apis.org/array-api/latest/ Documentation of the NumPy implementation: https://numpy.org/neps/nep-0047-array-api-standard.html """ def __init__(self, array_namespace): self._namespace = array_namespace def __getattr__(self, name): return getattr(self._namespace, name) def __eq__(self, other): return self._namespace == other._namespace def isdtype(self, dtype, kind): return isdtype(dtype, kind, xp=self._namespace) def _check_device_cpu(device): # noqa if device not in {"cpu", None}: raise ValueError(f"Unsupported device for NumPy: {device!r}") def _accept_device_cpu(func): @wraps(func) def wrapped_func(*args, **kwargs): _check_device_cpu(kwargs.pop("device", None)) return func(*args, **kwargs) return wrapped_func class _NumPyAPIWrapper: """Array API compat wrapper for any numpy version NumPy < 2 does not implement the namespace. NumPy 2 and later should progressively implement more an more of the latest Array API spec but this is still work in progress at this time. This wrapper makes it possible to write code that uses the standard Array API while working with any version of NumPy supported by scikit-learn. See the `get_namespace()` public function for more details. """ # TODO: once scikit-learn drops support for NumPy < 2, this class can be # removed, assuming Array API compliance of NumPy 2 is actually sufficient # for scikit-learn's needs. # Creation functions in spec: # https://data-apis.org/array-api/latest/API_specification/creation_functions.html _CREATION_FUNCS = { "arange", "empty", "empty_like", "eye", "full", "full_like", "linspace", "ones", "ones_like", "zeros", "zeros_like", } # Data types in spec # https://data-apis.org/array-api/latest/API_specification/data_types.html _DTYPES = { "int8", "int16", "int32", "int64", "uint8", "uint16", "uint32", "uint64", # XXX: float16 is not part of the Array API spec but exposed by # some namespaces. "float16", "float32", "float64", "complex64", "complex128", } def __getattr__(self, name): attr = getattr(numpy, name) # Support device kwargs and make sure they are on the CPU if name in self._CREATION_FUNCS: return _accept_device_cpu(attr) # Convert to dtype objects if name in self._DTYPES: return numpy.dtype(attr) return attr @property def bool(self): return numpy.bool_ def astype(self, x, dtype, *, copy=True, casting="unsafe"): # astype is not defined in the top level NumPy namespace return x.astype(dtype, copy=copy, casting=casting) def asarray(self, x, *, dtype=None, device=None, copy=None): # noqa _check_device_cpu(device) # Support copy in NumPy namespace if copy is True: return numpy.array(x, copy=True, dtype=dtype) else: return numpy.asarray(x, dtype=dtype) def unique_inverse(self, x): return numpy.unique(x, return_inverse=True) def unique_counts(self, x): return numpy.unique(x, return_counts=True) def unique_values(self, x): return numpy.unique(x) def concat(self, arrays, *, axis=None): return numpy.concatenate(arrays, axis=axis) def reshape(self, x, shape, *, copy=None): """Gives a new shape to an array without changing its data. The Array API specification requires shape to be a tuple. https://data-apis.org/array-api/latest/API_specification/generated/array_api.reshape.html """ if not isinstance(shape, tuple): raise TypeError( f"shape must be a tuple, got {shape!r} of type {type(shape)}" ) if copy is True: x = x.copy() return numpy.reshape(x, shape) def isdtype(self, dtype, kind): return isdtype(dtype, kind, xp=self) _NUMPY_API_WRAPPER_INSTANCE = _NumPyAPIWrapper() def _remove_non_arrays(*arrays, remove_none=True, remove_types=(str,)): """Filter arrays to exclude None and/or specific types. Raise ValueError if no arrays are left after filtering. Parameters ---------- *arrays : array objects Array objects. remove_none : bool, default=True Whether to ignore None objects passed in arrays. remove_types : tuple or list, default=(str,) Types to ignore in the arrays. Returns ------- filtered_arrays : list List of arrays with None and typoe """ filtered_arrays = [] remove_types = tuple(remove_types) for array in arrays: if remove_none and array is None: continue if isinstance(array, remove_types): continue filtered_arrays.append(array) if not filtered_arrays: raise ValueError( f"At least one input array expected after filtering with {remove_none=}, " f"remove_types=[{', '.join(t.__name__ for t in remove_types)}]. Got none. " f"Original types: [{', '.join(type(a).__name__ for a in arrays)}]." ) return filtered_arrays def get_namespace(*arrays, remove_none=True, remove_types=(str,), xp=None): """Get namespace of arrays. Introspect `arrays` arguments and return their common Array API compatible namespace object, if any. See: https://numpy.org/neps/nep-0047-array-api-standard.html If `arrays` are regular numpy arrays, an instance of the `_NumPyAPIWrapper` compatibility wrapper is returned instead. Namespace support is not enabled by default. To enabled it call: sklearn.set_config(array_api_dispatch=True) or: with sklearn.config_context(array_api_dispatch=True): # your code here Otherwise an instance of the `_NumPyAPIWrapper` compatibility wrapper is always returned irrespective of the fact that arrays implement the `__array_namespace__` protocol or not. Parameters ---------- *arrays : array objects Array objects. remove_none : bool, default=True Whether to ignore None objects passed in arrays. remove_types : tuple or list, default=(str,) Types to ignore in the arrays. xp : module, default=None Precomputed array namespace module. When passed, typically from a caller that has already performed inspection of its own inputs, skips array namespace inspection. Returns ------- namespace : module Namespace shared by array objects. If any of the `arrays` are not arrays, the namespace defaults to NumPy. is_array_api_compliant : bool True if the arrays are containers that implement the Array API spec. Always False when array_api_dispatch=False. """ array_api_dispatch = get_config()["array_api_dispatch"] if not array_api_dispatch: if xp is not None: return xp, False else: return _NUMPY_API_WRAPPER_INSTANCE, False if xp is not None: return xp, True arrays = _remove_non_arrays( *arrays, remove_none=remove_none, remove_types=remove_types ) _check_array_api_dispatch(array_api_dispatch) # array-api-compat is a required dependency of scikit-learn only when # configuring `array_api_dispatch=True`. Its import should therefore be # protected by _check_array_api_dispatch to display an informative error # message in case it is missing. import array_api_compat namespace, is_array_api_compliant = array_api_compat.get_namespace(*arrays), True # These namespaces need additional wrapping to smooth out small differences # between implementations if namespace.__name__ in {"cupy.array_api"}: namespace = _ArrayAPIWrapper(namespace) return namespace, is_array_api_compliant def get_namespace_and_device(*array_list, remove_none=True, remove_types=(str,)): """Combination into one single function of `get_namespace` and `device`.""" array_list = _remove_non_arrays( *array_list, remove_none=remove_none, remove_types=remove_types ) skip_remove_kwargs = dict(remove_none=False, remove_types=[]) return ( *get_namespace(*array_list, **skip_remove_kwargs), device(*array_list, **skip_remove_kwargs), ) def _expit(X, xp=None): xp, _ = get_namespace(X, xp=xp) if _is_numpy_namespace(xp): return xp.asarray(special.expit(numpy.asarray(X))) return 1.0 / (1.0 + xp.exp(-X)) def _add_to_diagonal(array, value, xp): # Workaround for the lack of support for xp.reshape(a, shape, copy=False) in # numpy.array_api: https://github.com/numpy/numpy/issues/23410 value = xp.asarray(value, dtype=array.dtype) if _is_numpy_namespace(xp): array_np = numpy.asarray(array) array_np.flat[:: array.shape[0] + 1] += value return xp.asarray(array_np) elif value.ndim == 1: for i in range(array.shape[0]): array[i, i] += value[i] else: # scalar value for i in range(array.shape[0]): array[i, i] += value def _find_matching_floating_dtype(*arrays, xp): """Find a suitable floating point dtype when computing with arrays. If any of the arrays are floating point, return the dtype with the highest precision by following official type promotion rules: https://data-apis.org/array-api/latest/API_specification/type_promotion.html If there are no floating point input arrays (all integral inputs for instance), return the default floating point dtype for the namespace. """ dtyped_arrays = [a for a in arrays if hasattr(a, "dtype")] floating_dtypes = [ a.dtype for a in dtyped_arrays if xp.isdtype(a.dtype, "real floating") ] if floating_dtypes: # Return the floating dtype with the highest precision: return xp.result_type(*floating_dtypes) # If none of the input arrays have a floating point dtype, they must be all # integer arrays or containers of Python scalars: return the default # floating point dtype for the namespace (implementation specific). return xp.asarray(0.0).dtype def _average(a, axis=None, weights=None, normalize=True, xp=None): """Partial port of np.average to support the Array API. It does a best effort at mimicking the return dtype rule described at https://numpy.org/doc/stable/reference/generated/numpy.average.html but only for the common cases needed in scikit-learn. """ xp, _, device_ = get_namespace_and_device(a, weights) if _is_numpy_namespace(xp): if normalize: return xp.asarray(numpy.average(a, axis=axis, weights=weights)) elif axis is None and weights is not None: return xp.asarray(numpy.dot(a, weights)) a = xp.asarray(a, device=device_) if weights is not None: weights = xp.asarray(weights, device=device_) if weights is not None and a.shape != weights.shape: if axis is None: raise TypeError( f"Axis must be specified when the shape of a {tuple(a.shape)} and " f"weights {tuple(weights.shape)} differ." ) if weights.ndim != 1: raise TypeError( f"1D weights expected when a.shape={tuple(a.shape)} and " f"weights.shape={tuple(weights.shape)} differ." ) if size(weights) != a.shape[axis]: raise ValueError( f"Length of weights {size(weights)} not compatible with " f" a.shape={tuple(a.shape)} and {axis=}." ) # If weights are 1D, add singleton dimensions for broadcasting shape = [1] * a.ndim shape[axis] = a.shape[axis] weights = xp.reshape(weights, shape) if xp.isdtype(a.dtype, "complex floating"): raise NotImplementedError( "Complex floating point values are not supported by average." ) if weights is not None and xp.isdtype(weights.dtype, "complex floating"): raise NotImplementedError( "Complex floating point values are not supported by average." ) output_dtype = _find_matching_floating_dtype(a, weights, xp=xp) a = xp.astype(a, output_dtype) if weights is None: return (xp.mean if normalize else xp.sum)(a, axis=axis) weights = xp.astype(weights, output_dtype) sum_ = xp.sum(xp.multiply(a, weights), axis=axis) if not normalize: return sum_ scale = xp.sum(weights, axis=axis) if xp.any(scale == 0.0): raise ZeroDivisionError("Weights sum to zero, can't be normalized") return sum_ / scale def _nanmin(X, axis=None, xp=None): # TODO: refactor once nan-aware reductions are standardized: # https://github.com/data-apis/array-api/issues/621 xp, _ = get_namespace(X, xp=xp) if _is_numpy_namespace(xp): return xp.asarray(numpy.nanmin(X, axis=axis)) else: mask = xp.isnan(X) X = xp.min(xp.where(mask, xp.asarray(+xp.inf, device=device(X)), X), axis=axis) # Replace Infs from all NaN slices with NaN again mask = xp.all(mask, axis=axis) if xp.any(mask): X = xp.where(mask, xp.asarray(xp.nan), X) return X def _nanmax(X, axis=None, xp=None): # TODO: refactor once nan-aware reductions are standardized: # https://github.com/data-apis/array-api/issues/621 xp, _ = get_namespace(X, xp=xp) if _is_numpy_namespace(xp): return xp.asarray(numpy.nanmax(X, axis=axis)) else: mask = xp.isnan(X) X = xp.max(xp.where(mask, xp.asarray(-xp.inf, device=device(X)), X), axis=axis) # Replace Infs from all NaN slices with NaN again mask = xp.all(mask, axis=axis) if xp.any(mask): X = xp.where(mask, xp.asarray(xp.nan), X) return X def _asarray_with_order( array, dtype=None, order=None, copy=None, *, xp=None, device=None ): """Helper to support the order kwarg only for NumPy-backed arrays Memory layout parameter `order` is not exposed in the Array API standard, however some input validation code in scikit-learn needs to work both for classes and functions that will leverage Array API only operations and for code that inherently relies on NumPy backed data containers with specific memory layout constraints (e.g. our own Cython code). The purpose of this helper is to make it possible to share code for data container validation without memory copies for both downstream use cases: the `order` parameter is only enforced if the input array implementation is NumPy based, otherwise `order` is just silently ignored. """ xp, _ = get_namespace(array, xp=xp) if _is_numpy_namespace(xp): # Use NumPy API to support order if copy is True: array = numpy.array(array, order=order, dtype=dtype) else: array = numpy.asarray(array, order=order, dtype=dtype) # At this point array is a NumPy ndarray. We convert it to an array # container that is consistent with the input's namespace. return xp.asarray(array) else: return xp.asarray(array, dtype=dtype, copy=copy, device=device) def _ravel(array, xp=None): """Array API compliant version of np.ravel. For non numpy namespaces, it just returns a flattened array, that might be or not be a copy. """ xp, _ = get_namespace(array, xp=xp) if _is_numpy_namespace(xp): array = numpy.asarray(array) return xp.asarray(numpy.ravel(array, order="C")) return xp.reshape(array, shape=(-1,)) def _convert_to_numpy(array, xp): """Convert X into a NumPy ndarray on the CPU.""" xp_name = xp.__name__ if xp_name in {"array_api_compat.torch", "torch"}: return array.cpu().numpy() elif xp_name == "cupy.array_api": return array._array.get() elif xp_name in {"array_api_compat.cupy", "cupy"}: # pragma: nocover return array.get() return numpy.asarray(array) def _estimator_with_converted_arrays(estimator, converter): """Create new estimator which converting all attributes that are arrays. The converter is called on all NumPy arrays and arrays that support the `DLPack interface `__. Parameters ---------- estimator : Estimator Estimator to convert converter : callable Callable that takes an array attribute and returns the converted array. Returns ------- new_estimator : Estimator Convert estimator """ from sklearn.base import clone new_estimator = clone(estimator) for key, attribute in vars(estimator).items(): if hasattr(attribute, "__dlpack__") or isinstance(attribute, numpy.ndarray): attribute = converter(attribute) setattr(new_estimator, key, attribute) return new_estimator def _atol_for_type(dtype): """Return the absolute tolerance for a given numpy dtype.""" return numpy.finfo(dtype).eps * 100 def indexing_dtype(xp): """Return a platform-specific integer dtype suitable for indexing. On 32-bit platforms, this will typically return int32 and int64 otherwise. Note: using dtype is recommended for indexing transient array datastructures. For long-lived arrays, such as the fitted attributes of estimators, it is instead recommended to use platform-independent int32 if we do not expect to index more 2B elements. Using fixed dtypes simplifies the handling of serialized models, e.g. to deploy a model fit on a 64-bit platform to a target 32-bit platform such as WASM/pyodide. """ # Currently this is implemented with simple hack that assumes that # following "may be" statements in the Array API spec always hold: # > The default integer data type should be the same across platforms, but # > the default may vary depending on whether Python is 32-bit or 64-bit. # > The default array index data type may be int32 on 32-bit platforms, but # > the default should be int64 otherwise. # https://data-apis.org/array-api/latest/API_specification/data_types.html#default-data-types # TODO: once sufficiently adopted, we might want to instead rely on the # newer inspection API: https://github.com/data-apis/array-api/issues/640 return xp.asarray(0).dtype