# See https://github.com/networkx/networkx/pull/1474 # Copyright 2011 Reya Group # Copyright 2011 Alex Levenson # Copyright 2011 Diederik van Liere """Functions for analyzing triads of a graph.""" from collections import defaultdict from itertools import combinations, permutations import networkx as nx from networkx.utils import not_implemented_for, py_random_state __all__ = [ "triadic_census", "is_triad", "all_triplets", "all_triads", "triads_by_type", "triad_type", "random_triad", ] #: The integer codes representing each type of triad. #: #: Triads that are the same up to symmetry have the same code. TRICODES = ( 1, 2, 2, 3, 2, 4, 6, 8, 2, 6, 5, 7, 3, 8, 7, 11, 2, 6, 4, 8, 5, 9, 9, 13, 6, 10, 9, 14, 7, 14, 12, 15, 2, 5, 6, 7, 6, 9, 10, 14, 4, 9, 9, 12, 8, 13, 14, 15, 3, 7, 8, 11, 7, 12, 14, 15, 8, 14, 13, 15, 11, 15, 15, 16, ) #: The names of each type of triad. The order of the elements is #: important: it corresponds to the tricodes given in :data:`TRICODES`. TRIAD_NAMES = ( "003", "012", "102", "021D", "021U", "021C", "111D", "111U", "030T", "030C", "201", "120D", "120U", "120C", "210", "300", ) #: A dictionary mapping triad code to triad name. TRICODE_TO_NAME = {i: TRIAD_NAMES[code - 1] for i, code in enumerate(TRICODES)} def _tricode(G, v, u, w): """Returns the integer code of the given triad. This is some fancy magic that comes from Batagelj and Mrvar's paper. It treats each edge joining a pair of `v`, `u`, and `w` as a bit in the binary representation of an integer. """ combos = ((v, u, 1), (u, v, 2), (v, w, 4), (w, v, 8), (u, w, 16), (w, u, 32)) return sum(x for u, v, x in combos if v in G[u]) @not_implemented_for("undirected") @nx._dispatchable def triadic_census(G, nodelist=None): """Determines the triadic census of a directed graph. The triadic census is a count of how many of the 16 possible types of triads are present in a directed graph. If a list of nodes is passed, then only those triads are taken into account which have elements of nodelist in them. Parameters ---------- G : digraph A NetworkX DiGraph nodelist : list List of nodes for which you want to calculate triadic census Returns ------- census : dict Dictionary with triad type as keys and number of occurrences as values. Examples -------- >>> G = nx.DiGraph([(1, 2), (2, 3), (3, 1), (3, 4), (4, 1), (4, 2)]) >>> triadic_census = nx.triadic_census(G) >>> for key, value in triadic_census.items(): ... print(f"{key}: {value}") 003: 0 012: 0 102: 0 021D: 0 021U: 0 021C: 0 111D: 0 111U: 0 030T: 2 030C: 2 201: 0 120D: 0 120U: 0 120C: 0 210: 0 300: 0 Notes ----- This algorithm has complexity $O(m)$ where $m$ is the number of edges in the graph. For undirected graphs, the triadic census can be computed by first converting the graph into a directed graph using the ``G.to_directed()`` method. After this conversion, only the triad types 003, 102, 201 and 300 will be present in the undirected scenario. Raises ------ ValueError If `nodelist` contains duplicate nodes or nodes not in `G`. If you want to ignore this you can preprocess with `set(nodelist) & G.nodes` See also -------- triad_graph References ---------- .. [1] Vladimir Batagelj and Andrej Mrvar, A subquadratic triad census algorithm for large sparse networks with small maximum degree, University of Ljubljana, http://vlado.fmf.uni-lj.si/pub/networks/doc/triads/triads.pdf """ nodeset = set(G.nbunch_iter(nodelist)) if nodelist is not None and len(nodelist) != len(nodeset): raise ValueError("nodelist includes duplicate nodes or nodes not in G") N = len(G) Nnot = N - len(nodeset) # can signal special counting for subset of nodes # create an ordering of nodes with nodeset nodes first m = {n: i for i, n in enumerate(nodeset)} if Nnot: # add non-nodeset nodes later in the ordering not_nodeset = G.nodes - nodeset m.update((n, i + N) for i, n in enumerate(not_nodeset)) # build all_neighbor dicts for easy counting # After Python 3.8 can leave off these keys(). Speedup also using G._pred # nbrs = {n: G._pred[n].keys() | G._succ[n].keys() for n in G} nbrs = {n: G.pred[n].keys() | G.succ[n].keys() for n in G} dbl_nbrs = {n: G.pred[n].keys() & G.succ[n].keys() for n in G} if Nnot: sgl_nbrs = {n: G.pred[n].keys() ^ G.succ[n].keys() for n in not_nodeset} # find number of edges not incident to nodes in nodeset sgl = sum(1 for n in not_nodeset for nbr in sgl_nbrs[n] if nbr not in nodeset) sgl_edges_outside = sgl // 2 dbl = sum(1 for n in not_nodeset for nbr in dbl_nbrs[n] if nbr not in nodeset) dbl_edges_outside = dbl // 2 # Initialize the count for each triad to be zero. census = {name: 0 for name in TRIAD_NAMES} # Main loop over nodes for v in nodeset: vnbrs = nbrs[v] dbl_vnbrs = dbl_nbrs[v] if Nnot: # set up counts of edges attached to v. sgl_unbrs_bdy = sgl_unbrs_out = dbl_unbrs_bdy = dbl_unbrs_out = 0 for u in vnbrs: if m[u] <= m[v]: continue unbrs = nbrs[u] neighbors = (vnbrs | unbrs) - {u, v} # Count connected triads. for w in neighbors: if m[u] < m[w] or (m[v] < m[w] < m[u] and v not in nbrs[w]): code = _tricode(G, v, u, w) census[TRICODE_TO_NAME[code]] += 1 # Use a formula for dyadic triads with edge incident to v if u in dbl_vnbrs: census["102"] += N - len(neighbors) - 2 else: census["012"] += N - len(neighbors) - 2 # Count edges attached to v. Subtract later to get triads with v isolated # _out are (u,unbr) for unbrs outside boundary of nodeset # _bdy are (u,unbr) for unbrs on boundary of nodeset (get double counted) if Nnot and u not in nodeset: sgl_unbrs = sgl_nbrs[u] sgl_unbrs_bdy += len(sgl_unbrs & vnbrs - nodeset) sgl_unbrs_out += len(sgl_unbrs - vnbrs - nodeset) dbl_unbrs = dbl_nbrs[u] dbl_unbrs_bdy += len(dbl_unbrs & vnbrs - nodeset) dbl_unbrs_out += len(dbl_unbrs - vnbrs - nodeset) # if nodeset == G.nodes, skip this b/c we will find the edge later. if Nnot: # Count edges outside nodeset not connected with v (v isolated triads) census["012"] += sgl_edges_outside - (sgl_unbrs_out + sgl_unbrs_bdy // 2) census["102"] += dbl_edges_outside - (dbl_unbrs_out + dbl_unbrs_bdy // 2) # calculate null triads: "003" # null triads = total number of possible triads - all found triads total_triangles = (N * (N - 1) * (N - 2)) // 6 triangles_without_nodeset = (Nnot * (Nnot - 1) * (Nnot - 2)) // 6 total_census = total_triangles - triangles_without_nodeset census["003"] = total_census - sum(census.values()) return census @nx._dispatchable def is_triad(G): """Returns True if the graph G is a triad, else False. Parameters ---------- G : graph A NetworkX Graph Returns ------- istriad : boolean Whether G is a valid triad Examples -------- >>> G = nx.DiGraph([(1, 2), (2, 3), (3, 1)]) >>> nx.is_triad(G) True >>> G.add_edge(0, 1) >>> nx.is_triad(G) False """ if isinstance(G, nx.Graph): if G.order() == 3 and nx.is_directed(G): if not any((n, n) in G.edges() for n in G.nodes()): return True return False @not_implemented_for("undirected") @nx._dispatchable def all_triplets(G): """Returns a generator of all possible sets of 3 nodes in a DiGraph. .. deprecated:: 3.3 all_triplets is deprecated and will be removed in NetworkX version 3.5. Use `itertools.combinations` instead:: all_triplets = itertools.combinations(G, 3) Parameters ---------- G : digraph A NetworkX DiGraph Returns ------- triplets : generator of 3-tuples Generator of tuples of 3 nodes Examples -------- >>> G = nx.DiGraph([(1, 2), (2, 3), (3, 4)]) >>> list(nx.all_triplets(G)) [(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)] """ import warnings warnings.warn( ( "\n\nall_triplets is deprecated and will be rmoved in v3.5.\n" "Use `itertools.combinations(G, 3)` instead." ), category=DeprecationWarning, stacklevel=4, ) triplets = combinations(G.nodes(), 3) return triplets @not_implemented_for("undirected") @nx._dispatchable(returns_graph=True) def all_triads(G): """A generator of all possible triads in G. Parameters ---------- G : digraph A NetworkX DiGraph Returns ------- all_triads : generator of DiGraphs Generator of triads (order-3 DiGraphs) Examples -------- >>> G = nx.DiGraph([(1, 2), (2, 3), (3, 1), (3, 4), (4, 1), (4, 2)]) >>> for triad in nx.all_triads(G): ... print(triad.edges) [(1, 2), (2, 3), (3, 1)] [(1, 2), (4, 1), (4, 2)] [(3, 1), (3, 4), (4, 1)] [(2, 3), (3, 4), (4, 2)] """ triplets = combinations(G.nodes(), 3) for triplet in triplets: yield G.subgraph(triplet).copy() @not_implemented_for("undirected") @nx._dispatchable def triads_by_type(G): """Returns a list of all triads for each triad type in a directed graph. There are exactly 16 different types of triads possible. Suppose 1, 2, 3 are three nodes, they will be classified as a particular triad type if their connections are as follows: - 003: 1, 2, 3 - 012: 1 -> 2, 3 - 102: 1 <-> 2, 3 - 021D: 1 <- 2 -> 3 - 021U: 1 -> 2 <- 3 - 021C: 1 -> 2 -> 3 - 111D: 1 <-> 2 <- 3 - 111U: 1 <-> 2 -> 3 - 030T: 1 -> 2 -> 3, 1 -> 3 - 030C: 1 <- 2 <- 3, 1 -> 3 - 201: 1 <-> 2 <-> 3 - 120D: 1 <- 2 -> 3, 1 <-> 3 - 120U: 1 -> 2 <- 3, 1 <-> 3 - 120C: 1 -> 2 -> 3, 1 <-> 3 - 210: 1 -> 2 <-> 3, 1 <-> 3 - 300: 1 <-> 2 <-> 3, 1 <-> 3 Refer to the :doc:`example gallery ` for visual examples of the triad types. Parameters ---------- G : digraph A NetworkX DiGraph Returns ------- tri_by_type : dict Dictionary with triad types as keys and lists of triads as values. Examples -------- >>> G = nx.DiGraph([(1, 2), (1, 3), (2, 3), (3, 1), (5, 6), (5, 4), (6, 7)]) >>> dict = nx.triads_by_type(G) >>> dict["120C"][0].edges() OutEdgeView([(1, 2), (1, 3), (2, 3), (3, 1)]) >>> dict["012"][0].edges() OutEdgeView([(1, 2)]) References ---------- .. [1] Snijders, T. (2012). "Transitivity and triads." University of Oxford. https://web.archive.org/web/20170830032057/http://www.stats.ox.ac.uk/~snijders/Trans_Triads_ha.pdf """ # num_triads = o * (o - 1) * (o - 2) // 6 # if num_triads > TRIAD_LIMIT: print(WARNING) all_tri = all_triads(G) tri_by_type = defaultdict(list) for triad in all_tri: name = triad_type(triad) tri_by_type[name].append(triad) return tri_by_type @not_implemented_for("undirected") @nx._dispatchable def triad_type(G): """Returns the sociological triad type for a triad. Parameters ---------- G : digraph A NetworkX DiGraph with 3 nodes Returns ------- triad_type : str A string identifying the triad type Examples -------- >>> G = nx.DiGraph([(1, 2), (2, 3), (3, 1)]) >>> nx.triad_type(G) '030C' >>> G.add_edge(1, 3) >>> nx.triad_type(G) '120C' Notes ----- There can be 6 unique edges in a triad (order-3 DiGraph) (so 2^^6=64 unique triads given 3 nodes). These 64 triads each display exactly 1 of 16 topologies of triads (topologies can be permuted). These topologies are identified by the following notation: {m}{a}{n}{type} (for example: 111D, 210, 102) Here: {m} = number of mutual ties (takes 0, 1, 2, 3); a mutual tie is (0,1) AND (1,0) {a} = number of asymmetric ties (takes 0, 1, 2, 3); an asymmetric tie is (0,1) BUT NOT (1,0) or vice versa {n} = number of null ties (takes 0, 1, 2, 3); a null tie is NEITHER (0,1) NOR (1,0) {type} = a letter (takes U, D, C, T) corresponding to up, down, cyclical and transitive. This is only used for topologies that can have more than one form (eg: 021D and 021U). References ---------- .. [1] Snijders, T. (2012). "Transitivity and triads." University of Oxford. https://web.archive.org/web/20170830032057/http://www.stats.ox.ac.uk/~snijders/Trans_Triads_ha.pdf """ if not is_triad(G): raise nx.NetworkXAlgorithmError("G is not a triad (order-3 DiGraph)") num_edges = len(G.edges()) if num_edges == 0: return "003" elif num_edges == 1: return "012" elif num_edges == 2: e1, e2 = G.edges() if set(e1) == set(e2): return "102" elif e1[0] == e2[0]: return "021D" elif e1[1] == e2[1]: return "021U" elif e1[1] == e2[0] or e2[1] == e1[0]: return "021C" elif num_edges == 3: for e1, e2, e3 in permutations(G.edges(), 3): if set(e1) == set(e2): if e3[0] in e1: return "111U" # e3[1] in e1: return "111D" elif set(e1).symmetric_difference(set(e2)) == set(e3): if {e1[0], e2[0], e3[0]} == {e1[0], e2[0], e3[0]} == set(G.nodes()): return "030C" # e3 == (e1[0], e2[1]) and e2 == (e1[1], e3[1]): return "030T" elif num_edges == 4: for e1, e2, e3, e4 in permutations(G.edges(), 4): if set(e1) == set(e2): # identify pair of symmetric edges (which necessarily exists) if set(e3) == set(e4): return "201" if {e3[0]} == {e4[0]} == set(e3).intersection(set(e4)): return "120D" if {e3[1]} == {e4[1]} == set(e3).intersection(set(e4)): return "120U" if e3[1] == e4[0]: return "120C" elif num_edges == 5: return "210" elif num_edges == 6: return "300" @not_implemented_for("undirected") @py_random_state(1) @nx._dispatchable(preserve_all_attrs=True, returns_graph=True) def random_triad(G, seed=None): """Returns a random triad from a directed graph. .. deprecated:: 3.3 random_triad is deprecated and will be removed in version 3.5. Use random sampling directly instead:: G.subgraph(random.sample(list(G), 3)) Parameters ---------- G : digraph A NetworkX DiGraph seed : integer, random_state, or None (default) Indicator of random number generation state. See :ref:`Randomness`. Returns ------- G2 : subgraph A randomly selected triad (order-3 NetworkX DiGraph) Raises ------ NetworkXError If the input Graph has less than 3 nodes. Examples -------- >>> G = nx.DiGraph([(1, 2), (1, 3), (2, 3), (3, 1), (5, 6), (5, 4), (6, 7)]) >>> triad = nx.random_triad(G, seed=1) >>> triad.edges OutEdgeView([(1, 2)]) """ import warnings warnings.warn( ( "\n\nrandom_triad is deprecated and will be removed in NetworkX v3.5.\n" "Use random.sample instead, e.g.::\n\n" "\tG.subgraph(random.sample(list(G), 3))\n" ), category=DeprecationWarning, stacklevel=5, ) if len(G) < 3: raise nx.NetworkXError( f"G needs at least 3 nodes to form a triad; (it has {len(G)} nodes)" ) nodes = seed.sample(list(G.nodes()), 3) G2 = G.subgraph(nodes) return G2