"""Locally Linear Embedding""" # Author: Fabian Pedregosa -- # Jake Vanderplas -- # License: BSD 3 clause (C) INRIA 2011 from numbers import Integral, Real import numpy as np from scipy.linalg import eigh, qr, solve, svd from scipy.sparse import csr_matrix, eye from scipy.sparse.linalg import eigsh from ..base import ( BaseEstimator, ClassNamePrefixFeaturesOutMixin, TransformerMixin, _fit_context, _UnstableArchMixin, ) from ..neighbors import NearestNeighbors from ..utils import check_array, check_random_state from ..utils._arpack import _init_arpack_v0 from ..utils._param_validation import Interval, StrOptions, validate_params from ..utils.extmath import stable_cumsum from ..utils.validation import FLOAT_DTYPES, check_is_fitted def barycenter_weights(X, Y, indices, reg=1e-3): """Compute barycenter weights of X from Y along the first axis We estimate the weights to assign to each point in Y[indices] to recover the point X[i]. The barycenter weights sum to 1. Parameters ---------- X : array-like, shape (n_samples, n_dim) Y : array-like, shape (n_samples, n_dim) indices : array-like, shape (n_samples, n_dim) Indices of the points in Y used to compute the barycenter reg : float, default=1e-3 Amount of regularization to add for the problem to be well-posed in the case of n_neighbors > n_dim Returns ------- B : array-like, shape (n_samples, n_neighbors) Notes ----- See developers note for more information. """ X = check_array(X, dtype=FLOAT_DTYPES) Y = check_array(Y, dtype=FLOAT_DTYPES) indices = check_array(indices, dtype=int) n_samples, n_neighbors = indices.shape assert X.shape[0] == n_samples B = np.empty((n_samples, n_neighbors), dtype=X.dtype) v = np.ones(n_neighbors, dtype=X.dtype) # this might raise a LinalgError if G is singular and has trace # zero for i, ind in enumerate(indices): A = Y[ind] C = A - X[i] # broadcasting G = np.dot(C, C.T) trace = np.trace(G) if trace > 0: R = reg * trace else: R = reg G.flat[:: n_neighbors + 1] += R w = solve(G, v, assume_a="pos") B[i, :] = w / np.sum(w) return B def barycenter_kneighbors_graph(X, n_neighbors, reg=1e-3, n_jobs=None): """Computes the barycenter weighted graph of k-Neighbors for points in X Parameters ---------- X : {array-like, NearestNeighbors} Sample data, shape = (n_samples, n_features), in the form of a numpy array or a NearestNeighbors object. n_neighbors : int Number of neighbors for each sample. reg : float, default=1e-3 Amount of regularization when solving the least-squares problem. Only relevant if mode='barycenter'. If None, use the default. n_jobs : int or None, default=None The number of parallel jobs to run for neighbors search. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary ` for more details. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples] A[i, j] is assigned the weight of edge that connects i to j. See Also -------- sklearn.neighbors.kneighbors_graph sklearn.neighbors.radius_neighbors_graph """ knn = NearestNeighbors(n_neighbors=n_neighbors + 1, n_jobs=n_jobs).fit(X) X = knn._fit_X n_samples = knn.n_samples_fit_ ind = knn.kneighbors(X, return_distance=False)[:, 1:] data = barycenter_weights(X, X, ind, reg=reg) indptr = np.arange(0, n_samples * n_neighbors + 1, n_neighbors) return csr_matrix((data.ravel(), ind.ravel(), indptr), shape=(n_samples, n_samples)) def null_space( M, k, k_skip=1, eigen_solver="arpack", tol=1e-6, max_iter=100, random_state=None ): """ Find the null space of a matrix M. Parameters ---------- M : {array, matrix, sparse matrix, LinearOperator} Input covariance matrix: should be symmetric positive semi-definite k : int Number of eigenvalues/vectors to return k_skip : int, default=1 Number of low eigenvalues to skip. eigen_solver : {'auto', 'arpack', 'dense'}, default='arpack' auto : algorithm will attempt to choose the best method for input data arpack : use arnoldi iteration in shift-invert mode. For this method, M may be a dense matrix, sparse matrix, or general linear operator. Warning: ARPACK can be unstable for some problems. It is best to try several random seeds in order to check results. dense : use standard dense matrix operations for the eigenvalue decomposition. For this method, M must be an array or matrix type. This method should be avoided for large problems. tol : float, default=1e-6 Tolerance for 'arpack' method. Not used if eigen_solver=='dense'. max_iter : int, default=100 Maximum number of iterations for 'arpack' method. Not used if eigen_solver=='dense' random_state : int, RandomState instance, default=None Determines the random number generator when ``solver`` == 'arpack'. Pass an int for reproducible results across multiple function calls. See :term:`Glossary `. """ if eigen_solver == "auto": if M.shape[0] > 200 and k + k_skip < 10: eigen_solver = "arpack" else: eigen_solver = "dense" if eigen_solver == "arpack": v0 = _init_arpack_v0(M.shape[0], random_state) try: eigen_values, eigen_vectors = eigsh( M, k + k_skip, sigma=0.0, tol=tol, maxiter=max_iter, v0=v0 ) except RuntimeError as e: raise ValueError( "Error in determining null-space with ARPACK. Error message: " "'%s'. Note that eigen_solver='arpack' can fail when the " "weight matrix is singular or otherwise ill-behaved. In that " "case, eigen_solver='dense' is recommended. See online " "documentation for more information." % e ) from e return eigen_vectors[:, k_skip:], np.sum(eigen_values[k_skip:]) elif eigen_solver == "dense": if hasattr(M, "toarray"): M = M.toarray() eigen_values, eigen_vectors = eigh( M, subset_by_index=(k_skip, k + k_skip - 1), overwrite_a=True ) index = np.argsort(np.abs(eigen_values)) return eigen_vectors[:, index], np.sum(eigen_values) else: raise ValueError("Unrecognized eigen_solver '%s'" % eigen_solver) def _locally_linear_embedding( X, *, n_neighbors, n_components, reg=1e-3, eigen_solver="auto", tol=1e-6, max_iter=100, method="standard", hessian_tol=1e-4, modified_tol=1e-12, random_state=None, n_jobs=None, ): nbrs = NearestNeighbors(n_neighbors=n_neighbors + 1, n_jobs=n_jobs) nbrs.fit(X) X = nbrs._fit_X N, d_in = X.shape if n_components > d_in: raise ValueError( "output dimension must be less than or equal to input dimension" ) if n_neighbors >= N: raise ValueError( "Expected n_neighbors <= n_samples, but n_samples = %d, n_neighbors = %d" % (N, n_neighbors) ) M_sparse = eigen_solver != "dense" if method == "standard": W = barycenter_kneighbors_graph( nbrs, n_neighbors=n_neighbors, reg=reg, n_jobs=n_jobs ) # we'll compute M = (I-W)'(I-W) # depending on the solver, we'll do this differently if M_sparse: M = eye(*W.shape, format=W.format) - W M = (M.T * M).tocsr() else: M = (W.T * W - W.T - W).toarray() M.flat[:: M.shape[0] + 1] += 1 # W = W - I = W - I elif method == "hessian": dp = n_components * (n_components + 1) // 2 if n_neighbors <= n_components + dp: raise ValueError( "for method='hessian', n_neighbors must be " "greater than " "[n_components * (n_components + 3) / 2]" ) neighbors = nbrs.kneighbors( X, n_neighbors=n_neighbors + 1, return_distance=False ) neighbors = neighbors[:, 1:] Yi = np.empty((n_neighbors, 1 + n_components + dp), dtype=np.float64) Yi[:, 0] = 1 M = np.zeros((N, N), dtype=np.float64) use_svd = n_neighbors > d_in for i in range(N): Gi = X[neighbors[i]] Gi -= Gi.mean(0) # build Hessian estimator if use_svd: U = svd(Gi, full_matrices=0)[0] else: Ci = np.dot(Gi, Gi.T) U = eigh(Ci)[1][:, ::-1] Yi[:, 1 : 1 + n_components] = U[:, :n_components] j = 1 + n_components for k in range(n_components): Yi[:, j : j + n_components - k] = U[:, k : k + 1] * U[:, k:n_components] j += n_components - k Q, R = qr(Yi) w = Q[:, n_components + 1 :] S = w.sum(0) S[np.where(abs(S) < hessian_tol)] = 1 w /= S nbrs_x, nbrs_y = np.meshgrid(neighbors[i], neighbors[i]) M[nbrs_x, nbrs_y] += np.dot(w, w.T) if M_sparse: M = csr_matrix(M) elif method == "modified": if n_neighbors < n_components: raise ValueError("modified LLE requires n_neighbors >= n_components") neighbors = nbrs.kneighbors( X, n_neighbors=n_neighbors + 1, return_distance=False ) neighbors = neighbors[:, 1:] # find the eigenvectors and eigenvalues of each local covariance # matrix. We want V[i] to be a [n_neighbors x n_neighbors] matrix, # where the columns are eigenvectors V = np.zeros((N, n_neighbors, n_neighbors)) nev = min(d_in, n_neighbors) evals = np.zeros([N, nev]) # choose the most efficient way to find the eigenvectors use_svd = n_neighbors > d_in if use_svd: for i in range(N): X_nbrs = X[neighbors[i]] - X[i] V[i], evals[i], _ = svd(X_nbrs, full_matrices=True) evals **= 2 else: for i in range(N): X_nbrs = X[neighbors[i]] - X[i] C_nbrs = np.dot(X_nbrs, X_nbrs.T) evi, vi = eigh(C_nbrs) evals[i] = evi[::-1] V[i] = vi[:, ::-1] # find regularized weights: this is like normal LLE. # because we've already computed the SVD of each covariance matrix, # it's faster to use this rather than np.linalg.solve reg = 1e-3 * evals.sum(1) tmp = np.dot(V.transpose(0, 2, 1), np.ones(n_neighbors)) tmp[:, :nev] /= evals + reg[:, None] tmp[:, nev:] /= reg[:, None] w_reg = np.zeros((N, n_neighbors)) for i in range(N): w_reg[i] = np.dot(V[i], tmp[i]) w_reg /= w_reg.sum(1)[:, None] # calculate eta: the median of the ratio of small to large eigenvalues # across the points. This is used to determine s_i, below rho = evals[:, n_components:].sum(1) / evals[:, :n_components].sum(1) eta = np.median(rho) # find s_i, the size of the "almost null space" for each point: # this is the size of the largest set of eigenvalues # such that Sum[v; v in set]/Sum[v; v not in set] < eta s_range = np.zeros(N, dtype=int) evals_cumsum = stable_cumsum(evals, 1) eta_range = evals_cumsum[:, -1:] / evals_cumsum[:, :-1] - 1 for i in range(N): s_range[i] = np.searchsorted(eta_range[i, ::-1], eta) s_range += n_neighbors - nev # number of zero eigenvalues # Now calculate M. # This is the [N x N] matrix whose null space is the desired embedding M = np.zeros((N, N), dtype=np.float64) for i in range(N): s_i = s_range[i] # select bottom s_i eigenvectors and calculate alpha Vi = V[i, :, n_neighbors - s_i :] alpha_i = np.linalg.norm(Vi.sum(0)) / np.sqrt(s_i) # compute Householder matrix which satisfies # Hi*Vi.T*ones(n_neighbors) = alpha_i*ones(s) # using prescription from paper h = np.full(s_i, alpha_i) - np.dot(Vi.T, np.ones(n_neighbors)) norm_h = np.linalg.norm(h) if norm_h < modified_tol: h *= 0 else: h /= norm_h # Householder matrix is # >> Hi = np.identity(s_i) - 2*np.outer(h,h) # Then the weight matrix is # >> Wi = np.dot(Vi,Hi) + (1-alpha_i) * w_reg[i,:,None] # We do this much more efficiently: Wi = Vi - 2 * np.outer(np.dot(Vi, h), h) + (1 - alpha_i) * w_reg[i, :, None] # Update M as follows: # >> W_hat = np.zeros( (N,s_i) ) # >> W_hat[neighbors[i],:] = Wi # >> W_hat[i] -= 1 # >> M += np.dot(W_hat,W_hat.T) # We can do this much more efficiently: nbrs_x, nbrs_y = np.meshgrid(neighbors[i], neighbors[i]) M[nbrs_x, nbrs_y] += np.dot(Wi, Wi.T) Wi_sum1 = Wi.sum(1) M[i, neighbors[i]] -= Wi_sum1 M[neighbors[i], i] -= Wi_sum1 M[i, i] += s_i if M_sparse: M = csr_matrix(M) elif method == "ltsa": neighbors = nbrs.kneighbors( X, n_neighbors=n_neighbors + 1, return_distance=False ) neighbors = neighbors[:, 1:] M = np.zeros((N, N)) use_svd = n_neighbors > d_in for i in range(N): Xi = X[neighbors[i]] Xi -= Xi.mean(0) # compute n_components largest eigenvalues of Xi * Xi^T if use_svd: v = svd(Xi, full_matrices=True)[0] else: Ci = np.dot(Xi, Xi.T) v = eigh(Ci)[1][:, ::-1] Gi = np.zeros((n_neighbors, n_components + 1)) Gi[:, 1:] = v[:, :n_components] Gi[:, 0] = 1.0 / np.sqrt(n_neighbors) GiGiT = np.dot(Gi, Gi.T) nbrs_x, nbrs_y = np.meshgrid(neighbors[i], neighbors[i]) M[nbrs_x, nbrs_y] -= GiGiT M[neighbors[i], neighbors[i]] += 1 return null_space( M, n_components, k_skip=1, eigen_solver=eigen_solver, tol=tol, max_iter=max_iter, random_state=random_state, ) @validate_params( { "X": ["array-like", NearestNeighbors], "n_neighbors": [Interval(Integral, 1, None, closed="left")], "n_components": [Interval(Integral, 1, None, closed="left")], "reg": [Interval(Real, 0, None, closed="left")], "eigen_solver": [StrOptions({"auto", "arpack", "dense"})], "tol": [Interval(Real, 0, None, closed="left")], "max_iter": [Interval(Integral, 1, None, closed="left")], "method": [StrOptions({"standard", "hessian", "modified", "ltsa"})], "hessian_tol": [Interval(Real, 0, None, closed="left")], "modified_tol": [Interval(Real, 0, None, closed="left")], "random_state": ["random_state"], "n_jobs": [None, Integral], }, prefer_skip_nested_validation=True, ) def locally_linear_embedding( X, *, n_neighbors, n_components, reg=1e-3, eigen_solver="auto", tol=1e-6, max_iter=100, method="standard", hessian_tol=1e-4, modified_tol=1e-12, random_state=None, n_jobs=None, ): """Perform a Locally Linear Embedding analysis on the data. Read more in the :ref:`User Guide `. Parameters ---------- X : {array-like, NearestNeighbors} Sample data, shape = (n_samples, n_features), in the form of a numpy array or a NearestNeighbors object. n_neighbors : int Number of neighbors to consider for each point. n_components : int Number of coordinates for the manifold. reg : float, default=1e-3 Regularization constant, multiplies the trace of the local covariance matrix of the distances. eigen_solver : {'auto', 'arpack', 'dense'}, default='auto' auto : algorithm will attempt to choose the best method for input data arpack : use arnoldi iteration in shift-invert mode. For this method, M may be a dense matrix, sparse matrix, or general linear operator. Warning: ARPACK can be unstable for some problems. It is best to try several random seeds in order to check results. dense : use standard dense matrix operations for the eigenvalue decomposition. For this method, M must be an array or matrix type. This method should be avoided for large problems. tol : float, default=1e-6 Tolerance for 'arpack' method Not used if eigen_solver=='dense'. max_iter : int, default=100 Maximum number of iterations for the arpack solver. method : {'standard', 'hessian', 'modified', 'ltsa'}, default='standard' standard : use the standard locally linear embedding algorithm. see reference [1]_ hessian : use the Hessian eigenmap method. This method requires n_neighbors > n_components * (1 + (n_components + 1) / 2. see reference [2]_ modified : use the modified locally linear embedding algorithm. see reference [3]_ ltsa : use local tangent space alignment algorithm see reference [4]_ hessian_tol : float, default=1e-4 Tolerance for Hessian eigenmapping method. Only used if method == 'hessian'. modified_tol : float, default=1e-12 Tolerance for modified LLE method. Only used if method == 'modified'. random_state : int, RandomState instance, default=None Determines the random number generator when ``solver`` == 'arpack'. Pass an int for reproducible results across multiple function calls. See :term:`Glossary `. n_jobs : int or None, default=None The number of parallel jobs to run for neighbors search. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary ` for more details. Returns ------- Y : ndarray of shape (n_samples, n_components) Embedding vectors. squared_error : float Reconstruction error for the embedding vectors. Equivalent to ``norm(Y - W Y, 'fro')**2``, where W are the reconstruction weights. References ---------- .. [1] Roweis, S. & Saul, L. Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323 (2000). .. [2] Donoho, D. & Grimes, C. Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. Proc Natl Acad Sci U S A. 100:5591 (2003). .. [3] `Zhang, Z. & Wang, J. MLLE: Modified Locally Linear Embedding Using Multiple Weights. `_ .. [4] Zhang, Z. & Zha, H. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. Journal of Shanghai Univ. 8:406 (2004) Examples -------- >>> from sklearn.datasets import load_digits >>> from sklearn.manifold import locally_linear_embedding >>> X, _ = load_digits(return_X_y=True) >>> X.shape (1797, 64) >>> embedding, _ = locally_linear_embedding(X[:100],n_neighbors=5, n_components=2) >>> embedding.shape (100, 2) """ return _locally_linear_embedding( X=X, n_neighbors=n_neighbors, n_components=n_components, reg=reg, eigen_solver=eigen_solver, tol=tol, max_iter=max_iter, method=method, hessian_tol=hessian_tol, modified_tol=modified_tol, random_state=random_state, n_jobs=n_jobs, ) class LocallyLinearEmbedding( ClassNamePrefixFeaturesOutMixin, TransformerMixin, _UnstableArchMixin, BaseEstimator, ): """Locally Linear Embedding. Read more in the :ref:`User Guide `. Parameters ---------- n_neighbors : int, default=5 Number of neighbors to consider for each point. n_components : int, default=2 Number of coordinates for the manifold. reg : float, default=1e-3 Regularization constant, multiplies the trace of the local covariance matrix of the distances. eigen_solver : {'auto', 'arpack', 'dense'}, default='auto' The solver used to compute the eigenvectors. The available options are: - `'auto'` : algorithm will attempt to choose the best method for input data. - `'arpack'` : use arnoldi iteration in shift-invert mode. For this method, M may be a dense matrix, sparse matrix, or general linear operator. - `'dense'` : use standard dense matrix operations for the eigenvalue decomposition. For this method, M must be an array or matrix type. This method should be avoided for large problems. .. warning:: ARPACK can be unstable for some problems. It is best to try several random seeds in order to check results. tol : float, default=1e-6 Tolerance for 'arpack' method Not used if eigen_solver=='dense'. max_iter : int, default=100 Maximum number of iterations for the arpack solver. Not used if eigen_solver=='dense'. method : {'standard', 'hessian', 'modified', 'ltsa'}, default='standard' - `standard`: use the standard locally linear embedding algorithm. see reference [1]_ - `hessian`: use the Hessian eigenmap method. This method requires ``n_neighbors > n_components * (1 + (n_components + 1) / 2``. see reference [2]_ - `modified`: use the modified locally linear embedding algorithm. see reference [3]_ - `ltsa`: use local tangent space alignment algorithm. see reference [4]_ hessian_tol : float, default=1e-4 Tolerance for Hessian eigenmapping method. Only used if ``method == 'hessian'``. modified_tol : float, default=1e-12 Tolerance for modified LLE method. Only used if ``method == 'modified'``. neighbors_algorithm : {'auto', 'brute', 'kd_tree', 'ball_tree'}, \ default='auto' Algorithm to use for nearest neighbors search, passed to :class:`~sklearn.neighbors.NearestNeighbors` instance. random_state : int, RandomState instance, default=None Determines the random number generator when ``eigen_solver`` == 'arpack'. Pass an int for reproducible results across multiple function calls. See :term:`Glossary `. n_jobs : int or None, default=None The number of parallel jobs to run. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary ` for more details. Attributes ---------- embedding_ : array-like, shape [n_samples, n_components] Stores the embedding vectors reconstruction_error_ : float Reconstruction error associated with `embedding_` n_features_in_ : int Number of features seen during :term:`fit`. .. versionadded:: 0.24 feature_names_in_ : ndarray of shape (`n_features_in_`,) Names of features seen during :term:`fit`. Defined only when `X` has feature names that are all strings. .. versionadded:: 1.0 nbrs_ : NearestNeighbors object Stores nearest neighbors instance, including BallTree or KDtree if applicable. See Also -------- SpectralEmbedding : Spectral embedding for non-linear dimensionality reduction. TSNE : Distributed Stochastic Neighbor Embedding. References ---------- .. [1] Roweis, S. & Saul, L. Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323 (2000). .. [2] Donoho, D. & Grimes, C. Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. Proc Natl Acad Sci U S A. 100:5591 (2003). .. [3] `Zhang, Z. & Wang, J. MLLE: Modified Locally Linear Embedding Using Multiple Weights. `_ .. [4] Zhang, Z. & Zha, H. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. Journal of Shanghai Univ. 8:406 (2004) Examples -------- >>> from sklearn.datasets import load_digits >>> from sklearn.manifold import LocallyLinearEmbedding >>> X, _ = load_digits(return_X_y=True) >>> X.shape (1797, 64) >>> embedding = LocallyLinearEmbedding(n_components=2) >>> X_transformed = embedding.fit_transform(X[:100]) >>> X_transformed.shape (100, 2) """ _parameter_constraints: dict = { "n_neighbors": [Interval(Integral, 1, None, closed="left")], "n_components": [Interval(Integral, 1, None, closed="left")], "reg": [Interval(Real, 0, None, closed="left")], "eigen_solver": [StrOptions({"auto", "arpack", "dense"})], "tol": [Interval(Real, 0, None, closed="left")], "max_iter": [Interval(Integral, 1, None, closed="left")], "method": [StrOptions({"standard", "hessian", "modified", "ltsa"})], "hessian_tol": [Interval(Real, 0, None, closed="left")], "modified_tol": [Interval(Real, 0, None, closed="left")], "neighbors_algorithm": [StrOptions({"auto", "brute", "kd_tree", "ball_tree"})], "random_state": ["random_state"], "n_jobs": [None, Integral], } def __init__( self, *, n_neighbors=5, n_components=2, reg=1e-3, eigen_solver="auto", tol=1e-6, max_iter=100, method="standard", hessian_tol=1e-4, modified_tol=1e-12, neighbors_algorithm="auto", random_state=None, n_jobs=None, ): self.n_neighbors = n_neighbors self.n_components = n_components self.reg = reg self.eigen_solver = eigen_solver self.tol = tol self.max_iter = max_iter self.method = method self.hessian_tol = hessian_tol self.modified_tol = modified_tol self.random_state = random_state self.neighbors_algorithm = neighbors_algorithm self.n_jobs = n_jobs def _fit_transform(self, X): self.nbrs_ = NearestNeighbors( n_neighbors=self.n_neighbors, algorithm=self.neighbors_algorithm, n_jobs=self.n_jobs, ) random_state = check_random_state(self.random_state) X = self._validate_data(X, dtype=float) self.nbrs_.fit(X) self.embedding_, self.reconstruction_error_ = _locally_linear_embedding( X=self.nbrs_, n_neighbors=self.n_neighbors, n_components=self.n_components, eigen_solver=self.eigen_solver, tol=self.tol, max_iter=self.max_iter, method=self.method, hessian_tol=self.hessian_tol, modified_tol=self.modified_tol, random_state=random_state, reg=self.reg, n_jobs=self.n_jobs, ) self._n_features_out = self.embedding_.shape[1] @_fit_context(prefer_skip_nested_validation=True) def fit(self, X, y=None): """Compute the embedding vectors for data X. Parameters ---------- X : array-like of shape (n_samples, n_features) Training set. y : Ignored Not used, present here for API consistency by convention. Returns ------- self : object Fitted `LocallyLinearEmbedding` class instance. """ self._fit_transform(X) return self @_fit_context(prefer_skip_nested_validation=True) def fit_transform(self, X, y=None): """Compute the embedding vectors for data X and transform X. Parameters ---------- X : array-like of shape (n_samples, n_features) Training set. y : Ignored Not used, present here for API consistency by convention. Returns ------- X_new : array-like, shape (n_samples, n_components) Returns the instance itself. """ self._fit_transform(X) return self.embedding_ def transform(self, X): """ Transform new points into embedding space. Parameters ---------- X : array-like of shape (n_samples, n_features) Training set. Returns ------- X_new : ndarray of shape (n_samples, n_components) Returns the instance itself. Notes ----- Because of scaling performed by this method, it is discouraged to use it together with methods that are not scale-invariant (like SVMs). """ check_is_fitted(self) X = self._validate_data(X, reset=False) ind = self.nbrs_.kneighbors( X, n_neighbors=self.n_neighbors, return_distance=False ) weights = barycenter_weights(X, self.nbrs_._fit_X, ind, reg=self.reg) X_new = np.empty((X.shape[0], self.n_components)) for i in range(X.shape[0]): X_new[i] = np.dot(self.embedding_[ind[i]].T, weights[i]) return X_new