import sys from time import time from sympy.ntheory.residue_ntheory import (discrete_log, _discrete_log_trial_mul, _discrete_log_shanks_steps, _discrete_log_pollard_rho, _discrete_log_pohlig_hellman) # Cyclic group (Z/pZ)* with p prime, order p - 1 and generator g data_set_1 = [ # p, p - 1, g [191, 190, 19], [46639, 46638, 6], [14789363, 14789362, 2], [4254225211, 4254225210, 2], [432751500361, 432751500360, 7], [158505390797053, 158505390797052, 2], [6575202655312007, 6575202655312006, 5], [8430573471995353769, 8430573471995353768, 3], [3938471339744997827267, 3938471339744997827266, 2], [875260951364705563393093, 875260951364705563393092, 5], ] # Cyclic sub-groups of (Z/nZ)* with prime order p and generator g # (n, p are primes and n = 2 * p + 1) data_set_2 = [ # n, p, g [227, 113, 3], [2447, 1223, 2], [24527, 12263, 2], [245639, 122819, 2], [2456747, 1228373, 3], [24567899, 12283949, 3], [245679023, 122839511, 2], [2456791307, 1228395653, 3], [24567913439, 12283956719, 2], [245679135407, 122839567703, 2], [2456791354763, 1228395677381, 3], [24567913550903, 12283956775451, 2], [245679135509519, 122839567754759, 2], ] # Cyclic sub-groups of (Z/nZ)* with smooth order o and generator g data_set_3 = [ # n, o, g [2**118, 2**116, 3], ] def bench_discrete_log(data_set, algo=None): if algo is None: f = discrete_log elif algo == 'trial': f = _discrete_log_trial_mul elif algo == 'shanks': f = _discrete_log_shanks_steps elif algo == 'rho': f = _discrete_log_pollard_rho elif algo == 'ph': f = _discrete_log_pohlig_hellman else: raise ValueError("Argument 'algo' should be one" " of ('trial', 'shanks', 'rho' or 'ph')") for i, data in enumerate(data_set): for j, (n, p, g) in enumerate(data): t = time() l = f(n, pow(g, p - 1, n), g, p) t = time() - t print('[%02d-%03d] %15.10f' % (i, j, t)) assert l == p - 1 if __name__ == '__main__': algo = sys.argv[1] \ if len(sys.argv) > 1 else None data_set = [ data_set_1, data_set_2, data_set_3, ] bench_discrete_log(data_set, algo)