'''Functions returning normal forms of matrices''' from sympy.polys.domains.integerring import ZZ from sympy.polys.polytools import Poly from sympy.polys.matrices import DomainMatrix from sympy.polys.matrices.normalforms import ( smith_normal_form as _snf, invariant_factors as _invf, hermite_normal_form as _hnf, ) def _to_domain(m, domain=None): """Convert Matrix to DomainMatrix""" # XXX: deprecated support for RawMatrix: ring = getattr(m, "ring", None) m = m.applyfunc(lambda e: e.as_expr() if isinstance(e, Poly) else e) dM = DomainMatrix.from_Matrix(m) domain = domain or ring if domain is not None: dM = dM.convert_to(domain) return dM def smith_normal_form(m, domain=None): ''' Return the Smith Normal Form of a matrix `m` over the ring `domain`. This will only work if the ring is a principal ideal domain. Examples ======== >>> from sympy import Matrix, ZZ >>> from sympy.matrices.normalforms import smith_normal_form >>> m = Matrix([[12, 6, 4], [3, 9, 6], [2, 16, 14]]) >>> print(smith_normal_form(m, domain=ZZ)) Matrix([[1, 0, 0], [0, 10, 0], [0, 0, -30]]) ''' dM = _to_domain(m, domain) return _snf(dM).to_Matrix() def invariant_factors(m, domain=None): ''' Return the tuple of abelian invariants for a matrix `m` (as in the Smith-Normal form) References ========== .. [1] https://en.wikipedia.org/wiki/Smith_normal_form#Algorithm .. [2] https://web.archive.org/web/20200331143852/https://sierra.nmsu.edu/morandi/notes/SmithNormalForm.pdf ''' dM = _to_domain(m, domain) factors = _invf(dM) factors = tuple(dM.domain.to_sympy(f) for f in factors) # XXX: deprecated. if hasattr(m, "ring"): if m.ring.is_PolynomialRing: K = m.ring to_poly = lambda f: Poly(f, K.symbols, domain=K.domain) factors = tuple(to_poly(f) for f in factors) return factors def hermite_normal_form(A, *, D=None, check_rank=False): r""" Compute the Hermite Normal Form of a Matrix *A* of integers. Examples ======== >>> from sympy import Matrix >>> from sympy.matrices.normalforms import hermite_normal_form >>> m = Matrix([[12, 6, 4], [3, 9, 6], [2, 16, 14]]) >>> print(hermite_normal_form(m)) Matrix([[10, 0, 2], [0, 15, 3], [0, 0, 2]]) Parameters ========== A : $m \times n$ ``Matrix`` of integers. D : int, optional Let $W$ be the HNF of *A*. If known in advance, a positive integer *D* being any multiple of $\det(W)$ may be provided. In this case, if *A* also has rank $m$, then we may use an alternative algorithm that works mod *D* in order to prevent coefficient explosion. check_rank : boolean, optional (default=False) The basic assumption is that, if you pass a value for *D*, then you already believe that *A* has rank $m$, so we do not waste time checking it for you. If you do want this to be checked (and the ordinary, non-modulo *D* algorithm to be used if the check fails), then set *check_rank* to ``True``. Returns ======= ``Matrix`` The HNF of matrix *A*. Raises ====== DMDomainError If the domain of the matrix is not :ref:`ZZ`. DMShapeError If the mod *D* algorithm is used but the matrix has more rows than columns. References ========== .. [1] Cohen, H. *A Course in Computational Algebraic Number Theory.* (See Algorithms 2.4.5 and 2.4.8.) """ # Accept any of Python int, SymPy Integer, and ZZ itself: if D is not None and not ZZ.of_type(D): D = ZZ(int(D)) return _hnf(A._rep, D=D, check_rank=check_rank).to_Matrix()