from sympy.core.numbers import (Rational, pi) from sympy.core.singleton import S from sympy.core.symbol import (Symbol, symbols) from sympy.functions.elementary.exponential import (exp, log) from sympy.codegen.cfunctions import ( expm1, log1p, exp2, log2, fma, log10, Sqrt, Cbrt, hypot ) from sympy.core.function import expand_log def test_expm1(): # Eval assert expm1(0) == 0 x = Symbol('x', real=True) # Expand and rewrite assert expm1(x).expand(func=True) - exp(x) == -1 assert expm1(x).rewrite('tractable') - exp(x) == -1 assert expm1(x).rewrite('exp') - exp(x) == -1 # Precision assert not ((exp(1e-10).evalf() - 1) - 1e-10 - 5e-21) < 1e-22 # for comparison assert abs(expm1(1e-10).evalf() - 1e-10 - 5e-21) < 1e-22 # Properties assert expm1(x).is_real assert expm1(x).is_finite # Diff assert expm1(42*x).diff(x) - 42*exp(42*x) == 0 assert expm1(42*x).diff(x) - expm1(42*x).expand(func=True).diff(x) == 0 def test_log1p(): # Eval assert log1p(0) == 0 d = S(10) assert expand_log(log1p(d**-1000) - log(d**1000 + 1) + log(d**1000)) == 0 x = Symbol('x', real=True) # Expand and rewrite assert log1p(x).expand(func=True) - log(x + 1) == 0 assert log1p(x).rewrite('tractable') - log(x + 1) == 0 assert log1p(x).rewrite('log') - log(x + 1) == 0 # Precision assert not abs(log(1e-99 + 1).evalf() - 1e-99) < 1e-100 # for comparison assert abs(expand_log(log1p(1e-99)).evalf() - 1e-99) < 1e-100 # Properties assert log1p(-2**Rational(-1, 2)).is_real assert not log1p(-1).is_finite assert log1p(pi).is_finite assert not log1p(x).is_positive assert log1p(Symbol('y', positive=True)).is_positive assert not log1p(x).is_zero assert log1p(Symbol('z', zero=True)).is_zero assert not log1p(x).is_nonnegative assert log1p(Symbol('o', nonnegative=True)).is_nonnegative # Diff assert log1p(42*x).diff(x) - 42/(42*x + 1) == 0 assert log1p(42*x).diff(x) - log1p(42*x).expand(func=True).diff(x) == 0 def test_exp2(): # Eval assert exp2(2) == 4 x = Symbol('x', real=True) # Expand assert exp2(x).expand(func=True) - 2**x == 0 # Diff assert exp2(42*x).diff(x) - 42*exp2(42*x)*log(2) == 0 assert exp2(42*x).diff(x) - exp2(42*x).diff(x) == 0 def test_log2(): # Eval assert log2(8) == 3 assert log2(pi) != log(pi)/log(2) # log2 should *save* (CPU) instructions x = Symbol('x', real=True) assert log2(x) != log(x)/log(2) assert log2(2**x) == x # Expand assert log2(x).expand(func=True) - log(x)/log(2) == 0 # Diff assert log2(42*x).diff() - 1/(log(2)*x) == 0 assert log2(42*x).diff() - log2(42*x).expand(func=True).diff(x) == 0 def test_fma(): x, y, z = symbols('x y z') # Expand assert fma(x, y, z).expand(func=True) - x*y - z == 0 expr = fma(17*x, 42*y, 101*z) # Diff assert expr.diff(x) - expr.expand(func=True).diff(x) == 0 assert expr.diff(y) - expr.expand(func=True).diff(y) == 0 assert expr.diff(z) - expr.expand(func=True).diff(z) == 0 assert expr.diff(x) - 17*42*y == 0 assert expr.diff(y) - 17*42*x == 0 assert expr.diff(z) - 101 == 0 def test_log10(): x = Symbol('x') # Expand assert log10(x).expand(func=True) - log(x)/log(10) == 0 # Diff assert log10(42*x).diff(x) - 1/(log(10)*x) == 0 assert log10(42*x).diff(x) - log10(42*x).expand(func=True).diff(x) == 0 def test_Cbrt(): x = Symbol('x') # Expand assert Cbrt(x).expand(func=True) - x**Rational(1, 3) == 0 # Diff assert Cbrt(42*x).diff(x) - 42*(42*x)**(Rational(1, 3) - 1)/3 == 0 assert Cbrt(42*x).diff(x) - Cbrt(42*x).expand(func=True).diff(x) == 0 def test_Sqrt(): x = Symbol('x') # Expand assert Sqrt(x).expand(func=True) - x**S.Half == 0 # Diff assert Sqrt(42*x).diff(x) - 42*(42*x)**(S.Half - 1)/2 == 0 assert Sqrt(42*x).diff(x) - Sqrt(42*x).expand(func=True).diff(x) == 0 def test_hypot(): x, y = symbols('x y') # Expand assert hypot(x, y).expand(func=True) - (x**2 + y**2)**S.Half == 0 # Diff assert hypot(17*x, 42*y).diff(x).expand(func=True) - hypot(17*x, 42*y).expand(func=True).diff(x) == 0 assert hypot(17*x, 42*y).diff(y).expand(func=True) - hypot(17*x, 42*y).expand(func=True).diff(y) == 0 assert hypot(17*x, 42*y).diff(x).expand(func=True) - 2*17*17*x*((17*x)**2 + (42*y)**2)**Rational(-1, 2)/2 == 0 assert hypot(17*x, 42*y).diff(y).expand(func=True) - 2*42*42*y*((17*x)**2 + (42*y)**2)**Rational(-1, 2)/2 == 0