"""List of Lists sparse matrix class """ __docformat__ = "restructuredtext en" __all__ = ['lil_array', 'lil_matrix', 'isspmatrix_lil'] from bisect import bisect_left import numpy as np from ._matrix import spmatrix from ._base import _spbase, sparray, issparse from ._index import IndexMixin, INT_TYPES, _broadcast_arrays from ._sputils import (getdtype, isshape, isscalarlike, upcast_scalar, check_shape, check_reshape_kwargs) from . import _csparsetools class _lil_base(_spbase, IndexMixin): _format = 'lil' def __init__(self, arg1, shape=None, dtype=None, copy=False): _spbase.__init__(self) self.dtype = getdtype(dtype, arg1, default=float) # First get the shape if issparse(arg1): if arg1.format == "lil" and copy: A = arg1.copy() else: A = arg1.tolil() if dtype is not None: A = A.astype(dtype, copy=False) self._shape = check_shape(A.shape) self.dtype = A.dtype self.rows = A.rows self.data = A.data elif isinstance(arg1,tuple): if isshape(arg1): if shape is not None: raise ValueError('invalid use of shape parameter') M, N = arg1 self._shape = check_shape((M, N)) self.rows = np.empty((M,), dtype=object) self.data = np.empty((M,), dtype=object) for i in range(M): self.rows[i] = [] self.data[i] = [] else: raise TypeError('unrecognized lil_array constructor usage') else: # assume A is dense try: A = self._ascontainer(arg1) except TypeError as e: raise TypeError('unsupported matrix type') from e else: A = self._csr_container(A, dtype=dtype).tolil() self._shape = check_shape(A.shape) self.dtype = A.dtype self.rows = A.rows self.data = A.data def __iadd__(self,other): self[:,:] = self + other return self def __isub__(self,other): self[:,:] = self - other return self def __imul__(self,other): if isscalarlike(other): self[:,:] = self * other return self else: return NotImplemented def __itruediv__(self,other): if isscalarlike(other): self[:,:] = self / other return self else: return NotImplemented # Whenever the dimensions change, empty lists should be created for each # row def _getnnz(self, axis=None): if axis is None: return sum([len(rowvals) for rowvals in self.data]) if axis < 0: axis += 2 if axis == 0: out = np.zeros(self.shape[1], dtype=np.intp) for row in self.rows: out[row] += 1 return out elif axis == 1: return np.array([len(rowvals) for rowvals in self.data], dtype=np.intp) else: raise ValueError('axis out of bounds') def count_nonzero(self): return sum(np.count_nonzero(rowvals) for rowvals in self.data) _getnnz.__doc__ = _spbase._getnnz.__doc__ count_nonzero.__doc__ = _spbase.count_nonzero.__doc__ def __str__(self): val = '' for i, row in enumerate(self.rows): for pos, j in enumerate(row): val += f" {str((i, j))}\t{str(self.data[i][pos])}\n" return val[:-1] def getrowview(self, i): """Returns a view of the 'i'th row (without copying). """ new = self._lil_container((1, self.shape[1]), dtype=self.dtype) new.rows[0] = self.rows[i] new.data[0] = self.data[i] return new def getrow(self, i): """Returns a copy of the 'i'th row. """ M, N = self.shape if i < 0: i += M if i < 0 or i >= M: raise IndexError('row index out of bounds') new = self._lil_container((1, N), dtype=self.dtype) new.rows[0] = self.rows[i][:] new.data[0] = self.data[i][:] return new def __getitem__(self, key): # Fast path for simple (int, int) indexing. if (isinstance(key, tuple) and len(key) == 2 and isinstance(key[0], INT_TYPES) and isinstance(key[1], INT_TYPES)): # lil_get1 handles validation for us. return self._get_intXint(*key) # Everything else takes the normal path. return IndexMixin.__getitem__(self, key) def _asindices(self, idx, N): # LIL routines handle bounds-checking for us, so don't do it here. try: x = np.asarray(idx) except (ValueError, TypeError, MemoryError) as e: raise IndexError('invalid index') from e if x.ndim not in (1, 2): raise IndexError('Index dimension must be <= 2') return x def _get_intXint(self, row, col): v = _csparsetools.lil_get1(self.shape[0], self.shape[1], self.rows, self.data, row, col) return self.dtype.type(v) def _get_sliceXint(self, row, col): row = range(*row.indices(self.shape[0])) return self._get_row_ranges(row, slice(col, col+1)) def _get_arrayXint(self, row, col): row = row.squeeze() return self._get_row_ranges(row, slice(col, col+1)) def _get_intXslice(self, row, col): return self._get_row_ranges((row,), col) def _get_sliceXslice(self, row, col): row = range(*row.indices(self.shape[0])) return self._get_row_ranges(row, col) def _get_arrayXslice(self, row, col): return self._get_row_ranges(row, col) def _get_intXarray(self, row, col): row = np.array(row, dtype=col.dtype, ndmin=1) return self._get_columnXarray(row, col) def _get_sliceXarray(self, row, col): row = np.arange(*row.indices(self.shape[0])) return self._get_columnXarray(row, col) def _get_columnXarray(self, row, col): # outer indexing row, col = _broadcast_arrays(row[:,None], col) return self._get_arrayXarray(row, col) def _get_arrayXarray(self, row, col): # inner indexing i, j = map(np.atleast_2d, _prepare_index_for_memoryview(row, col)) new = self._lil_container(i.shape, dtype=self.dtype) _csparsetools.lil_fancy_get(self.shape[0], self.shape[1], self.rows, self.data, new.rows, new.data, i, j) return new def _get_row_ranges(self, rows, col_slice): """ Fast path for indexing in the case where column index is slice. This gains performance improvement over brute force by more efficient skipping of zeros, by accessing the elements column-wise in order. Parameters ---------- rows : sequence or range Rows indexed. If range, must be within valid bounds. col_slice : slice Columns indexed """ j_start, j_stop, j_stride = col_slice.indices(self.shape[1]) col_range = range(j_start, j_stop, j_stride) nj = len(col_range) new = self._lil_container((len(rows), nj), dtype=self.dtype) _csparsetools.lil_get_row_ranges(self.shape[0], self.shape[1], self.rows, self.data, new.rows, new.data, rows, j_start, j_stop, j_stride, nj) return new def _set_intXint(self, row, col, x): _csparsetools.lil_insert(self.shape[0], self.shape[1], self.rows, self.data, row, col, x) def _set_arrayXarray(self, row, col, x): i, j, x = map(np.atleast_2d, _prepare_index_for_memoryview(row, col, x)) _csparsetools.lil_fancy_set(self.shape[0], self.shape[1], self.rows, self.data, i, j, x) def _set_arrayXarray_sparse(self, row, col, x): # Fall back to densifying x x = np.asarray(x.toarray(), dtype=self.dtype) x, _ = _broadcast_arrays(x, row) self._set_arrayXarray(row, col, x) def __setitem__(self, key, x): if isinstance(key, tuple) and len(key) == 2: row, col = key # Fast path for simple (int, int) indexing. if isinstance(row, INT_TYPES) and isinstance(col, INT_TYPES): x = self.dtype.type(x) if x.size > 1: raise ValueError("Trying to assign a sequence to an item") return self._set_intXint(row, col, x) # Fast path for full-matrix sparse assignment. if (isinstance(row, slice) and isinstance(col, slice) and row == slice(None) and col == slice(None) and issparse(x) and x.shape == self.shape): x = self._lil_container(x, dtype=self.dtype) self.rows = x.rows self.data = x.data return # Everything else takes the normal path. IndexMixin.__setitem__(self, key, x) def _mul_scalar(self, other): if other == 0: # Multiply by zero: return the zero matrix new = self._lil_container(self.shape, dtype=self.dtype) else: res_dtype = upcast_scalar(self.dtype, other) new = self.copy() new = new.astype(res_dtype) # Multiply this scalar by every element. for j, rowvals in enumerate(new.data): new.data[j] = [val*other for val in rowvals] return new def __truediv__(self, other): # self / other if isscalarlike(other): new = self.copy() new.dtype = np.result_type(self, other) # Divide every element by this scalar for j, rowvals in enumerate(new.data): new.data[j] = [val/other for val in rowvals] return new else: return self.tocsr() / other def copy(self): M, N = self.shape new = self._lil_container(self.shape, dtype=self.dtype) # This is ~14x faster than calling deepcopy() on rows and data. _csparsetools.lil_get_row_ranges(M, N, self.rows, self.data, new.rows, new.data, range(M), 0, N, 1, N) return new copy.__doc__ = _spbase.copy.__doc__ def reshape(self, *args, **kwargs): shape = check_shape(args, self.shape) order, copy = check_reshape_kwargs(kwargs) # Return early if reshape is not required if shape == self.shape: if copy: return self.copy() else: return self new = self._lil_container(shape, dtype=self.dtype) if order == 'C': ncols = self.shape[1] for i, row in enumerate(self.rows): for col, j in enumerate(row): new_r, new_c = np.unravel_index(i * ncols + j, shape) new[new_r, new_c] = self[i, j] elif order == 'F': nrows = self.shape[0] for i, row in enumerate(self.rows): for col, j in enumerate(row): new_r, new_c = np.unravel_index(i + j * nrows, shape, order) new[new_r, new_c] = self[i, j] else: raise ValueError("'order' must be 'C' or 'F'") return new reshape.__doc__ = _spbase.reshape.__doc__ def resize(self, *shape): shape = check_shape(shape) new_M, new_N = shape M, N = self.shape if new_M < M: self.rows = self.rows[:new_M] self.data = self.data[:new_M] elif new_M > M: self.rows = np.resize(self.rows, new_M) self.data = np.resize(self.data, new_M) for i in range(M, new_M): self.rows[i] = [] self.data[i] = [] if new_N < N: for row, data in zip(self.rows, self.data): trunc = bisect_left(row, new_N) del row[trunc:] del data[trunc:] self._shape = shape resize.__doc__ = _spbase.resize.__doc__ def toarray(self, order=None, out=None): d = self._process_toarray_args(order, out) for i, row in enumerate(self.rows): for pos, j in enumerate(row): d[i, j] = self.data[i][pos] return d toarray.__doc__ = _spbase.toarray.__doc__ def transpose(self, axes=None, copy=False): return self.tocsr(copy=copy).transpose(axes=axes, copy=False).tolil(copy=False) transpose.__doc__ = _spbase.transpose.__doc__ def tolil(self, copy=False): if copy: return self.copy() else: return self tolil.__doc__ = _spbase.tolil.__doc__ def tocsr(self, copy=False): M, N = self.shape if M == 0 or N == 0: return self._csr_container((M, N), dtype=self.dtype) # construct indptr array if M*N <= np.iinfo(np.int32).max: # fast path: it is known that 64-bit indexing will not be needed. idx_dtype = np.int32 indptr = np.empty(M + 1, dtype=idx_dtype) indptr[0] = 0 _csparsetools.lil_get_lengths(self.rows, indptr[1:]) np.cumsum(indptr, out=indptr) nnz = indptr[-1] else: idx_dtype = self._get_index_dtype(maxval=N) lengths = np.empty(M, dtype=idx_dtype) _csparsetools.lil_get_lengths(self.rows, lengths) nnz = lengths.sum(dtype=np.int64) idx_dtype = self._get_index_dtype(maxval=max(N, nnz)) indptr = np.empty(M + 1, dtype=idx_dtype) indptr[0] = 0 np.cumsum(lengths, dtype=idx_dtype, out=indptr[1:]) indices = np.empty(nnz, dtype=idx_dtype) data = np.empty(nnz, dtype=self.dtype) _csparsetools.lil_flatten_to_array(self.rows, indices) _csparsetools.lil_flatten_to_array(self.data, data) # init csr matrix return self._csr_container((data, indices, indptr), shape=self.shape) tocsr.__doc__ = _spbase.tocsr.__doc__ def _prepare_index_for_memoryview(i, j, x=None): """ Convert index and data arrays to form suitable for passing to the Cython fancy getset routines. The conversions are necessary since to (i) ensure the integer index arrays are in one of the accepted types, and (ii) to ensure the arrays are writable so that Cython memoryview support doesn't choke on them. Parameters ---------- i, j Index arrays x : optional Data arrays Returns ------- i, j, x Re-formatted arrays (x is omitted, if input was None) """ if i.dtype > j.dtype: j = j.astype(i.dtype) elif i.dtype < j.dtype: i = i.astype(j.dtype) if not i.flags.writeable or i.dtype not in (np.int32, np.int64): i = i.astype(np.intp) if not j.flags.writeable or j.dtype not in (np.int32, np.int64): j = j.astype(np.intp) if x is not None: if not x.flags.writeable: x = x.copy() return i, j, x else: return i, j def isspmatrix_lil(x): """Is `x` of lil_matrix type? Parameters ---------- x object to check for being a lil matrix Returns ------- bool True if `x` is a lil matrix, False otherwise Examples -------- >>> from scipy.sparse import lil_array, lil_matrix, coo_matrix, isspmatrix_lil >>> isspmatrix_lil(lil_matrix([[5]])) True >>> isspmatrix_lil(lil_array([[5]])) False >>> isspmatrix_lil(coo_matrix([[5]])) False """ return isinstance(x, lil_matrix) # This namespace class separates array from matrix with isinstance class lil_array(_lil_base, sparray): """ Row-based LIst of Lists sparse array. This is a structure for constructing sparse arrays incrementally. Note that inserting a single item can take linear time in the worst case; to construct the array efficiently, make sure the items are pre-sorted by index, per row. This can be instantiated in several ways: lil_array(D) where D is a 2-D ndarray lil_array(S) with another sparse array or matrix S (equivalent to S.tolil()) lil_array((M, N), [dtype]) to construct an empty array with shape (M, N) dtype is optional, defaulting to dtype='d'. Attributes ---------- dtype : dtype Data type of the array shape : 2-tuple Shape of the array ndim : int Number of dimensions (this is always 2) nnz size data LIL format data array of the array rows LIL format row index array of the array T Notes ----- Sparse arrays can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and matrix power. Advantages of the LIL format - supports flexible slicing - changes to the array sparsity structure are efficient Disadvantages of the LIL format - arithmetic operations LIL + LIL are slow (consider CSR or CSC) - slow column slicing (consider CSC) - slow matrix vector products (consider CSR or CSC) Intended Usage - LIL is a convenient format for constructing sparse arrays - once an array has been constructed, convert to CSR or CSC format for fast arithmetic and matrix vector operations - consider using the COO format when constructing large arrays Data Structure - An array (``self.rows``) of rows, each of which is a sorted list of column indices of non-zero elements. - The corresponding nonzero values are stored in similar fashion in ``self.data``. """ class lil_matrix(spmatrix, _lil_base): """ Row-based LIst of Lists sparse matrix. This is a structure for constructing sparse matrices incrementally. Note that inserting a single item can take linear time in the worst case; to construct the matrix efficiently, make sure the items are pre-sorted by index, per row. This can be instantiated in several ways: lil_matrix(D) where D is a 2-D ndarray lil_matrix(S) with another sparse array or matrix S (equivalent to S.tolil()) lil_matrix((M, N), [dtype]) to construct an empty matrix with shape (M, N) dtype is optional, defaulting to dtype='d'. Attributes ---------- dtype : dtype Data type of the matrix shape : 2-tuple Shape of the matrix ndim : int Number of dimensions (this is always 2) nnz size data LIL format data array of the matrix rows LIL format row index array of the matrix T Notes ----- Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and matrix power. Advantages of the LIL format - supports flexible slicing - changes to the matrix sparsity structure are efficient Disadvantages of the LIL format - arithmetic operations LIL + LIL are slow (consider CSR or CSC) - slow column slicing (consider CSC) - slow matrix vector products (consider CSR or CSC) Intended Usage - LIL is a convenient format for constructing sparse matrices - once a matrix has been constructed, convert to CSR or CSC format for fast arithmetic and matrix vector operations - consider using the COO format when constructing large matrices Data Structure - An array (``self.rows``) of rows, each of which is a sorted list of column indices of non-zero elements. - The corresponding nonzero values are stored in similar fashion in ``self.data``. """