from sympy.assumptions import Q
from sympy.core.expr import Expr
from sympy.core.add import Add
from sympy.core.function import Function
from sympy.core.kind import NumberKind, UndefinedKind
from sympy.core.numbers import I, Integer, oo, pi, Rational
from sympy.core.singleton import S
from sympy.core.symbol import Symbol, symbols
from sympy.functions.elementary.complexes import Abs
from sympy.functions.elementary.exponential import exp
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import cos, sin
from sympy.matrices.common import (ShapeError, NonSquareMatrixError,
    _MinimalMatrix, _CastableMatrix, MatrixShaping, MatrixProperties,
    MatrixOperations, MatrixArithmetic, MatrixSpecial, MatrixKind)
from sympy.matrices.matrices import MatrixCalculus
from sympy.matrices import (Matrix, diag, eye,
    matrix_multiply_elementwise, ones, zeros, SparseMatrix, banded,
    MutableDenseMatrix, MutableSparseMatrix, ImmutableDenseMatrix,
    ImmutableSparseMatrix)
from sympy.polys.polytools import Poly
from sympy.utilities.iterables import flatten
from sympy.testing.pytest import raises, XFAIL
from sympy.tensor.array.dense_ndim_array import ImmutableDenseNDimArray as Array

from sympy.abc import x, y, z

# classes to test the basic matrix classes
class ShapingOnlyMatrix(_MinimalMatrix, _CastableMatrix, MatrixShaping):
    pass


def eye_Shaping(n):
    return ShapingOnlyMatrix(n, n, lambda i, j: int(i == j))


def zeros_Shaping(n):
    return ShapingOnlyMatrix(n, n, lambda i, j: 0)


class PropertiesOnlyMatrix(_MinimalMatrix, _CastableMatrix, MatrixProperties):
    pass


def eye_Properties(n):
    return PropertiesOnlyMatrix(n, n, lambda i, j: int(i == j))


def zeros_Properties(n):
    return PropertiesOnlyMatrix(n, n, lambda i, j: 0)


class OperationsOnlyMatrix(_MinimalMatrix, _CastableMatrix, MatrixOperations):
    pass


def eye_Operations(n):
    return OperationsOnlyMatrix(n, n, lambda i, j: int(i == j))


def zeros_Operations(n):
    return OperationsOnlyMatrix(n, n, lambda i, j: 0)


class ArithmeticOnlyMatrix(_MinimalMatrix, _CastableMatrix, MatrixArithmetic):
    pass


def eye_Arithmetic(n):
    return ArithmeticOnlyMatrix(n, n, lambda i, j: int(i == j))


def zeros_Arithmetic(n):
    return ArithmeticOnlyMatrix(n, n, lambda i, j: 0)


class SpecialOnlyMatrix(_MinimalMatrix, _CastableMatrix, MatrixSpecial):
    pass


class CalculusOnlyMatrix(_MinimalMatrix, _CastableMatrix, MatrixCalculus):
    pass


def test__MinimalMatrix():
    x = _MinimalMatrix(2, 3, [1, 2, 3, 4, 5, 6])
    assert x.rows == 2
    assert x.cols == 3
    assert x[2] == 3
    assert x[1, 1] == 5
    assert list(x) == [1, 2, 3, 4, 5, 6]
    assert list(x[1, :]) == [4, 5, 6]
    assert list(x[:, 1]) == [2, 5]
    assert list(x[:, :]) == list(x)
    assert x[:, :] == x
    assert _MinimalMatrix(x) == x
    assert _MinimalMatrix([[1, 2, 3], [4, 5, 6]]) == x
    assert _MinimalMatrix(([1, 2, 3], [4, 5, 6])) == x
    assert _MinimalMatrix([(1, 2, 3), (4, 5, 6)]) == x
    assert _MinimalMatrix(((1, 2, 3), (4, 5, 6))) == x
    assert not (_MinimalMatrix([[1, 2], [3, 4], [5, 6]]) == x)


def test_kind():
    assert Matrix([[1, 2], [3, 4]]).kind == MatrixKind(NumberKind)
    assert Matrix([[0, 0], [0, 0]]).kind == MatrixKind(NumberKind)
    assert Matrix(0, 0, []).kind == MatrixKind(NumberKind)
    assert Matrix([[x]]).kind == MatrixKind(NumberKind)
    assert Matrix([[1, Matrix([[1]])]]).kind == MatrixKind(UndefinedKind)
    assert SparseMatrix([[1]]).kind == MatrixKind(NumberKind)
    assert SparseMatrix([[1, Matrix([[1]])]]).kind == MatrixKind(UndefinedKind)


# ShapingOnlyMatrix tests
def test_vec():
    m = ShapingOnlyMatrix(2, 2, [1, 3, 2, 4])
    m_vec = m.vec()
    assert m_vec.cols == 1
    for i in range(4):
        assert m_vec[i] == i + 1


def test_todok():
    a, b, c, d = symbols('a:d')
    m1 = MutableDenseMatrix([[a, b], [c, d]])
    m2 = ImmutableDenseMatrix([[a, b], [c, d]])
    m3 = MutableSparseMatrix([[a, b], [c, d]])
    m4 = ImmutableSparseMatrix([[a, b], [c, d]])
    assert m1.todok() == m2.todok() == m3.todok() == m4.todok() == \
        {(0, 0): a, (0, 1): b, (1, 0): c, (1, 1): d}


def test_tolist():
    lst = [[S.One, S.Half, x*y, S.Zero], [x, y, z, x**2], [y, -S.One, z*x, 3]]
    flat_lst = [S.One, S.Half, x*y, S.Zero, x, y, z, x**2, y, -S.One, z*x, 3]
    m = ShapingOnlyMatrix(3, 4, flat_lst)
    assert m.tolist() == lst

def test_todod():
    m = ShapingOnlyMatrix(3, 2, [[S.One, 0], [0, S.Half], [x, 0]])
    dict = {0: {0: S.One}, 1: {1: S.Half}, 2: {0: x}}
    assert m.todod() == dict

def test_row_col_del():
    e = ShapingOnlyMatrix(3, 3, [1, 2, 3, 4, 5, 6, 7, 8, 9])
    raises(IndexError, lambda: e.row_del(5))
    raises(IndexError, lambda: e.row_del(-5))
    raises(IndexError, lambda: e.col_del(5))
    raises(IndexError, lambda: e.col_del(-5))

    assert e.row_del(2) == e.row_del(-1) == Matrix([[1, 2, 3], [4, 5, 6]])
    assert e.col_del(2) == e.col_del(-1) == Matrix([[1, 2], [4, 5], [7, 8]])

    assert e.row_del(1) == e.row_del(-2) == Matrix([[1, 2, 3], [7, 8, 9]])
    assert e.col_del(1) == e.col_del(-2) == Matrix([[1, 3], [4, 6], [7, 9]])


def test_get_diag_blocks1():
    a = Matrix([[1, 2], [2, 3]])
    b = Matrix([[3, x], [y, 3]])
    c = Matrix([[3, x, 3], [y, 3, z], [x, y, z]])
    assert a.get_diag_blocks() == [a]
    assert b.get_diag_blocks() == [b]
    assert c.get_diag_blocks() == [c]


def test_get_diag_blocks2():
    a = Matrix([[1, 2], [2, 3]])
    b = Matrix([[3, x], [y, 3]])
    c = Matrix([[3, x, 3], [y, 3, z], [x, y, z]])
    A, B, C, D = diag(a, b, b), diag(a, b, c), diag(a, c, b), diag(c, c, b)
    A = ShapingOnlyMatrix(A.rows, A.cols, A)
    B = ShapingOnlyMatrix(B.rows, B.cols, B)
    C = ShapingOnlyMatrix(C.rows, C.cols, C)
    D = ShapingOnlyMatrix(D.rows, D.cols, D)

    assert A.get_diag_blocks() == [a, b, b]
    assert B.get_diag_blocks() == [a, b, c]
    assert C.get_diag_blocks() == [a, c, b]
    assert D.get_diag_blocks() == [c, c, b]


def test_shape():
    m = ShapingOnlyMatrix(1, 2, [0, 0])
    assert m.shape == (1, 2)


def test_reshape():
    m0 = eye_Shaping(3)
    assert m0.reshape(1, 9) == Matrix(1, 9, (1, 0, 0, 0, 1, 0, 0, 0, 1))
    m1 = ShapingOnlyMatrix(3, 4, lambda i, j: i + j)
    assert m1.reshape(
        4, 3) == Matrix(((0, 1, 2), (3, 1, 2), (3, 4, 2), (3, 4, 5)))
    assert m1.reshape(2, 6) == Matrix(((0, 1, 2, 3, 1, 2), (3, 4, 2, 3, 4, 5)))


def test_row_col():
    m = ShapingOnlyMatrix(3, 3, [1, 2, 3, 4, 5, 6, 7, 8, 9])
    assert m.row(0) == Matrix(1, 3, [1, 2, 3])
    assert m.col(0) == Matrix(3, 1, [1, 4, 7])


def test_row_join():
    assert eye_Shaping(3).row_join(Matrix([7, 7, 7])) == \
           Matrix([[1, 0, 0, 7],
                   [0, 1, 0, 7],
                   [0, 0, 1, 7]])


def test_col_join():
    assert eye_Shaping(3).col_join(Matrix([[7, 7, 7]])) == \
           Matrix([[1, 0, 0],
                   [0, 1, 0],
                   [0, 0, 1],
                   [7, 7, 7]])


def test_row_insert():
    r4 = Matrix([[4, 4, 4]])
    for i in range(-4, 5):
        l = [1, 0, 0]
        l.insert(i, 4)
        assert flatten(eye_Shaping(3).row_insert(i, r4).col(0).tolist()) == l


def test_col_insert():
    c4 = Matrix([4, 4, 4])
    for i in range(-4, 5):
        l = [0, 0, 0]
        l.insert(i, 4)
        assert flatten(zeros_Shaping(3).col_insert(i, c4).row(0).tolist()) == l
    # issue 13643
    assert eye_Shaping(6).col_insert(3, Matrix([[2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]])) == \
           Matrix([[1, 0, 0, 2, 2, 0, 0, 0],
                   [0, 1, 0, 2, 2, 0, 0, 0],
                   [0, 0, 1, 2, 2, 0, 0, 0],
                   [0, 0, 0, 2, 2, 1, 0, 0],
                   [0, 0, 0, 2, 2, 0, 1, 0],
                   [0, 0, 0, 2, 2, 0, 0, 1]])


def test_extract():
    m = ShapingOnlyMatrix(4, 3, lambda i, j: i*3 + j)
    assert m.extract([0, 1, 3], [0, 1]) == Matrix(3, 2, [0, 1, 3, 4, 9, 10])
    assert m.extract([0, 3], [0, 0, 2]) == Matrix(2, 3, [0, 0, 2, 9, 9, 11])
    assert m.extract(range(4), range(3)) == m
    raises(IndexError, lambda: m.extract([4], [0]))
    raises(IndexError, lambda: m.extract([0], [3]))


def test_hstack():
    m = ShapingOnlyMatrix(4, 3, lambda i, j: i*3 + j)
    m2 = ShapingOnlyMatrix(3, 4, lambda i, j: i*3 + j)
    assert m == m.hstack(m)
    assert m.hstack(m, m, m) == ShapingOnlyMatrix.hstack(m, m, m) == Matrix([
                [0,  1,  2, 0,  1,  2, 0,  1,  2],
                [3,  4,  5, 3,  4,  5, 3,  4,  5],
                [6,  7,  8, 6,  7,  8, 6,  7,  8],
                [9, 10, 11, 9, 10, 11, 9, 10, 11]])
    raises(ShapeError, lambda: m.hstack(m, m2))
    assert Matrix.hstack() == Matrix()

    # test regression #12938
    M1 = Matrix.zeros(0, 0)
    M2 = Matrix.zeros(0, 1)
    M3 = Matrix.zeros(0, 2)
    M4 = Matrix.zeros(0, 3)
    m = ShapingOnlyMatrix.hstack(M1, M2, M3, M4)
    assert m.rows == 0 and m.cols == 6


def test_vstack():
    m = ShapingOnlyMatrix(4, 3, lambda i, j: i*3 + j)
    m2 = ShapingOnlyMatrix(3, 4, lambda i, j: i*3 + j)
    assert m == m.vstack(m)
    assert m.vstack(m, m, m) == ShapingOnlyMatrix.vstack(m, m, m) == Matrix([
                                [0,  1,  2],
                                [3,  4,  5],
                                [6,  7,  8],
                                [9, 10, 11],
                                [0,  1,  2],
                                [3,  4,  5],
                                [6,  7,  8],
                                [9, 10, 11],
                                [0,  1,  2],
                                [3,  4,  5],
                                [6,  7,  8],
                                [9, 10, 11]])
    raises(ShapeError, lambda: m.vstack(m, m2))
    assert Matrix.vstack() == Matrix()


# PropertiesOnlyMatrix tests
def test_atoms():
    m = PropertiesOnlyMatrix(2, 2, [1, 2, x, 1 - 1/x])
    assert m.atoms() == {S.One, S(2), S.NegativeOne, x}
    assert m.atoms(Symbol) == {x}


def test_free_symbols():
    assert PropertiesOnlyMatrix([[x], [0]]).free_symbols == {x}


def test_has():
    A = PropertiesOnlyMatrix(((x, y), (2, 3)))
    assert A.has(x)
    assert not A.has(z)
    assert A.has(Symbol)

    A = PropertiesOnlyMatrix(((2, y), (2, 3)))
    assert not A.has(x)


def test_is_anti_symmetric():
    x = symbols('x')
    assert PropertiesOnlyMatrix(2, 1, [1, 2]).is_anti_symmetric() is False
    m = PropertiesOnlyMatrix(3, 3, [0, x**2 + 2*x + 1, y, -(x + 1)**2, 0, x*y, -y, -x*y, 0])
    assert m.is_anti_symmetric() is True
    assert m.is_anti_symmetric(simplify=False) is False
    assert m.is_anti_symmetric(simplify=lambda x: x) is False

    m = PropertiesOnlyMatrix(3, 3, [x.expand() for x in m])
    assert m.is_anti_symmetric(simplify=False) is True
    m = PropertiesOnlyMatrix(3, 3, [x.expand() for x in [S.One] + list(m)[1:]])
    assert m.is_anti_symmetric() is False


def test_diagonal_symmetrical():
    m = PropertiesOnlyMatrix(2, 2, [0, 1, 1, 0])
    assert not m.is_diagonal()
    assert m.is_symmetric()
    assert m.is_symmetric(simplify=False)

    m = PropertiesOnlyMatrix(2, 2, [1, 0, 0, 1])
    assert m.is_diagonal()

    m = PropertiesOnlyMatrix(3, 3, diag(1, 2, 3))
    assert m.is_diagonal()
    assert m.is_symmetric()

    m = PropertiesOnlyMatrix(3, 3, [1, 0, 0, 0, 2, 0, 0, 0, 3])
    assert m == diag(1, 2, 3)

    m = PropertiesOnlyMatrix(2, 3, zeros(2, 3))
    assert not m.is_symmetric()
    assert m.is_diagonal()

    m = PropertiesOnlyMatrix(((5, 0), (0, 6), (0, 0)))
    assert m.is_diagonal()

    m = PropertiesOnlyMatrix(((5, 0, 0), (0, 6, 0)))
    assert m.is_diagonal()

    m = Matrix(3, 3, [1, x**2 + 2*x + 1, y, (x + 1)**2, 2, 0, y, 0, 3])
    assert m.is_symmetric()
    assert not m.is_symmetric(simplify=False)
    assert m.expand().is_symmetric(simplify=False)


def test_is_hermitian():
    a = PropertiesOnlyMatrix([[1, I], [-I, 1]])
    assert a.is_hermitian
    a = PropertiesOnlyMatrix([[2*I, I], [-I, 1]])
    assert a.is_hermitian is False
    a = PropertiesOnlyMatrix([[x, I], [-I, 1]])
    assert a.is_hermitian is None
    a = PropertiesOnlyMatrix([[x, 1], [-I, 1]])
    assert a.is_hermitian is False


def test_is_Identity():
    assert eye_Properties(3).is_Identity
    assert not PropertiesOnlyMatrix(zeros(3)).is_Identity
    assert not PropertiesOnlyMatrix(ones(3)).is_Identity
    # issue 6242
    assert not PropertiesOnlyMatrix([[1, 0, 0]]).is_Identity


def test_is_symbolic():
    a = PropertiesOnlyMatrix([[x, x], [x, x]])
    assert a.is_symbolic() is True
    a = PropertiesOnlyMatrix([[1, 2, 3, 4], [5, 6, 7, 8]])
    assert a.is_symbolic() is False
    a = PropertiesOnlyMatrix([[1, 2, 3, 4], [5, 6, x, 8]])
    assert a.is_symbolic() is True
    a = PropertiesOnlyMatrix([[1, x, 3]])
    assert a.is_symbolic() is True
    a = PropertiesOnlyMatrix([[1, 2, 3]])
    assert a.is_symbolic() is False
    a = PropertiesOnlyMatrix([[1], [x], [3]])
    assert a.is_symbolic() is True
    a = PropertiesOnlyMatrix([[1], [2], [3]])
    assert a.is_symbolic() is False


def test_is_upper():
    a = PropertiesOnlyMatrix([[1, 2, 3]])
    assert a.is_upper is True
    a = PropertiesOnlyMatrix([[1], [2], [3]])
    assert a.is_upper is False


def test_is_lower():
    a = PropertiesOnlyMatrix([[1, 2, 3]])
    assert a.is_lower is False
    a = PropertiesOnlyMatrix([[1], [2], [3]])
    assert a.is_lower is True


def test_is_square():
    m = PropertiesOnlyMatrix([[1], [1]])
    m2 = PropertiesOnlyMatrix([[2, 2], [2, 2]])
    assert not m.is_square
    assert m2.is_square


def test_is_symmetric():
    m = PropertiesOnlyMatrix(2, 2, [0, 1, 1, 0])
    assert m.is_symmetric()
    m = PropertiesOnlyMatrix(2, 2, [0, 1, 0, 1])
    assert not m.is_symmetric()


def test_is_hessenberg():
    A = PropertiesOnlyMatrix([[3, 4, 1], [2, 4, 5], [0, 1, 2]])
    assert A.is_upper_hessenberg
    A = PropertiesOnlyMatrix(3, 3, [3, 2, 0, 4, 4, 1, 1, 5, 2])
    assert A.is_lower_hessenberg
    A = PropertiesOnlyMatrix(3, 3, [3, 2, -1, 4, 4, 1, 1, 5, 2])
    assert A.is_lower_hessenberg is False
    assert A.is_upper_hessenberg is False

    A = PropertiesOnlyMatrix([[3, 4, 1], [2, 4, 5], [3, 1, 2]])
    assert not A.is_upper_hessenberg


def test_is_zero():
    assert PropertiesOnlyMatrix(0, 0, []).is_zero_matrix
    assert PropertiesOnlyMatrix([[0, 0], [0, 0]]).is_zero_matrix
    assert PropertiesOnlyMatrix(zeros(3, 4)).is_zero_matrix
    assert not PropertiesOnlyMatrix(eye(3)).is_zero_matrix
    assert PropertiesOnlyMatrix([[x, 0], [0, 0]]).is_zero_matrix == None
    assert PropertiesOnlyMatrix([[x, 1], [0, 0]]).is_zero_matrix == False
    a = Symbol('a', nonzero=True)
    assert PropertiesOnlyMatrix([[a, 0], [0, 0]]).is_zero_matrix == False


def test_values():
    assert set(PropertiesOnlyMatrix(2, 2, [0, 1, 2, 3]
        ).values()) == {1, 2, 3}
    x = Symbol('x', real=True)
    assert set(PropertiesOnlyMatrix(2, 2, [x, 0, 0, 1]
        ).values()) == {x, 1}


# OperationsOnlyMatrix tests
def test_applyfunc():
    m0 = OperationsOnlyMatrix(eye(3))
    assert m0.applyfunc(lambda x: 2*x) == eye(3)*2
    assert m0.applyfunc(lambda x: 0) == zeros(3)
    assert m0.applyfunc(lambda x: 1) == ones(3)


def test_adjoint():
    dat = [[0, I], [1, 0]]
    ans = OperationsOnlyMatrix([[0, 1], [-I, 0]])
    assert ans.adjoint() == Matrix(dat)


def test_as_real_imag():
    m1 = OperationsOnlyMatrix(2, 2, [1, 2, 3, 4])
    m3 = OperationsOnlyMatrix(2, 2,
        [1 + S.ImaginaryUnit, 2 + 2*S.ImaginaryUnit,
        3 + 3*S.ImaginaryUnit, 4 + 4*S.ImaginaryUnit])

    a, b = m3.as_real_imag()
    assert a == m1
    assert b == m1


def test_conjugate():
    M = OperationsOnlyMatrix([[0, I, 5],
                [1, 2, 0]])

    assert M.T == Matrix([[0, 1],
                          [I, 2],
                          [5, 0]])

    assert M.C == Matrix([[0, -I, 5],
                          [1,  2, 0]])
    assert M.C == M.conjugate()

    assert M.H == M.T.C
    assert M.H == Matrix([[ 0, 1],
                          [-I, 2],
                          [ 5, 0]])


def test_doit():
    a = OperationsOnlyMatrix([[Add(x, x, evaluate=False)]])
    assert a[0] != 2*x
    assert a.doit() == Matrix([[2*x]])


def test_evalf():
    a = OperationsOnlyMatrix(2, 1, [sqrt(5), 6])
    assert all(a.evalf()[i] == a[i].evalf() for i in range(2))
    assert all(a.evalf(2)[i] == a[i].evalf(2) for i in range(2))
    assert all(a.n(2)[i] == a[i].n(2) for i in range(2))


def test_expand():
    m0 = OperationsOnlyMatrix([[x*(x + y), 2], [((x + y)*y)*x, x*(y + x*(x + y))]])
    # Test if expand() returns a matrix
    m1 = m0.expand()
    assert m1 == Matrix(
        [[x*y + x**2, 2], [x*y**2 + y*x**2, x*y + y*x**2 + x**3]])

    a = Symbol('a', real=True)

    assert OperationsOnlyMatrix(1, 1, [exp(I*a)]).expand(complex=True) == \
           Matrix([cos(a) + I*sin(a)])


def test_refine():
    m0 = OperationsOnlyMatrix([[Abs(x)**2, sqrt(x**2)],
                 [sqrt(x**2)*Abs(y)**2, sqrt(y**2)*Abs(x)**2]])
    m1 = m0.refine(Q.real(x) & Q.real(y))
    assert m1 == Matrix([[x**2, Abs(x)], [y**2*Abs(x), x**2*Abs(y)]])

    m1 = m0.refine(Q.positive(x) & Q.positive(y))
    assert m1 == Matrix([[x**2, x], [x*y**2, x**2*y]])

    m1 = m0.refine(Q.negative(x) & Q.negative(y))
    assert m1 == Matrix([[x**2, -x], [-x*y**2, -x**2*y]])


def test_replace():
    F, G = symbols('F, G', cls=Function)
    K = OperationsOnlyMatrix(2, 2, lambda i, j: G(i+j))
    M = OperationsOnlyMatrix(2, 2, lambda i, j: F(i+j))
    N = M.replace(F, G)
    assert N == K


def test_replace_map():
    F, G = symbols('F, G', cls=Function)
    K = OperationsOnlyMatrix(2, 2, [(G(0), {F(0): G(0)}), (G(1), {F(1): G(1)}), (G(1), {F(1) \
                                                                              : G(1)}), (G(2), {F(2): G(2)})])
    M = OperationsOnlyMatrix(2, 2, lambda i, j: F(i+j))
    N = M.replace(F, G, True)
    assert N == K


def test_rot90():
    A = Matrix([[1, 2], [3, 4]])
    assert A == A.rot90(0) == A.rot90(4)
    assert A.rot90(2) == A.rot90(-2) == A.rot90(6) == Matrix(((4, 3), (2, 1)))
    assert A.rot90(3) == A.rot90(-1) == A.rot90(7) == Matrix(((2, 4), (1, 3)))
    assert A.rot90() == A.rot90(-7) == A.rot90(-3) == Matrix(((3, 1), (4, 2)))

def test_simplify():
    n = Symbol('n')
    f = Function('f')

    M = OperationsOnlyMatrix([[            1/x + 1/y,                 (x + x*y) / x  ],
                [ (f(x) + y*f(x))/f(x), 2 * (1/n - cos(n * pi)/n) / pi ]])
    assert M.simplify() == Matrix([[ (x + y)/(x * y),                        1 + y ],
                        [           1 + y, 2*((1 - 1*cos(pi*n))/(pi*n)) ]])
    eq = (1 + x)**2
    M = OperationsOnlyMatrix([[eq]])
    assert M.simplify() == Matrix([[eq]])
    assert M.simplify(ratio=oo) == Matrix([[eq.simplify(ratio=oo)]])

    # https://github.com/sympy/sympy/issues/19353
    m = Matrix([[30, 2], [3, 4]])
    assert (1/(m.trace())).simplify() == Rational(1, 34)


def test_subs():
    assert OperationsOnlyMatrix([[1, x], [x, 4]]).subs(x, 5) == Matrix([[1, 5], [5, 4]])
    assert OperationsOnlyMatrix([[x, 2], [x + y, 4]]).subs([[x, -1], [y, -2]]) == \
           Matrix([[-1, 2], [-3, 4]])
    assert OperationsOnlyMatrix([[x, 2], [x + y, 4]]).subs([(x, -1), (y, -2)]) == \
           Matrix([[-1, 2], [-3, 4]])
    assert OperationsOnlyMatrix([[x, 2], [x + y, 4]]).subs({x: -1, y: -2}) == \
           Matrix([[-1, 2], [-3, 4]])
    assert OperationsOnlyMatrix([[x*y]]).subs({x: y - 1, y: x - 1}, simultaneous=True) == \
           Matrix([[(x - 1)*(y - 1)]])


def test_trace():
    M = OperationsOnlyMatrix([[1, 0, 0],
                [0, 5, 0],
                [0, 0, 8]])
    assert M.trace() == 14


def test_xreplace():
    assert OperationsOnlyMatrix([[1, x], [x, 4]]).xreplace({x: 5}) == \
           Matrix([[1, 5], [5, 4]])
    assert OperationsOnlyMatrix([[x, 2], [x + y, 4]]).xreplace({x: -1, y: -2}) == \
           Matrix([[-1, 2], [-3, 4]])


def test_permute():
    a = OperationsOnlyMatrix(3, 4, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])

    raises(IndexError, lambda: a.permute([[0, 5]]))
    raises(ValueError, lambda: a.permute(Symbol('x')))
    b = a.permute_rows([[0, 2], [0, 1]])
    assert a.permute([[0, 2], [0, 1]]) == b == Matrix([
                                            [5,  6,  7,  8],
                                            [9, 10, 11, 12],
                                            [1,  2,  3,  4]])

    b = a.permute_cols([[0, 2], [0, 1]])
    assert a.permute([[0, 2], [0, 1]], orientation='cols') == b ==\
                            Matrix([
                            [ 2,  3, 1,  4],
                            [ 6,  7, 5,  8],
                            [10, 11, 9, 12]])

    b = a.permute_cols([[0, 2], [0, 1]], direction='backward')
    assert a.permute([[0, 2], [0, 1]], orientation='cols', direction='backward') == b ==\
                            Matrix([
                            [ 3, 1,  2,  4],
                            [ 7, 5,  6,  8],
                            [11, 9, 10, 12]])

    assert a.permute([1, 2, 0, 3]) == Matrix([
                                            [5,  6,  7,  8],
                                            [9, 10, 11, 12],
                                            [1,  2,  3,  4]])

    from sympy.combinatorics import Permutation
    assert a.permute(Permutation([1, 2, 0, 3])) == Matrix([
                                            [5,  6,  7,  8],
                                            [9, 10, 11, 12],
                                            [1,  2,  3,  4]])

def test_upper_triangular():

    A = OperationsOnlyMatrix([
                [1, 1, 1, 1],
                [1, 1, 1, 1],
                [1, 1, 1, 1],
                [1, 1, 1, 1]
            ])

    R = A.upper_triangular(2)
    assert R == OperationsOnlyMatrix([
                        [0, 0, 1, 1],
                        [0, 0, 0, 1],
                        [0, 0, 0, 0],
                        [0, 0, 0, 0]
                    ])

    R = A.upper_triangular(-2)
    assert R == OperationsOnlyMatrix([
                        [1, 1, 1, 1],
                        [1, 1, 1, 1],
                        [1, 1, 1, 1],
                        [0, 1, 1, 1]
                    ])

    R = A.upper_triangular()
    assert R == OperationsOnlyMatrix([
                        [1, 1, 1, 1],
                        [0, 1, 1, 1],
                        [0, 0, 1, 1],
                        [0, 0, 0, 1]
                    ])

def test_lower_triangular():
    A = OperationsOnlyMatrix([
                        [1, 1, 1, 1],
                        [1, 1, 1, 1],
                        [1, 1, 1, 1],
                        [1, 1, 1, 1]
                    ])

    L = A.lower_triangular()
    assert L == ArithmeticOnlyMatrix([
                        [1, 0, 0, 0],
                        [1, 1, 0, 0],
                        [1, 1, 1, 0],
                        [1, 1, 1, 1]])

    L = A.lower_triangular(2)
    assert L == ArithmeticOnlyMatrix([
                        [1, 1, 1, 0],
                        [1, 1, 1, 1],
                        [1, 1, 1, 1],
                        [1, 1, 1, 1]
                    ])

    L = A.lower_triangular(-2)
    assert L == ArithmeticOnlyMatrix([
                        [0, 0, 0, 0],
                        [0, 0, 0, 0],
                        [1, 0, 0, 0],
                        [1, 1, 0, 0]
                    ])


# ArithmeticOnlyMatrix tests
def test_abs():
    m = ArithmeticOnlyMatrix([[1, -2], [x, y]])
    assert abs(m) == ArithmeticOnlyMatrix([[1, 2], [Abs(x), Abs(y)]])


def test_add():
    m = ArithmeticOnlyMatrix([[1, 2, 3], [x, y, x], [2*y, -50, z*x]])
    assert m + m == ArithmeticOnlyMatrix([[2, 4, 6], [2*x, 2*y, 2*x], [4*y, -100, 2*z*x]])
    n = ArithmeticOnlyMatrix(1, 2, [1, 2])
    raises(ShapeError, lambda: m + n)


def test_multiplication():
    a = ArithmeticOnlyMatrix((
        (1, 2),
        (3, 1),
        (0, 6),
    ))

    b = ArithmeticOnlyMatrix((
        (1, 2),
        (3, 0),
    ))

    raises(ShapeError, lambda: b*a)
    raises(TypeError, lambda: a*{})

    c = a*b
    assert c[0, 0] == 7
    assert c[0, 1] == 2
    assert c[1, 0] == 6
    assert c[1, 1] == 6
    assert c[2, 0] == 18
    assert c[2, 1] == 0

    try:
        eval('c = a @ b')
    except SyntaxError:
        pass
    else:
        assert c[0, 0] == 7
        assert c[0, 1] == 2
        assert c[1, 0] == 6
        assert c[1, 1] == 6
        assert c[2, 0] == 18
        assert c[2, 1] == 0

    h = a.multiply_elementwise(c)
    assert h == matrix_multiply_elementwise(a, c)
    assert h[0, 0] == 7
    assert h[0, 1] == 4
    assert h[1, 0] == 18
    assert h[1, 1] == 6
    assert h[2, 0] == 0
    assert h[2, 1] == 0
    raises(ShapeError, lambda: a.multiply_elementwise(b))

    c = b * Symbol("x")
    assert isinstance(c, ArithmeticOnlyMatrix)
    assert c[0, 0] == x
    assert c[0, 1] == 2*x
    assert c[1, 0] == 3*x
    assert c[1, 1] == 0

    c2 = x * b
    assert c == c2

    c = 5 * b
    assert isinstance(c, ArithmeticOnlyMatrix)
    assert c[0, 0] == 5
    assert c[0, 1] == 2*5
    assert c[1, 0] == 3*5
    assert c[1, 1] == 0

    try:
        eval('c = 5 @ b')
    except SyntaxError:
        pass
    else:
        assert isinstance(c, ArithmeticOnlyMatrix)
        assert c[0, 0] == 5
        assert c[0, 1] == 2*5
        assert c[1, 0] == 3*5
        assert c[1, 1] == 0

    # https://github.com/sympy/sympy/issues/22353
    A = Matrix(ones(3, 1))
    _h = -Rational(1, 2)
    B = Matrix([_h, _h, _h])
    assert A.multiply_elementwise(B) == Matrix([
        [_h],
        [_h],
        [_h]])


def test_matmul():
    a = Matrix([[1, 2], [3, 4]])

    assert a.__matmul__(2) == NotImplemented

    assert a.__rmatmul__(2) == NotImplemented

    #This is done this way because @ is only supported in Python 3.5+
    #To check 2@a case
    try:
        eval('2 @ a')
    except SyntaxError:
        pass
    except TypeError:  #TypeError is raised in case of NotImplemented is returned
        pass

    #Check a@2 case
    try:
        eval('a @ 2')
    except SyntaxError:
        pass
    except TypeError:  #TypeError is raised in case of NotImplemented is returned
        pass


def test_non_matmul():
    """
    Test that if explicitly specified as non-matrix, mul reverts
    to scalar multiplication.
    """
    class foo(Expr):
        is_Matrix=False
        is_MatrixLike=False
        shape = (1, 1)

    A = Matrix([[1, 2], [3, 4]])
    b = foo()
    assert b*A == Matrix([[b, 2*b], [3*b, 4*b]])
    assert A*b == Matrix([[b, 2*b], [3*b, 4*b]])


def test_power():
    raises(NonSquareMatrixError, lambda: Matrix((1, 2))**2)

    A = ArithmeticOnlyMatrix([[2, 3], [4, 5]])
    assert (A**5)[:] == (6140, 8097, 10796, 14237)
    A = ArithmeticOnlyMatrix([[2, 1, 3], [4, 2, 4], [6, 12, 1]])
    assert (A**3)[:] == (290, 262, 251, 448, 440, 368, 702, 954, 433)
    assert A**0 == eye(3)
    assert A**1 == A
    assert (ArithmeticOnlyMatrix([[2]]) ** 100)[0, 0] == 2**100
    assert ArithmeticOnlyMatrix([[1, 2], [3, 4]])**Integer(2) == ArithmeticOnlyMatrix([[7, 10], [15, 22]])
    A = Matrix([[1,2],[4,5]])
    assert A.pow(20, method='cayley') == A.pow(20, method='multiply')

def test_neg():
    n = ArithmeticOnlyMatrix(1, 2, [1, 2])
    assert -n == ArithmeticOnlyMatrix(1, 2, [-1, -2])


def test_sub():
    n = ArithmeticOnlyMatrix(1, 2, [1, 2])
    assert n - n == ArithmeticOnlyMatrix(1, 2, [0, 0])


def test_div():
    n = ArithmeticOnlyMatrix(1, 2, [1, 2])
    assert n/2 == ArithmeticOnlyMatrix(1, 2, [S.Half, S(2)/2])

# SpecialOnlyMatrix tests
def test_eye():
    assert list(SpecialOnlyMatrix.eye(2, 2)) == [1, 0, 0, 1]
    assert list(SpecialOnlyMatrix.eye(2)) == [1, 0, 0, 1]
    assert type(SpecialOnlyMatrix.eye(2)) == SpecialOnlyMatrix
    assert type(SpecialOnlyMatrix.eye(2, cls=Matrix)) == Matrix


def test_ones():
    assert list(SpecialOnlyMatrix.ones(2, 2)) == [1, 1, 1, 1]
    assert list(SpecialOnlyMatrix.ones(2)) == [1, 1, 1, 1]
    assert SpecialOnlyMatrix.ones(2, 3) == Matrix([[1, 1, 1], [1, 1, 1]])
    assert type(SpecialOnlyMatrix.ones(2)) == SpecialOnlyMatrix
    assert type(SpecialOnlyMatrix.ones(2, cls=Matrix)) == Matrix


def test_zeros():
    assert list(SpecialOnlyMatrix.zeros(2, 2)) == [0, 0, 0, 0]
    assert list(SpecialOnlyMatrix.zeros(2)) == [0, 0, 0, 0]
    assert SpecialOnlyMatrix.zeros(2, 3) == Matrix([[0, 0, 0], [0, 0, 0]])
    assert type(SpecialOnlyMatrix.zeros(2)) == SpecialOnlyMatrix
    assert type(SpecialOnlyMatrix.zeros(2, cls=Matrix)) == Matrix


def test_diag_make():
    diag = SpecialOnlyMatrix.diag
    a = Matrix([[1, 2], [2, 3]])
    b = Matrix([[3, x], [y, 3]])
    c = Matrix([[3, x, 3], [y, 3, z], [x, y, z]])
    assert diag(a, b, b) == Matrix([
        [1, 2, 0, 0, 0, 0],
        [2, 3, 0, 0, 0, 0],
        [0, 0, 3, x, 0, 0],
        [0, 0, y, 3, 0, 0],
        [0, 0, 0, 0, 3, x],
        [0, 0, 0, 0, y, 3],
    ])
    assert diag(a, b, c) == Matrix([
        [1, 2, 0, 0, 0, 0, 0],
        [2, 3, 0, 0, 0, 0, 0],
        [0, 0, 3, x, 0, 0, 0],
        [0, 0, y, 3, 0, 0, 0],
        [0, 0, 0, 0, 3, x, 3],
        [0, 0, 0, 0, y, 3, z],
        [0, 0, 0, 0, x, y, z],
    ])
    assert diag(a, c, b) == Matrix([
        [1, 2, 0, 0, 0, 0, 0],
        [2, 3, 0, 0, 0, 0, 0],
        [0, 0, 3, x, 3, 0, 0],
        [0, 0, y, 3, z, 0, 0],
        [0, 0, x, y, z, 0, 0],
        [0, 0, 0, 0, 0, 3, x],
        [0, 0, 0, 0, 0, y, 3],
    ])
    a = Matrix([x, y, z])
    b = Matrix([[1, 2], [3, 4]])
    c = Matrix([[5, 6]])
    # this "wandering diagonal" is what makes this
    # a block diagonal where each block is independent
    # of the others
    assert diag(a, 7, b, c) == Matrix([
        [x, 0, 0, 0, 0, 0],
        [y, 0, 0, 0, 0, 0],
        [z, 0, 0, 0, 0, 0],
        [0, 7, 0, 0, 0, 0],
        [0, 0, 1, 2, 0, 0],
        [0, 0, 3, 4, 0, 0],
        [0, 0, 0, 0, 5, 6]])
    raises(ValueError, lambda: diag(a, 7, b, c, rows=5))
    assert diag(1) == Matrix([[1]])
    assert diag(1, rows=2) == Matrix([[1, 0], [0, 0]])
    assert diag(1, cols=2) == Matrix([[1, 0], [0, 0]])
    assert diag(1, rows=3, cols=2) == Matrix([[1, 0], [0, 0], [0, 0]])
    assert diag(*[2, 3]) == Matrix([
        [2, 0],
        [0, 3]])
    assert diag(Matrix([2, 3])) == Matrix([
        [2],
        [3]])
    assert diag([1, [2, 3], 4], unpack=False) == \
            diag([[1], [2, 3], [4]], unpack=False) == Matrix([
        [1, 0],
        [2, 3],
        [4, 0]])
    assert type(diag(1)) == SpecialOnlyMatrix
    assert type(diag(1, cls=Matrix)) == Matrix
    assert Matrix.diag([1, 2, 3]) == Matrix.diag(1, 2, 3)
    assert Matrix.diag([1, 2, 3], unpack=False).shape == (3, 1)
    assert Matrix.diag([[1, 2, 3]]).shape == (3, 1)
    assert Matrix.diag([[1, 2, 3]], unpack=False).shape == (1, 3)
    assert Matrix.diag([[[1, 2, 3]]]).shape == (1, 3)
    # kerning can be used to move the starting point
    assert Matrix.diag(ones(0, 2), 1, 2) == Matrix([
        [0, 0, 1, 0],
        [0, 0, 0, 2]])
    assert Matrix.diag(ones(2, 0), 1, 2) == Matrix([
        [0, 0],
        [0, 0],
        [1, 0],
        [0, 2]])


def test_diagonal():
    m = Matrix(3, 3, range(9))
    d = m.diagonal()
    assert d == m.diagonal(0)
    assert tuple(d) == (0, 4, 8)
    assert tuple(m.diagonal(1)) == (1, 5)
    assert tuple(m.diagonal(-1)) == (3, 7)
    assert tuple(m.diagonal(2)) == (2,)
    assert type(m.diagonal()) == type(m)
    s = SparseMatrix(3, 3, {(1, 1): 1})
    assert type(s.diagonal()) == type(s)
    assert type(m) != type(s)
    raises(ValueError, lambda: m.diagonal(3))
    raises(ValueError, lambda: m.diagonal(-3))
    raises(ValueError, lambda: m.diagonal(pi))
    M = ones(2, 3)
    assert banded({i: list(M.diagonal(i))
        for i in range(1-M.rows, M.cols)}) == M


def test_jordan_block():
    assert SpecialOnlyMatrix.jordan_block(3, 2) == SpecialOnlyMatrix.jordan_block(3, eigenvalue=2) \
            == SpecialOnlyMatrix.jordan_block(size=3, eigenvalue=2) \
            == SpecialOnlyMatrix.jordan_block(3, 2, band='upper') \
            == SpecialOnlyMatrix.jordan_block(
                size=3, eigenval=2, eigenvalue=2) \
            == Matrix([
                [2, 1, 0],
                [0, 2, 1],
                [0, 0, 2]])

    assert SpecialOnlyMatrix.jordan_block(3, 2, band='lower') == Matrix([
                    [2, 0, 0],
                    [1, 2, 0],
                    [0, 1, 2]])
    # missing eigenvalue
    raises(ValueError, lambda: SpecialOnlyMatrix.jordan_block(2))
    # non-integral size
    raises(ValueError, lambda: SpecialOnlyMatrix.jordan_block(3.5, 2))
    # size not specified
    raises(ValueError, lambda: SpecialOnlyMatrix.jordan_block(eigenvalue=2))
    # inconsistent eigenvalue
    raises(ValueError,
    lambda: SpecialOnlyMatrix.jordan_block(
        eigenvalue=2, eigenval=4))

    # Using alias keyword
    assert SpecialOnlyMatrix.jordan_block(size=3, eigenvalue=2) == \
        SpecialOnlyMatrix.jordan_block(size=3, eigenval=2)


def test_orthogonalize():
    m = Matrix([[1, 2], [3, 4]])
    assert m.orthogonalize(Matrix([[2], [1]])) == [Matrix([[2], [1]])]
    assert m.orthogonalize(Matrix([[2], [1]]), normalize=True) == \
        [Matrix([[2*sqrt(5)/5], [sqrt(5)/5]])]
    assert m.orthogonalize(Matrix([[1], [2]]), Matrix([[-1], [4]])) == \
        [Matrix([[1], [2]]), Matrix([[Rational(-12, 5)], [Rational(6, 5)]])]
    assert m.orthogonalize(Matrix([[0], [0]]), Matrix([[-1], [4]])) == \
        [Matrix([[-1], [4]])]
    assert m.orthogonalize(Matrix([[0], [0]])) == []

    n = Matrix([[9, 1, 9], [3, 6, 10], [8, 5, 2]])
    vecs = [Matrix([[-5], [1]]), Matrix([[-5], [2]]), Matrix([[-5], [-2]])]
    assert n.orthogonalize(*vecs) == \
        [Matrix([[-5], [1]]), Matrix([[Rational(5, 26)], [Rational(25, 26)]])]

    vecs = [Matrix([0, 0, 0]), Matrix([1, 2, 3]), Matrix([1, 4, 5])]
    raises(ValueError, lambda: Matrix.orthogonalize(*vecs, rankcheck=True))

    vecs = [Matrix([1, 2, 3]), Matrix([4, 5, 6]), Matrix([7, 8, 9])]
    raises(ValueError, lambda: Matrix.orthogonalize(*vecs, rankcheck=True))

def test_wilkinson():

    wminus, wplus = Matrix.wilkinson(1)
    assert wminus == Matrix([
                                [-1, 1, 0],
                                [1, 0, 1],
                                [0, 1, 1]])
    assert wplus == Matrix([
                            [1, 1, 0],
                            [1, 0, 1],
                            [0, 1, 1]])

    wminus, wplus = Matrix.wilkinson(3)
    assert wminus == Matrix([
                                [-3,  1,  0, 0, 0, 0, 0],
                                [1, -2,  1, 0, 0, 0, 0],
                                [0,  1, -1, 1, 0, 0, 0],
                                [0,  0,  1, 0, 1, 0, 0],
                                [0,  0,  0, 1, 1, 1, 0],
                                [0,  0,  0, 0, 1, 2, 1],

      [0,  0,  0, 0, 0, 1, 3]])

    assert wplus == Matrix([
                            [3, 1, 0, 0, 0, 0, 0],
                            [1, 2, 1, 0, 0, 0, 0],
                            [0, 1, 1, 1, 0, 0, 0],
                            [0, 0, 1, 0, 1, 0, 0],
                            [0, 0, 0, 1, 1, 1, 0],
                            [0, 0, 0, 0, 1, 2, 1],
                            [0, 0, 0, 0, 0, 1, 3]])


# CalculusOnlyMatrix tests
@XFAIL
def test_diff():
    x, y = symbols('x y')
    m = CalculusOnlyMatrix(2, 1, [x, y])
    # TODO: currently not working as ``_MinimalMatrix`` cannot be sympified:
    assert m.diff(x) == Matrix(2, 1, [1, 0])


def test_integrate():
    x, y = symbols('x y')
    m = CalculusOnlyMatrix(2, 1, [x, y])
    assert m.integrate(x) == Matrix(2, 1, [x**2/2, y*x])


def test_jacobian2():
    rho, phi = symbols("rho,phi")
    X = CalculusOnlyMatrix(3, 1, [rho*cos(phi), rho*sin(phi), rho**2])
    Y = CalculusOnlyMatrix(2, 1, [rho, phi])
    J = Matrix([
        [cos(phi), -rho*sin(phi)],
        [sin(phi),  rho*cos(phi)],
        [   2*rho,             0],
    ])
    assert X.jacobian(Y) == J

    m = CalculusOnlyMatrix(2, 2, [1, 2, 3, 4])
    m2 = CalculusOnlyMatrix(4, 1, [1, 2, 3, 4])
    raises(TypeError, lambda: m.jacobian(Matrix([1, 2])))
    raises(TypeError, lambda: m2.jacobian(m))


def test_limit():
    x, y = symbols('x y')
    m = CalculusOnlyMatrix(2, 1, [1/x, y])
    assert m.limit(x, 5) == Matrix(2, 1, [Rational(1, 5), y])


def test_issue_13774():
    M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
    v = [1, 1, 1]
    raises(TypeError, lambda: M*v)
    raises(TypeError, lambda: v*M)

def test_companion():
    x = Symbol('x')
    y = Symbol('y')
    raises(ValueError, lambda: Matrix.companion(1))
    raises(ValueError, lambda: Matrix.companion(Poly([1], x)))
    raises(ValueError, lambda: Matrix.companion(Poly([2, 1], x)))
    raises(ValueError, lambda: Matrix.companion(Poly(x*y, [x, y])))

    c0, c1, c2 = symbols('c0:3')
    assert Matrix.companion(Poly([1, c0], x)) == Matrix([-c0])
    assert Matrix.companion(Poly([1, c1, c0], x)) == \
        Matrix([[0, -c0], [1, -c1]])
    assert Matrix.companion(Poly([1, c2, c1, c0], x)) == \
        Matrix([[0, 0, -c0], [1, 0, -c1], [0, 1, -c2]])

def test_issue_10589():
    x, y, z = symbols("x, y z")
    M1 = Matrix([x, y, z])
    M1 = M1.subs(zip([x, y, z], [1, 2, 3]))
    assert M1 == Matrix([[1], [2], [3]])

    M2 = Matrix([[x, x, x, x, x], [x, x, x, x, x], [x, x, x, x, x]])
    M2 = M2.subs(zip([x], [1]))
    assert M2 == Matrix([[1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1]])

def test_rmul_pr19860():
    class Foo(ImmutableDenseMatrix):
        _op_priority = MutableDenseMatrix._op_priority + 0.01

    a = Matrix(2, 2, [1, 2, 3, 4])
    b = Foo(2, 2, [1, 2, 3, 4])

    # This would throw a RecursionError: maximum recursion depth
    # since b always has higher priority even after a.as_mutable()
    c = a*b

    assert isinstance(c, Foo)
    assert c == Matrix([[7, 10], [15, 22]])


def test_issue_18956():
    A = Array([[1, 2], [3, 4]])
    B = Matrix([[1,2],[3,4]])
    raises(TypeError, lambda: B + A)
    raises(TypeError, lambda: A + B)


def test__eq__():
    class My(object):
        def __iter__(self):
            yield 1
            yield 2
            return
        def __getitem__(self, i):
            return list(self)[i]
    a = Matrix(2, 1, [1, 2])
    assert a != My()
    class My_sympy(My):
        def _sympy_(self):
            return Matrix(self)
    assert a == My_sympy()