import datetime import numpy as np import pytest import matplotlib.pyplot as plt import matplotlib as mpl class TestDatetimePlotting: @mpl.style.context("default") def test_annotate(self): mpl.rcParams["date.converter"] = 'concise' fig, (ax1, ax2, ax3, ax4) = plt.subplots(4, 1, layout="constrained") start_date = datetime.datetime(2023, 10, 1) dates = [start_date + datetime.timedelta(days=i) for i in range(31)] data = list(range(1, 32)) test_text = "Test Text" ax1.plot(dates, data) ax1.annotate(text=test_text, xy=(dates[15], data[15])) ax2.plot(data, dates) ax2.annotate(text=test_text, xy=(data[5], dates[26])) ax3.plot(dates, dates) ax3.annotate(text=test_text, xy=(dates[15], dates[3])) ax4.plot(dates, dates) ax4.annotate(text=test_text, xy=(dates[5], dates[30]), xytext=(dates[1], dates[7]), arrowprops=dict(facecolor='red')) @pytest.mark.xfail(reason="Test for arrow not written yet") @mpl.style.context("default") def test_arrow(self): fig, ax = plt.subplots() ax.arrow(...) @mpl.style.context("default") def test_axhline(self): mpl.rcParams["date.converter"] = 'concise' fig, (ax1, ax2, ax3) = plt.subplots(3, 1, layout='constrained') ax1.set_ylim(bottom=datetime.datetime(2020, 4, 1), top=datetime.datetime(2020, 8, 1)) ax2.set_ylim(bottom=np.datetime64('2005-01-01'), top=np.datetime64('2005-04-01')) ax3.set_ylim(bottom=datetime.datetime(2023, 9, 1), top=datetime.datetime(2023, 11, 1)) ax1.axhline(y=datetime.datetime(2020, 6, 3), xmin=0.5, xmax=0.7) ax2.axhline(np.datetime64('2005-02-25T03:30'), xmin=0.1, xmax=0.9) ax3.axhline(y=datetime.datetime(2023, 10, 24), xmin=0.4, xmax=0.7) @mpl.style.context("default") def test_axhspan(self): mpl.rcParams["date.converter"] = 'concise' start_date = datetime.datetime(2023, 1, 1) dates = [start_date + datetime.timedelta(days=i) for i in range(31)] numbers = list(range(1, 32)) fig, (ax1, ax2, ax3) = plt.subplots(3, 1, constrained_layout=True, figsize=(10, 12)) ax1.plot(dates, numbers, marker='o', color='blue') for i in range(0, 31, 2): ax1.axhspan(ymin=i+1, ymax=i+2, facecolor='green', alpha=0.5) ax1.set_title('Datetime vs. Number') ax1.set_xlabel('Date') ax1.set_ylabel('Number') ax2.plot(numbers, dates, marker='o', color='blue') for i in range(0, 31, 2): ymin = start_date + datetime.timedelta(days=i) ymax = ymin + datetime.timedelta(days=1) ax2.axhspan(ymin=ymin, ymax=ymax, facecolor='green', alpha=0.5) ax2.set_title('Number vs. Datetime') ax2.set_xlabel('Number') ax2.set_ylabel('Date') ax3.plot(dates, dates, marker='o', color='blue') for i in range(0, 31, 2): ymin = start_date + datetime.timedelta(days=i) ymax = ymin + datetime.timedelta(days=1) ax3.axhspan(ymin=ymin, ymax=ymax, facecolor='green', alpha=0.5) ax3.set_title('Datetime vs. Datetime') ax3.set_xlabel('Date') ax3.set_ylabel('Date') @pytest.mark.xfail(reason="Test for axline not written yet") @mpl.style.context("default") def test_axline(self): fig, ax = plt.subplots() ax.axline(...) @mpl.style.context("default") def test_axvline(self): mpl.rcParams["date.converter"] = 'concise' fig, (ax1, ax2, ax3) = plt.subplots(3, 1, layout='constrained') ax1.set_xlim(left=datetime.datetime(2020, 4, 1), right=datetime.datetime(2020, 8, 1)) ax2.set_xlim(left=np.datetime64('2005-01-01'), right=np.datetime64('2005-04-01')) ax3.set_xlim(left=datetime.datetime(2023, 9, 1), right=datetime.datetime(2023, 11, 1)) ax1.axvline(x=datetime.datetime(2020, 6, 3), ymin=0.5, ymax=0.7) ax2.axvline(np.datetime64('2005-02-25T03:30'), ymin=0.1, ymax=0.9) ax3.axvline(x=datetime.datetime(2023, 10, 24), ymin=0.4, ymax=0.7) @mpl.style.context("default") def test_axvspan(self): mpl.rcParams["date.converter"] = 'concise' start_date = datetime.datetime(2023, 1, 1) dates = [start_date + datetime.timedelta(days=i) for i in range(31)] numbers = list(range(1, 32)) fig, (ax1, ax2, ax3) = plt.subplots(3, 1, constrained_layout=True, figsize=(10, 12)) ax1.plot(dates, numbers, marker='o', color='blue') for i in range(0, 31, 2): xmin = start_date + datetime.timedelta(days=i) xmax = xmin + datetime.timedelta(days=1) ax1.axvspan(xmin=xmin, xmax=xmax, facecolor='red', alpha=0.5) ax1.set_title('Datetime vs. Number') ax1.set_xlabel('Date') ax1.set_ylabel('Number') ax2.plot(numbers, dates, marker='o', color='blue') for i in range(0, 31, 2): ax2.axvspan(xmin=i+1, xmax=i+2, facecolor='red', alpha=0.5) ax2.set_title('Number vs. Datetime') ax2.set_xlabel('Number') ax2.set_ylabel('Date') ax3.plot(dates, dates, marker='o', color='blue') for i in range(0, 31, 2): xmin = start_date + datetime.timedelta(days=i) xmax = xmin + datetime.timedelta(days=1) ax3.axvspan(xmin=xmin, xmax=xmax, facecolor='red', alpha=0.5) ax3.set_title('Datetime vs. Datetime') ax3.set_xlabel('Date') ax3.set_ylabel('Date') @mpl.style.context("default") def test_bar(self): mpl.rcParams["date.converter"] = "concise" fig, (ax1, ax2) = plt.subplots(2, 1, layout="constrained") x_dates = np.array( [ datetime.datetime(2020, 6, 30), datetime.datetime(2020, 7, 22), datetime.datetime(2020, 8, 3), datetime.datetime(2020, 9, 14), ], dtype=np.datetime64, ) x_ranges = [8800, 2600, 8500, 7400] x = np.datetime64(datetime.datetime(2020, 6, 1)) ax1.bar(x_dates, x_ranges, width=np.timedelta64(4, "D")) ax2.bar(np.arange(4), x_dates - x, bottom=x) @mpl.style.context("default") def test_bar_label(self): # Generate some example data with dateTime inputs date_list = [datetime.datetime(2023, 1, 1) + datetime.timedelta(days=i) for i in range(5)] values = [10, 20, 15, 25, 30] # Creating the plot fig, ax = plt.subplots(1, 1, figsize=(10, 8), layout='constrained') bars = ax.bar(date_list, values) # Add labels to the bars using bar_label ax.bar_label(bars, labels=[f'{val}%' for val in values], label_type='edge', color='black') @mpl.style.context("default") def test_barbs(self): plt.rcParams["date.converter"] = 'concise' start_date = datetime.datetime(2022, 2, 8, 22) dates = [start_date + datetime.timedelta(hours=i) for i in range(12)] numbers = np.sin(np.linspace(0, 2 * np.pi, 12)) u = np.ones(12) * 10 v = np.arange(0, 120, 10) fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(12, 6)) axes[0].barbs(dates, numbers, u, v, length=7) axes[0].set_title('Datetime vs. Numeric Data') axes[0].set_xlabel('Datetime') axes[0].set_ylabel('Numeric Data') axes[1].barbs(numbers, dates, u, v, length=7) axes[1].set_title('Numeric vs. Datetime Data') axes[1].set_xlabel('Numeric Data') axes[1].set_ylabel('Datetime') @mpl.style.context("default") def test_barh(self): mpl.rcParams["date.converter"] = 'concise' fig, (ax1, ax2) = plt.subplots(2, 1, layout='constrained') birth_date = np.array([datetime.datetime(2020, 4, 10), datetime.datetime(2020, 5, 30), datetime.datetime(2020, 10, 12), datetime.datetime(2020, 11, 15)]) year_start = datetime.datetime(2020, 1, 1) year_end = datetime.datetime(2020, 12, 31) age = [21, 53, 20, 24] ax1.set_xlabel('Age') ax1.set_ylabel('Birth Date') ax1.barh(birth_date, width=age, height=datetime.timedelta(days=10)) ax2.set_xlim(left=year_start, right=year_end) ax2.set_xlabel('Birth Date') ax2.set_ylabel('Order of Birth Dates') ax2.barh(np.arange(4), birth_date-year_start, left=year_start) @pytest.mark.xfail(reason="Test for boxplot not written yet") @mpl.style.context("default") def test_boxplot(self): fig, ax = plt.subplots() ax.boxplot(...) @mpl.style.context("default") def test_broken_barh(self): # Horizontal bar plot with gaps mpl.rcParams["date.converter"] = 'concise' fig, ax = plt.subplots() ax.broken_barh([(datetime.datetime(2023, 1, 4), datetime.timedelta(days=2)), (datetime.datetime(2023, 1, 8), datetime.timedelta(days=3))], (10, 9), facecolors='tab:blue') ax.broken_barh([(datetime.datetime(2023, 1, 2), datetime.timedelta(days=1)), (datetime.datetime(2023, 1, 4), datetime.timedelta(days=4))], (20, 9), facecolors=('tab:red')) @mpl.style.context("default") def test_bxp(self): mpl.rcParams["date.converter"] = 'concise' fig, ax = plt.subplots() data = [{ "med": datetime.datetime(2020, 1, 15), "q1": datetime.datetime(2020, 1, 10), "q3": datetime.datetime(2020, 1, 20), "whislo": datetime.datetime(2020, 1, 5), "whishi": datetime.datetime(2020, 1, 25), "fliers": [ datetime.datetime(2020, 1, 3), datetime.datetime(2020, 1, 27) ] }] ax.bxp(data, vert=False) ax.xaxis.set_major_formatter(mpl.dates.DateFormatter("%Y-%m-%d")) ax.set_title('Box plot with datetime data') @pytest.mark.xfail(reason="Test for clabel not written yet") @mpl.style.context("default") def test_clabel(self): fig, ax = plt.subplots() ax.clabel(...) @mpl.style.context("default") def test_contour(self): mpl.rcParams["date.converter"] = "concise" range_threshold = 10 fig, (ax1, ax2, ax3) = plt.subplots(3, 1, layout="constrained") x_dates = np.array( [datetime.datetime(2023, 10, delta) for delta in range(1, range_threshold)] ) y_dates = np.array( [datetime.datetime(2023, 10, delta) for delta in range(1, range_threshold)] ) x_ranges = np.array(range(1, range_threshold)) y_ranges = np.array(range(1, range_threshold)) X_dates, Y_dates = np.meshgrid(x_dates, y_dates) X_ranges, Y_ranges = np.meshgrid(x_ranges, y_ranges) Z_ranges = np.cos(X_ranges / 4) + np.sin(Y_ranges / 4) ax1.contour(X_dates, Y_dates, Z_ranges) ax2.contour(X_dates, Y_ranges, Z_ranges) ax3.contour(X_ranges, Y_dates, Z_ranges) @mpl.style.context("default") def test_contourf(self): mpl.rcParams["date.converter"] = "concise" range_threshold = 10 fig, (ax1, ax2, ax3) = plt.subplots(3, 1, layout="constrained") x_dates = np.array( [datetime.datetime(2023, 10, delta) for delta in range(1, range_threshold)] ) y_dates = np.array( [datetime.datetime(2023, 10, delta) for delta in range(1, range_threshold)] ) x_ranges = np.array(range(1, range_threshold)) y_ranges = np.array(range(1, range_threshold)) X_dates, Y_dates = np.meshgrid(x_dates, y_dates) X_ranges, Y_ranges = np.meshgrid(x_ranges, y_ranges) Z_ranges = np.cos(X_ranges / 4) + np.sin(Y_ranges / 4) ax1.contourf(X_dates, Y_dates, Z_ranges) ax2.contourf(X_dates, Y_ranges, Z_ranges) ax3.contourf(X_ranges, Y_dates, Z_ranges) @mpl.style.context("default") def test_errorbar(self): mpl.rcParams["date.converter"] = "concise" fig, (ax1, ax2, ax3, ax4) = plt.subplots(4, 1, layout="constrained") limit = 7 start_date = datetime.datetime(2023, 1, 1) x_dates = np.array([datetime.datetime(2023, 10, d) for d in range(1, limit)]) y_dates = np.array([datetime.datetime(2023, 10, d) for d in range(1, limit)]) x_date_error = datetime.timedelta(days=1) y_date_error = datetime.timedelta(days=1) x_values = list(range(1, limit)) y_values = list(range(1, limit)) x_value_error = 0.5 y_value_error = 0.5 ax1.errorbar(x_dates, y_values, yerr=y_value_error, capsize=10, barsabove=True, label='Data') ax2.errorbar(x_values, y_dates, xerr=x_value_error, yerr=y_date_error, errorevery=(1, 2), fmt='-o', label='Data') ax3.errorbar(x_dates, y_dates, xerr=x_date_error, yerr=y_date_error, lolims=True, xlolims=True, label='Data') ax4.errorbar(x_dates, y_values, xerr=x_date_error, yerr=y_value_error, uplims=True, xuplims=True, label='Data') @mpl.style.context("default") def test_eventplot(self): mpl.rcParams["date.converter"] = "concise" fig, (ax1, ax2, ax3) = plt.subplots(3, 1, layout="constrained") x_dates1 = np.array([datetime.datetime(2020, 6, 30), datetime.datetime(2020, 7, 22), datetime.datetime(2020, 8, 3), datetime.datetime(2020, 9, 14),], dtype=np.datetime64, ) ax1.eventplot(x_dates1) np.random.seed(19680801) start_date = datetime.datetime(2020, 7, 1) end_date = datetime.datetime(2020, 10, 15) date_range = end_date - start_date dates1 = start_date + np.random.rand(30) * date_range dates2 = start_date + np.random.rand(10) * date_range dates3 = start_date + np.random.rand(50) * date_range colors1 = ['C1', 'C2', 'C3'] lineoffsets1 = np.array([1, 6, 8]) linelengths1 = [5, 2, 3] ax2.eventplot([dates1, dates2, dates3], colors=colors1, lineoffsets=lineoffsets1, linelengths=linelengths1) lineoffsets2 = np.array([ datetime.datetime(2020, 7, 1), datetime.datetime(2020, 7, 15), datetime.datetime(2020, 8, 1) ], dtype=np.datetime64) ax3.eventplot([dates1, dates2, dates3], colors=colors1, lineoffsets=lineoffsets2, linelengths=linelengths1) @mpl.style.context("default") def test_fill(self): mpl.rcParams["date.converter"] = "concise" fig, (ax1, ax2, ax3, ax4) = plt.subplots(4, 1, layout="constrained") np.random.seed(19680801) x_base_date = datetime.datetime(2023, 1, 1) x_dates = [x_base_date] for _ in range(1, 5): x_base_date += datetime.timedelta(days=np.random.randint(1, 5)) x_dates.append(x_base_date) y_base_date = datetime.datetime(2023, 1, 1) y_dates = [y_base_date] for _ in range(1, 5): y_base_date += datetime.timedelta(days=np.random.randint(1, 5)) y_dates.append(y_base_date) x_values = np.random.rand(5) * 5 y_values = np.random.rand(5) * 5 - 2 ax1.fill(x_dates, y_values) ax2.fill(x_values, y_dates) ax3.fill(x_values, y_values) ax4.fill(x_dates, y_dates) @mpl.style.context("default") def test_fill_between(self): mpl.rcParams["date.converter"] = "concise" np.random.seed(19680801) y_base_date = datetime.datetime(2023, 1, 1) y_dates1 = [y_base_date] for i in range(1, 10): y_base_date += datetime.timedelta(days=np.random.randint(1, 5)) y_dates1.append(y_base_date) y_dates2 = [y_base_date] for i in range(1, 10): y_base_date += datetime.timedelta(days=np.random.randint(1, 5)) y_dates2.append(y_base_date) x_values = np.random.rand(10) * 10 x_values.sort() y_values1 = np.random.rand(10) * 10 y_values2 = y_values1 + np.random.rand(10) * 10 y_values1.sort() y_values2.sort() x_base_date = datetime.datetime(2023, 1, 1) x_dates = [x_base_date] for i in range(1, 10): x_base_date += datetime.timedelta(days=np.random.randint(1, 10)) x_dates.append(x_base_date) fig, (ax1, ax2, ax3) = plt.subplots(3, 1, layout="constrained") ax1.fill_between(x_values, y_dates1, y_dates2) ax2.fill_between(x_dates, y_values1, y_values2) ax3.fill_between(x_dates, y_dates1, y_dates2) @mpl.style.context("default") def test_fill_betweenx(self): mpl.rcParams["date.converter"] = "concise" np.random.seed(19680801) x_base_date = datetime.datetime(2023, 1, 1) x_dates1 = [x_base_date] for i in range(1, 10): x_base_date += datetime.timedelta(days=np.random.randint(1, 5)) x_dates1.append(x_base_date) x_dates2 = [x_base_date] for i in range(1, 10): x_base_date += datetime.timedelta(days=np.random.randint(1, 5)) x_dates2.append(x_base_date) y_values = np.random.rand(10) * 10 y_values.sort() x_values1 = np.random.rand(10) * 10 x_values2 = x_values1 + np.random.rand(10) * 10 x_values1.sort() x_values2.sort() y_base_date = datetime.datetime(2023, 1, 1) y_dates = [y_base_date] for i in range(1, 10): y_base_date += datetime.timedelta(days=np.random.randint(1, 10)) y_dates.append(y_base_date) fig, (ax1, ax2, ax3) = plt.subplots(1, 3, layout="constrained") ax1.fill_betweenx(y_values, x_dates1, x_dates2) ax2.fill_betweenx(y_dates, x_values1, x_values2) ax3.fill_betweenx(y_dates, x_dates1, x_dates2) @pytest.mark.xfail(reason="Test for hexbin not written yet") @mpl.style.context("default") def test_hexbin(self): fig, ax = plt.subplots() ax.hexbin(...) @mpl.style.context("default") def test_hist(self): mpl.rcParams["date.converter"] = 'concise' start_date = datetime.datetime(2023, 10, 1) time_delta = datetime.timedelta(days=1) values1 = np.random.randint(1, 10, 30) values2 = np.random.randint(1, 10, 30) values3 = np.random.randint(1, 10, 30) bin_edges = [start_date + i * time_delta for i in range(31)] fig, (ax1, ax2, ax3) = plt.subplots(3, 1, constrained_layout=True) ax1.hist( [start_date + i * time_delta for i in range(30)], bins=10, weights=values1 ) ax2.hist( [start_date + i * time_delta for i in range(30)], bins=10, weights=values2 ) ax3.hist( [start_date + i * time_delta for i in range(30)], bins=10, weights=values3 ) fig, (ax4, ax5, ax6) = plt.subplots(3, 1, constrained_layout=True) ax4.hist( [start_date + i * time_delta for i in range(30)], bins=bin_edges, weights=values1 ) ax5.hist( [start_date + i * time_delta for i in range(30)], bins=bin_edges, weights=values2 ) ax6.hist( [start_date + i * time_delta for i in range(30)], bins=bin_edges, weights=values3 ) @pytest.mark.xfail(reason="Test for hist2d not written yet") @mpl.style.context("default") def test_hist2d(self): fig, ax = plt.subplots() ax.hist2d(...) @mpl.style.context("default") def test_hlines(self): mpl.rcParams["date.converter"] = 'concise' fig, axs = plt.subplots(2, 4, layout='constrained') dateStrs = ['2023-03-08', '2023-04-09', '2023-05-13', '2023-07-28', '2023-12-24'] dates = [datetime.datetime(2023, m*2, 10) for m in range(1, 6)] date_start = [datetime.datetime(2023, 6, d) for d in range(5, 30, 5)] date_end = [datetime.datetime(2023, 7, d) for d in range(5, 30, 5)] npDates = [np.datetime64(s) for s in dateStrs] axs[0, 0].hlines(y=dates, xmin=[0.1, 0.2, 0.3, 0.4, 0.5], xmax=[0.5, 0.6, 0.7, 0.8, 0.9]) axs[0, 1].hlines(dates, xmin=datetime.datetime(2020, 5, 10), xmax=datetime.datetime(2020, 5, 31)) axs[0, 2].hlines(dates, xmin=date_start, xmax=date_end) axs[0, 3].hlines(dates, xmin=0.45, xmax=0.65) axs[1, 0].hlines(y=npDates, xmin=[0.5, 0.6, 0.7, 0.8, 0.9], xmax=[0.1, 0.2, 0.3, 0.4, 0.5]) axs[1, 2].hlines(y=npDates, xmin=date_start, xmax=date_end) axs[1, 1].hlines(npDates, xmin=datetime.datetime(2020, 5, 10), xmax=datetime.datetime(2020, 5, 31)) axs[1, 3].hlines(npDates, xmin=0.45, xmax=0.65) @mpl.style.context("default") def test_imshow(self): fig, ax = plt.subplots() a = np.diag(range(5)) dt_start = datetime.datetime(2010, 11, 1) dt_end = datetime.datetime(2010, 11, 11) extent = (dt_start, dt_end, dt_start, dt_end) ax.imshow(a, extent=extent) ax.tick_params(axis="x", labelrotation=90) @pytest.mark.xfail(reason="Test for loglog not written yet") @mpl.style.context("default") def test_loglog(self): fig, ax = plt.subplots() ax.loglog(...) @mpl.style.context("default") def test_matshow(self): a = np.diag(range(5)) dt_start = datetime.datetime(1980, 4, 15) dt_end = datetime.datetime(2020, 11, 11) extent = (dt_start, dt_end, dt_start, dt_end) fig, ax = plt.subplots() ax.matshow(a, extent=extent) for label in ax.get_xticklabels(): label.set_rotation(90) @pytest.mark.xfail(reason="Test for pcolor not written yet") @mpl.style.context("default") def test_pcolor(self): fig, ax = plt.subplots() ax.pcolor(...) @pytest.mark.xfail(reason="Test for pcolorfast not written yet") @mpl.style.context("default") def test_pcolorfast(self): fig, ax = plt.subplots() ax.pcolorfast(...) @pytest.mark.xfail(reason="Test for pcolormesh not written yet") @mpl.style.context("default") def test_pcolormesh(self): fig, ax = plt.subplots() ax.pcolormesh(...) @mpl.style.context("default") def test_plot(self): mpl.rcParams["date.converter"] = 'concise' N = 6 fig, (ax1, ax2, ax3) = plt.subplots(3, 1, layout='constrained') x = np.array([datetime.datetime(2023, 9, n) for n in range(1, N)]) ax1.plot(x, range(1, N)) ax2.plot(range(1, N), x) ax3.plot(x, x) @mpl.style.context("default") def test_plot_date(self): mpl.rcParams["date.converter"] = "concise" range_threshold = 10 fig, (ax1, ax2, ax3) = plt.subplots(3, 1, layout="constrained") x_dates = np.array( [datetime.datetime(2023, 10, delta) for delta in range(1, range_threshold)] ) y_dates = np.array( [datetime.datetime(2023, 10, delta) for delta in range(1, range_threshold)] ) x_ranges = np.array(range(1, range_threshold)) y_ranges = np.array(range(1, range_threshold)) with pytest.warns(mpl.MatplotlibDeprecationWarning): ax1.plot_date(x_dates, y_dates) ax2.plot_date(x_dates, y_ranges) ax3.plot_date(x_ranges, y_dates) @pytest.mark.xfail(reason="Test for quiver not written yet") @mpl.style.context("default") def test_quiver(self): fig, ax = plt.subplots() ax.quiver(...) @mpl.style.context("default") def test_scatter(self): mpl.rcParams["date.converter"] = 'concise' base = datetime.datetime(2005, 2, 1) dates = [base + datetime.timedelta(hours=(2 * i)) for i in range(10)] N = len(dates) np.random.seed(19680801) y = np.cumsum(np.random.randn(N)) fig, axs = plt.subplots(3, 1, layout='constrained', figsize=(6, 6)) # datetime array on x axis axs[0].scatter(dates, y) for label in axs[0].get_xticklabels(): label.set_rotation(40) label.set_horizontalalignment('right') # datetime on y axis axs[1].scatter(y, dates) # datetime on both x, y axes axs[2].scatter(dates, dates) for label in axs[2].get_xticklabels(): label.set_rotation(40) label.set_horizontalalignment('right') @pytest.mark.xfail(reason="Test for semilogx not written yet") @mpl.style.context("default") def test_semilogx(self): fig, ax = plt.subplots() ax.semilogx(...) @pytest.mark.xfail(reason="Test for semilogy not written yet") @mpl.style.context("default") def test_semilogy(self): fig, ax = plt.subplots() ax.semilogy(...) @mpl.style.context("default") def test_stackplot(self): mpl.rcParams["date.converter"] = 'concise' N = 10 stacked_nums = np.tile(np.arange(1, N), (4, 1)) dates = np.array([datetime.datetime(2020 + i, 1, 1) for i in range(N - 1)]) fig, ax = plt.subplots(layout='constrained') ax.stackplot(dates, stacked_nums) @mpl.style.context("default") def test_stairs(self): mpl.rcParams["date.converter"] = 'concise' start_date = datetime.datetime(2023, 12, 1) time_delta = datetime.timedelta(days=1) baseline_date = datetime.datetime(1980, 1, 1) bin_edges = [start_date + i * time_delta for i in range(31)] edge_int = np.arange(31) np.random.seed(123456) values1 = np.random.randint(1, 100, 30) values2 = [start_date + datetime.timedelta(days=int(i)) for i in np.random.randint(1, 10000, 30)] values3 = [start_date + datetime.timedelta(days=int(i)) for i in np.random.randint(-10000, 10000, 30)] fig, (ax1, ax2, ax3) = plt.subplots(3, 1, constrained_layout=True) ax1.stairs(values1, edges=bin_edges) ax2.stairs(values2, edges=edge_int, baseline=baseline_date) ax3.stairs(values3, edges=bin_edges, baseline=baseline_date) @mpl.style.context("default") def test_stem(self): mpl.rcParams["date.converter"] = "concise" fig, (ax1, ax2, ax3, ax4, ax5, ax6) = plt.subplots(6, 1, layout="constrained") limit_value = 10 above = datetime.datetime(2023, 9, 18) below = datetime.datetime(2023, 11, 18) x_ranges = np.arange(1, limit_value) y_ranges = np.arange(1, limit_value) x_dates = np.array( [datetime.datetime(2023, 10, n) for n in range(1, limit_value)] ) y_dates = np.array( [datetime.datetime(2023, 10, n) for n in range(1, limit_value)] ) ax1.stem(x_dates, y_dates, bottom=above) ax2.stem(x_dates, y_ranges, bottom=5) ax3.stem(x_ranges, y_dates, bottom=below) ax4.stem(x_ranges, y_dates, orientation="horizontal", bottom=above) ax5.stem(x_dates, y_ranges, orientation="horizontal", bottom=5) ax6.stem(x_ranges, y_dates, orientation="horizontal", bottom=below) @mpl.style.context("default") def test_step(self): mpl.rcParams["date.converter"] = "concise" N = 6 fig, (ax1, ax2, ax3) = plt.subplots(3, 1, layout='constrained') x = np.array([datetime.datetime(2023, 9, n) for n in range(1, N)]) ax1.step(x, range(1, N)) ax2.step(range(1, N), x) ax3.step(x, x) @pytest.mark.xfail(reason="Test for streamplot not written yet") @mpl.style.context("default") def test_streamplot(self): fig, ax = plt.subplots() ax.streamplot(...) @mpl.style.context("default") def test_text(self): mpl.rcParams["date.converter"] = 'concise' fig, (ax1, ax2, ax3) = plt.subplots(3, 1, layout="constrained") limit_value = 10 font_properties = {'family': 'serif', 'size': 12, 'weight': 'bold'} test_date = datetime.datetime(2023, 10, 1) x_data = np.array(range(1, limit_value)) y_data = np.array(range(1, limit_value)) x_dates = np.array( [datetime.datetime(2023, 10, n) for n in range(1, limit_value)] ) y_dates = np.array( [datetime.datetime(2023, 10, n) for n in range(1, limit_value)] ) ax1.plot(x_dates, y_data) ax1.text(test_date, 5, "Inserted Text", **font_properties) ax2.plot(x_data, y_dates) ax2.text(7, test_date, "Inserted Text", **font_properties) ax3.plot(x_dates, y_dates) ax3.text(test_date, test_date, "Inserted Text", **font_properties) @pytest.mark.xfail(reason="Test for tricontour not written yet") @mpl.style.context("default") def test_tricontour(self): fig, ax = plt.subplots() ax.tricontour(...) @pytest.mark.xfail(reason="Test for tricontourf not written yet") @mpl.style.context("default") def test_tricontourf(self): fig, ax = plt.subplots() ax.tricontourf(...) @pytest.mark.xfail(reason="Test for tripcolor not written yet") @mpl.style.context("default") def test_tripcolor(self): fig, ax = plt.subplots() ax.tripcolor(...) @pytest.mark.xfail(reason="Test for triplot not written yet") @mpl.style.context("default") def test_triplot(self): fig, ax = plt.subplots() ax.triplot(...) @pytest.mark.xfail(reason="Test for violin not written yet") @mpl.style.context("default") def test_violin(self): fig, ax = plt.subplots() ax.violin(...) @pytest.mark.xfail(reason="Test for violinplot not written yet") @mpl.style.context("default") def test_violinplot(self): fig, ax = plt.subplots() ax.violinplot(...) @mpl.style.context("default") def test_vlines(self): mpl.rcParams["date.converter"] = 'concise' fig, (ax1, ax2, ax3) = plt.subplots(3, 1, layout='constrained') ax1.set_xlim(left=datetime.datetime(2023, 1, 1), right=datetime.datetime(2023, 6, 30)) ax1.vlines(x=[datetime.datetime(2023, 2, 10), datetime.datetime(2023, 5, 18), datetime.datetime(2023, 6, 6)], ymin=[0, 0.25, 0.5], ymax=[0.25, 0.5, 0.75]) ax2.set_xlim(left=0, right=0.5) ax2.vlines(x=[0.3, 0.35], ymin=[np.datetime64('2023-03-20'), np.datetime64('2023-03-31')], ymax=[np.datetime64('2023-05-01'), np.datetime64('2023-05-16')]) ax3.set_xlim(left=datetime.datetime(2023, 7, 1), right=datetime.datetime(2023, 12, 31)) ax3.vlines(x=[datetime.datetime(2023, 9, 1), datetime.datetime(2023, 12, 10)], ymin=datetime.datetime(2023, 1, 15), ymax=datetime.datetime(2023, 1, 30))