"""Dictionary Of Keys based matrix""" __docformat__ = "restructuredtext en" __all__ = ['dok_array', 'dok_matrix', 'isspmatrix_dok'] import itertools import numpy as np from ._matrix import spmatrix from ._base import _spbase, sparray, issparse from ._index import IndexMixin from ._sputils import (isdense, getdtype, isshape, isintlike, isscalarlike, upcast, upcast_scalar, check_shape) class _dok_base(_spbase, IndexMixin, dict): _format = 'dok' def __init__(self, arg1, shape=None, dtype=None, copy=False): _spbase.__init__(self) is_array = isinstance(self, sparray) if isinstance(arg1, tuple) and isshape(arg1, allow_1d=is_array): self._shape = check_shape(arg1, allow_1d=is_array) self._dict = {} self.dtype = getdtype(dtype, default=float) elif issparse(arg1): # Sparse ctor if arg1.format == self.format: arg1 = arg1.copy() if copy else arg1 else: arg1 = arg1.todok() if dtype is not None: arg1 = arg1.astype(dtype, copy=False) self._dict = arg1._dict self._shape = check_shape(arg1.shape, allow_1d=is_array) self.dtype = arg1.dtype else: # Dense ctor try: arg1 = np.asarray(arg1) except Exception as e: raise TypeError('Invalid input format.') from e if arg1.ndim > 2: raise TypeError('Expected rank <=2 dense array or matrix.') if arg1.ndim == 1: if dtype is not None: arg1 = arg1.astype(dtype) self._dict = {i: v for i, v in enumerate(arg1) if v != 0} self.dtype = arg1.dtype else: d = self._coo_container(arg1, dtype=dtype).todok() self._dict = d._dict self.dtype = d.dtype self._shape = check_shape(arg1.shape, allow_1d=is_array) def update(self, val): # Prevent direct usage of update raise NotImplementedError("Direct update to DOK sparse format is not allowed.") def _getnnz(self, axis=None): if axis is not None: raise NotImplementedError( "_getnnz over an axis is not implemented for DOK format." ) return len(self._dict) def count_nonzero(self): return sum(x != 0 for x in self.values()) _getnnz.__doc__ = _spbase._getnnz.__doc__ count_nonzero.__doc__ = _spbase.count_nonzero.__doc__ def __len__(self): return len(self._dict) def __contains__(self, key): return key in self._dict def setdefault(self, key, default=None, /): return self._dict.setdefault(key, default) def __delitem__(self, key, /): del self._dict[key] def clear(self): return self._dict.clear() def pop(self, key, default=None, /): return self._dict.pop(key, default) def __reversed__(self): raise TypeError("reversed is not defined for dok_array type") def __or__(self, other): type_names = f"{type(self).__name__} and {type(other).__name__}" raise TypeError(f"unsupported operand type for |: {type_names}") def __ror__(self, other): type_names = f"{type(self).__name__} and {type(other).__name__}" raise TypeError(f"unsupported operand type for |: {type_names}") def __ior__(self, other): type_names = f"{type(self).__name__} and {type(other).__name__}" raise TypeError(f"unsupported operand type for |: {type_names}") def popitem(self): return self._dict.popitem() def items(self): return self._dict.items() def keys(self): return self._dict.keys() def values(self): return self._dict.values() def get(self, key, default=0.0): """This provides dict.get method functionality with type checking""" if key in self._dict: return self._dict[key] if isintlike(key) and self.ndim == 1: key = (key,) if self.ndim != len(key): raise IndexError(f'Index {key} length needs to match self.shape') try: for i in key: assert isintlike(i) except (AssertionError, TypeError, ValueError) as e: raise IndexError('Index must be or consist of integers.') from e key = tuple(i + M if i < 0 else i for i, M in zip(key, self.shape)) if any(i < 0 or i >= M for i, M in zip(key, self.shape)): raise IndexError('Index out of bounds.') if self.ndim == 1: key = key[0] return self._dict.get(key, default) # override IndexMixin.__getitem__ for 1d case until fully implemented def __getitem__(self, key): if self.ndim == 2: return super().__getitem__(key) if isinstance(key, tuple) and len(key) == 1: key = key[0] INT_TYPES = (int, np.integer) if isinstance(key, INT_TYPES): if key < 0: key += self.shape[-1] if key < 0 or key >= self.shape[-1]: raise IndexError('index value out of bounds') return self._get_int(key) else: raise IndexError('array/slice index for 1d dok_array not yet supported') # 1D get methods def _get_int(self, idx): return self._dict.get(idx, self.dtype.type(0)) # 2D get methods def _get_intXint(self, row, col): return self._dict.get((row, col), self.dtype.type(0)) def _get_intXslice(self, row, col): return self._get_sliceXslice(slice(row, row + 1), col) def _get_sliceXint(self, row, col): return self._get_sliceXslice(row, slice(col, col + 1)) def _get_sliceXslice(self, row, col): row_start, row_stop, row_step = row.indices(self.shape[0]) col_start, col_stop, col_step = col.indices(self.shape[1]) row_range = range(row_start, row_stop, row_step) col_range = range(col_start, col_stop, col_step) shape = (len(row_range), len(col_range)) # Switch paths only when advantageous # (count the iterations in the loops, adjust for complexity) if len(self) >= 2 * shape[0] * shape[1]: # O(nr*nc) path: loop over return self._get_columnXarray(row_range, col_range) # O(nnz) path: loop over entries of self newdok = self._dok_container(shape, dtype=self.dtype) for key in self.keys(): i, ri = divmod(int(key[0]) - row_start, row_step) if ri != 0 or i < 0 or i >= shape[0]: continue j, rj = divmod(int(key[1]) - col_start, col_step) if rj != 0 or j < 0 or j >= shape[1]: continue newdok._dict[i, j] = self._dict[key] return newdok def _get_intXarray(self, row, col): col = col.squeeze() return self._get_columnXarray([row], col) def _get_arrayXint(self, row, col): row = row.squeeze() return self._get_columnXarray(row, [col]) def _get_sliceXarray(self, row, col): row = list(range(*row.indices(self.shape[0]))) return self._get_columnXarray(row, col) def _get_arrayXslice(self, row, col): col = list(range(*col.indices(self.shape[1]))) return self._get_columnXarray(row, col) def _get_columnXarray(self, row, col): # outer indexing newdok = self._dok_container((len(row), len(col)), dtype=self.dtype) for i, r in enumerate(row): for j, c in enumerate(col): v = self._dict.get((r, c), 0) if v: newdok._dict[i, j] = v return newdok def _get_arrayXarray(self, row, col): # inner indexing i, j = map(np.atleast_2d, np.broadcast_arrays(row, col)) newdok = self._dok_container(i.shape, dtype=self.dtype) for key in itertools.product(range(i.shape[0]), range(i.shape[1])): v = self._dict.get((i[key], j[key]), 0) if v: newdok._dict[key] = v return newdok # override IndexMixin.__setitem__ for 1d case until fully implemented def __setitem__(self, key, value): if self.ndim == 2: return super().__setitem__(key, value) if isinstance(key, tuple) and len(key) == 1: key = key[0] INT_TYPES = (int, np.integer) if isinstance(key, INT_TYPES): if key < 0: key += self.shape[-1] if key < 0 or key >= self.shape[-1]: raise IndexError('index value out of bounds') return self._set_int(key, value) else: raise IndexError('array index for 1d dok_array not yet provided') # 1D set methods def _set_int(self, idx, x): if x: self._dict[idx] = x elif idx in self._dict: del self._dict[idx] # 2D set methods def _set_intXint(self, row, col, x): key = (row, col) if x: self._dict[key] = x elif key in self._dict: del self._dict[key] def _set_arrayXarray(self, row, col, x): row = list(map(int, row.ravel())) col = list(map(int, col.ravel())) x = x.ravel() self._dict.update(zip(zip(row, col), x)) for i in np.nonzero(x == 0)[0]: key = (row[i], col[i]) if self._dict[key] == 0: # may have been superseded by later update del self._dict[key] def __add__(self, other): if isscalarlike(other): res_dtype = upcast_scalar(self.dtype, other) new = self._dok_container(self.shape, dtype=res_dtype) # Add this scalar to each element. for key in itertools.product(*[range(d) for d in self.shape]): aij = self._dict.get(key, 0) + other if aij: new[key] = aij elif issparse(other): if other.shape != self.shape: raise ValueError("Matrix dimensions are not equal.") res_dtype = upcast(self.dtype, other.dtype) new = self._dok_container(self.shape, dtype=res_dtype) new._dict = self._dict.copy() if other.format == "dok": o_items = other.items() else: other = other.tocoo() if self.ndim == 1: o_items = zip(other.coords[0], other.data) else: o_items = zip(zip(*other.coords), other.data) with np.errstate(over='ignore'): new._dict.update((k, new[k] + v) for k, v in o_items) elif isdense(other): new = self.todense() + other else: return NotImplemented return new def __radd__(self, other): return self + other # addition is comutative def __neg__(self): if self.dtype.kind == 'b': raise NotImplementedError( 'Negating a sparse boolean matrix is not supported.' ) new = self._dok_container(self.shape, dtype=self.dtype) new._dict.update((k, -v) for k, v in self.items()) return new def _mul_scalar(self, other): res_dtype = upcast_scalar(self.dtype, other) # Multiply this scalar by every element. new = self._dok_container(self.shape, dtype=res_dtype) new._dict.update(((k, v * other) for k, v in self.items())) return new def _matmul_vector(self, other): res_dtype = upcast(self.dtype, other.dtype) # vector @ vector if self.ndim == 1: if issparse(other): if other.format == "dok": keys = self.keys() & other.keys() else: keys = self.keys() & other.tocoo().coords[0] return res_dtype(sum(self._dict[k] * other._dict[k] for k in keys)) elif isdense(other): return res_dtype(sum(other[k] * v for k, v in self.items())) else: return NotImplemented # matrix @ vector result = np.zeros(self.shape[0], dtype=res_dtype) for (i, j), v in self.items(): result[i] += v * other[j] return result def _matmul_multivector(self, other): result_dtype = upcast(self.dtype, other.dtype) # vector @ multivector if self.ndim == 1: # works for other 1d or 2d return sum(v * other[j] for j, v in self._dict.items()) # matrix @ multivector M = self.shape[0] new_shape = (M,) if other.ndim == 1 else (M, other.shape[1]) result = np.zeros(new_shape, dtype=result_dtype) for (i, j), v in self.items(): result[i] += v * other[j] return result def __imul__(self, other): if isscalarlike(other): self._dict.update((k, v * other) for k, v in self.items()) return self return NotImplemented def __truediv__(self, other): if isscalarlike(other): res_dtype = upcast_scalar(self.dtype, other) new = self._dok_container(self.shape, dtype=res_dtype) new._dict.update(((k, v / other) for k, v in self.items())) return new return self.tocsr() / other def __itruediv__(self, other): if isscalarlike(other): self._dict.update((k, v / other) for k, v in self.items()) return self return NotImplemented def __reduce__(self): # this approach is necessary because __setstate__ is called after # __setitem__ upon unpickling and since __init__ is not called there # is no shape attribute hence it is not possible to unpickle it. return dict.__reduce__(self) def diagonal(self, k=0): if self.ndim == 2: return super().diagonal(k) raise ValueError("diagonal requires two dimensions") def transpose(self, axes=None, copy=False): if self.ndim == 1: return self.copy() if axes is not None and axes != (1, 0): raise ValueError( "Sparse arrays/matrices do not support " "an 'axes' parameter because swapping " "dimensions is the only logical permutation." ) M, N = self.shape new = self._dok_container((N, M), dtype=self.dtype, copy=copy) new._dict.update((((right, left), val) for (left, right), val in self.items())) return new transpose.__doc__ = _spbase.transpose.__doc__ def conjtransp(self): """Return the conjugate transpose.""" if self.ndim == 1: new = self.tocoo() new.data = new.data.conjugate() return new M, N = self.shape new = self._dok_container((N, M), dtype=self.dtype) new._dict = {(right, left): np.conj(val) for (left, right), val in self.items()} return new def copy(self): new = self._dok_container(self.shape, dtype=self.dtype) new._dict.update(self._dict) return new copy.__doc__ = _spbase.copy.__doc__ @classmethod def fromkeys(cls, iterable, value=1, /): tmp = dict.fromkeys(iterable, value) if isinstance(next(iter(tmp)), tuple): shape = tuple(max(idx) + 1 for idx in zip(*tmp)) else: shape = (max(tmp) + 1,) result = cls(shape, dtype=type(value)) result._dict = tmp return result def tocoo(self, copy=False): nnz = self.nnz if nnz == 0: return self._coo_container(self.shape, dtype=self.dtype) idx_dtype = self._get_index_dtype(maxval=max(self.shape)) data = np.fromiter(self.values(), dtype=self.dtype, count=nnz) # handle 1d keys specially b/c not a tuple inds = zip(*self.keys()) if self.ndim > 1 else (self.keys(),) coords = tuple(np.fromiter(ix, dtype=idx_dtype, count=nnz) for ix in inds) A = self._coo_container((data, coords), shape=self.shape, dtype=self.dtype) A.has_canonical_format = True return A tocoo.__doc__ = _spbase.tocoo.__doc__ def todok(self, copy=False): if copy: return self.copy() return self todok.__doc__ = _spbase.todok.__doc__ def tocsc(self, copy=False): if self.ndim == 1: raise NotImplementedError("tocsr() not valid for 1d sparse array") return self.tocoo(copy=False).tocsc(copy=copy) tocsc.__doc__ = _spbase.tocsc.__doc__ def resize(self, *shape): is_array = isinstance(self, sparray) shape = check_shape(shape, allow_1d=is_array) if len(shape) != len(self.shape): # TODO implement resize across dimensions raise NotImplementedError if self.ndim == 1: newN = shape[-1] for i in list(self._dict): if i >= newN: del self._dict[i] self._shape = shape return newM, newN = shape M, N = self.shape if newM < M or newN < N: # Remove all elements outside new dimensions for i, j in list(self.keys()): if i >= newM or j >= newN: del self._dict[i, j] self._shape = shape resize.__doc__ = _spbase.resize.__doc__ # Added for 1d to avoid `tocsr` from _base.py def astype(self, dtype, casting='unsafe', copy=True): dtype = np.dtype(dtype) if self.dtype != dtype: result = self._dok_container(self.shape, dtype=dtype) data = np.array(list(self._dict.values()), dtype=dtype) result._dict = dict(zip(self._dict, data)) return result elif copy: return self.copy() return self def isspmatrix_dok(x): """Is `x` of dok_array type? Parameters ---------- x object to check for being a dok matrix Returns ------- bool True if `x` is a dok matrix, False otherwise Examples -------- >>> from scipy.sparse import dok_array, dok_matrix, coo_matrix, isspmatrix_dok >>> isspmatrix_dok(dok_matrix([[5]])) True >>> isspmatrix_dok(dok_array([[5]])) False >>> isspmatrix_dok(coo_matrix([[5]])) False """ return isinstance(x, dok_matrix) # This namespace class separates array from matrix with isinstance class dok_array(_dok_base, sparray): """ Dictionary Of Keys based sparse array. This is an efficient structure for constructing sparse arrays incrementally. This can be instantiated in several ways: dok_array(D) where D is a 2-D ndarray dok_array(S) with another sparse array or matrix S (equivalent to S.todok()) dok_array((M,N), [dtype]) create the array with initial shape (M,N) dtype is optional, defaulting to dtype='d' Attributes ---------- dtype : dtype Data type of the array shape : 2-tuple Shape of the array ndim : int Number of dimensions (this is always 2) nnz Number of nonzero elements size T Notes ----- Sparse arrays can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and matrix power. - Allows for efficient O(1) access of individual elements. - Duplicates are not allowed. - Can be efficiently converted to a coo_array once constructed. Examples -------- >>> import numpy as np >>> from scipy.sparse import dok_array >>> S = dok_array((5, 5), dtype=np.float32) >>> for i in range(5): ... for j in range(5): ... S[i, j] = i + j # Update element """ class dok_matrix(spmatrix, _dok_base): """ Dictionary Of Keys based sparse matrix. This is an efficient structure for constructing sparse matrices incrementally. This can be instantiated in several ways: dok_matrix(D) where D is a 2-D ndarray dok_matrix(S) with another sparse array or matrix S (equivalent to S.todok()) dok_matrix((M,N), [dtype]) create the matrix with initial shape (M,N) dtype is optional, defaulting to dtype='d' Attributes ---------- dtype : dtype Data type of the matrix shape : 2-tuple Shape of the matrix ndim : int Number of dimensions (this is always 2) nnz Number of nonzero elements size T Notes ----- Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and matrix power. - Allows for efficient O(1) access of individual elements. - Duplicates are not allowed. - Can be efficiently converted to a coo_matrix once constructed. Examples -------- >>> import numpy as np >>> from scipy.sparse import dok_matrix >>> S = dok_matrix((5, 5), dtype=np.float32) >>> for i in range(5): ... for j in range(5): ... S[i, j] = i + j # Update element """ def set_shape(self, shape): new_matrix = self.reshape(shape, copy=False).asformat(self.format) self.__dict__ = new_matrix.__dict__ def get_shape(self): """Get shape of a sparse matrix.""" return self._shape shape = property(fget=get_shape, fset=set_shape) def __reversed__(self): return self._dict.__reversed__() def __or__(self, other): if isinstance(other, _dok_base): return self._dict | other._dict return self._dict | other def __ror__(self, other): if isinstance(other, _dok_base): return self._dict | other._dict return self._dict | other def __ior__(self, other): if isinstance(other, _dok_base): self._dict |= other._dict else: self._dict |= other return self